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The study of the mechanical behaviour of fibre-reinforced electro-active polymers (EAPs) with bending stiffness is beneficial in engineering for mechanical design and problem solving. However, constitutive models of fibre-reinforced EAPs with fibre bending stiffness do not exist in the literature. Hence, to enhance the understanding of the mechanical behaviour of fibre-reinforced EAPs with fibre bending stiffness, the development of a relevant constitutive equation is paramount. In this paper, we develop a constitutive equation for a non-linear non-polar EAP, reinforced by embedded fibres, in which the elastic resistance of the fibers to bending is modeled via the classical branches of continuum mechanics without using the second gradient theory, which assumes the existence of contact torques. In view of this, the proposed model is simple and somewhat more realistic, in the sense that contact torques do not exist in non-polar EAPs.

Introduction

Recent research in various fields of science and engineering has led to the development of new materials and technologies. For instance, the effect of dielectric relaxation of epoxy resin on the dielectric loss of mediumfrequency transformer was investigated in [START_REF] Wu | Effect of Dielectric Relaxation of Epoxy Resin on Dielectric Loss of Medium-Frequency Transformer[END_REF]. In [START_REF] Huang | Novel one-dimensional V3S4@NC nanofibers for sodium-ion batteries[END_REF], a novel one-dimensional V3S4@NC nanofibers for sodium-ion batteries was proposed. Meanwhile, the physical layer security of uplink NOMA via energy harvesting jammers was improved in [START_REF] Cao | Improving Physical Layer Security of Uplink NOMA via Energy Harvesting Jammers[END_REF]. In another study, the structures and stabilities of carbon chain clusters influenced by atomic antimony was examined in [START_REF] Song | Structures and Stabilities of Carbon Chain Clusters Influenced by Atomic Antimony[END_REF]. Furthermore, Shi et al. integrated redoxactive polymer with MXene for ultra-stable and fast aqueous proton storage [START_REF] Shi | Redox-Active Polymer Integrated with MXene for Ultra-Stable and Fast Aqueous Proton Storage[END_REF]. In [START_REF] Xiao | Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading[END_REF], an analytical model for the nonlinear buckling responses of confined polyhedral FGP-GPLs lining subjected to crown point loading in engineering structures was developed.

In this paper, we are interested in the mechanical behavior of fibre-reinforced electro-active polymers (EAPs) with bending stiffness, which is an important issue in engineering. EAPs are multifunctional materials that are innovative and smart as they can adapt their physical and mechanical properties as a result of external stimuli. An EAP deforms under the application of an electric field and it has recently attracted growing interest because of its potential for use, for example, in biomedical applications, artificial muscles in robotics and actuators [START_REF] Bar-Cohen | Electro-active polymers: current capabilities and challenges[END_REF].

Fibre-reinforced composite materials have often been used in recent engineering applications. The rapid growth in manufacturing industries has led to the need for the improvement of materials in terms of strength, stiffness, density, and lower cost with improved sustainability. Fibre-reinforced composite materials have emerged as one of the materials possessing such improvement in properties serving their potential in a variety of applications [START_REF] Chukov | Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites[END_REF][START_REF] Linul | Compressive properties of Zinc Syntactic Foams at elevated temperatures[END_REF][START_REF] Sherif | Effect of formation route on the mechanical properties of the polyethersulfone composites reinforced with glass fibers[END_REF][START_REF] Gowda | Polymer matrix-natural fiber composites: An overview[END_REF]. The infusion of natural synthetic or natural fibers in the fabrication of composite materials has revealed significant applications in a variety of fields such as biomedical, automobile, mechanical, construction, marine and aerospace [START_REF] Clyne | An Introduction to Composite Materials[END_REF][START_REF] Monteiro | Fique fabric: A promising reinforcement for polymer composites[END_REF][START_REF] Movahedi | Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions[END_REF][START_REF] Zagho | Recent overviews in functional polymer composites for biomedical applications[END_REF]. In biomechanics, some soft tissues can be modelled as fibre-reinforced composite materials [START_REF] Gizzi | A threedimensional continuum model of active contraction in single cardiomyocytes[END_REF][START_REF] Shariff | Physical invariant strain energy function for passive myocardium[END_REF][START_REF] Shariff | On the spectral constitutive modelling of transversely isotropic soft tissue: Physical invariants[END_REF]. In modern heavy engineering, the heavy traditional materials are gradually being replaced by fibre-reinforced polymer composite structures of lower weight and higher strength. These structures, such as railroads and bridges, are always under the action of dynamic moving loads caused by the moving vehicular traffic.

Constitutive equations for fibre-reinforced EAPs have recently been developed [START_REF] Shariff | A nonlinear electro-elastic model with residual stresses and a preferred direction[END_REF][START_REF] Shariff | A nonlinear con-stitutive model for a two preferred direction electro-elastic body with residual[END_REF]. However, fibrereinforced EAP models that appear in the literature do not consider fibres that resist bending. Hence, the understanding of the mechanics of fibre-reinforced EAPs, where the fibres resist bending is an important issue in engineering. The mechanical behavior of fibre-reinforced EAPs with stiff bending fibres is significantly different from those that are perfectly flexible [START_REF] Ferreti | Modeling the onset of shear boundary layers in fibrous composite reinforcements by second gradient theory[END_REF]. Hence, in view of the above, a rigorous construction of a mechanical constitutive model, based on the sound theory of continuum mechanics, for non-polar fibre-reinforced solids, is paramount, and is of valuable interest in engineering designs and would find many practical applications.

In the case of non-EAP materials, the long history [START_REF] Pipkin | Stress analysis for fiber-reinforced materials[END_REF][START_REF] Shariff | Residually stressed fiber reinforced solids: a spectral approach[END_REF][START_REF] Spencer | Deformations of Fibre-Reinforced Materials[END_REF] of mechanics of non-polar fiber-reinforced solids has, in general, significantly enriched and advanced the knowledge of solid mechanics. A boundary value problem for a non-polar elastic solid reinforced by (finite radius) fibres can be solved using the Finite Element Method (FEM), if small elements are permittable to mesh the fibres. If we treat the fibres to be an isotropic solid but have a different material properties from the matrix (material that is not attributable to the fibers) properties, we can use an inhomogeneous strain energy function

W (λ 1 , λ 2 , λ 3 ) (1) 
in solving the FEM problem, where λ 1 , λ 2 and λ 3 are the pricipal stretches. We note that, due to the finite radius of the fibres, bending resistance due to changes in the curvature for the fibres, is observed. However, if the fibre radius is significantly small, meshing the fibres and the matrix can be troublesome and hence it may not be possible to seek a boundary value solution via the FEM. To overcome this significantly small radius problem, a FEM solution can be obtained using a transversely elastic strain energy function [START_REF] Spencer | Deformations of Fibre-Reinforced Materials[END_REF] W (U , a) ,

where U is the right-stretch tensor and a is the unit preferred vector in the reference configuration. We note that this transversely isotropic model contains infinitely many purely flexible fibres with zero radius; hence this model cannot model elastic resistance due to changes in the curvature for the fibres. We emphasize that the Cauchy stress in both isotropic and transversely isotropic non-EAP models is symmetric and this is actually observed in a non-polar solid in the absence of a couple stress. To model the effect of elastic resistance due to changes in the curvature for the fibres, recent models [START_REF] Shariff | Finite deformations of fibre bending stiffness: A spectral approach[END_REF][START_REF] Shariff | Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres[END_REF][START_REF] Soldatos | On the Constitution of Polar Fibre-reinforced Materials[END_REF][START_REF] Spencer | Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness[END_REF] that are framed in the setting of the non-linear strain-gradient theory or Kirchhoff rod theory [START_REF] Steigmann | Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist[END_REF], were developed. We note that these second-gradient models characterize the mechanical behaviour of (polar) transversely isotropic solids with infinitely many purely flexible fibres with zero radius. But, in order to simulate the effect of fibre bending stiffness on purely flexible fibres with zero radius, the second-gradient non-EAP models introduce the existence of a couple stress and a non-symmetric Cauchy stress in the constitutive equations; we must emphasize that both of these stresses are not present on deformations of actual non-polar-EAP elastic solids reinforced by finite-radius fibres. In general, higher gradient elasticity models are used to describe mechanical structures at the micro-and nano-scale or to regularize certain ill-posed problems by means of these higher gradient contributions. Discussion on the effectiveness of higher gradient elasticity models to mechanically describe continuum solids is still ongoing [START_REF] Hadjesfandiari | Couple stress theory for solids[END_REF][START_REF] Hadjesfandiari | Evolution of generalized couple-stress continuum theories:a critical analysis[END_REF][START_REF] Neff | On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of A.R. Hadjesfandiari and G[END_REF].

Hence, the objective of this paper is to propose a model to simulate the mechanical behaviour of actual nonpolar EAP reinforced by finite-radius fibres, where the contact torque is absent and fibre bending resistance is caused by changes in curvature of the fibres. We focus on changes in fibre curvature, since in composite solids, these changes play an important role in the mechanical behaviour of solids. Since our simulated model contains infinitely many fibres with zero radius, we exclude the effects due to fibre 'twist'. In fact Spencer and Soldatos [START_REF] Spencer | Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness[END_REF] stated that "In doing this, we exclude effects due to fibre 'splay' and fibre 'twist', both of which feature in liquid crystal theory, but it is plausible that in fibre composite solids the major factor is fibre curvature."

Please note that our model does not:

(1) Require the existence of contact torques (which are not observed in actual non-polar elastic solids reinforced by finite-radius fibres).

(2) Introduce higher order differential equations in the corresponding boundary value problem.

Both ( 1) and ( 2) complicate the solving of boundary value problems, which is discussed in references [START_REF] Hadjesfandiari | Couple stress theory for solids[END_REF][START_REF] Hadjesfandiari | Evolution of generalized couple-stress continuum theories:a critical analysis[END_REF][START_REF] Neff | On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of A.R. Hadjesfandiari and G[END_REF]. Since our model does not involve ( 1) and ( 2), solving EAP boundary value problems is much easier, analytically and numerically, compared to solving boundary value problems of second-gradient models that are asscociated with ( 1) and ( 2).

Spectral approach [START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF][START_REF] Shariff | Finite deformations of fibre bending stiffness: A spectral approach[END_REF] is used in the modelling and this is preliminary described in Sections 2 and 4, where in Section 4 a total energy function contains an electric field and a vector that governs the changes in the fibre curvature. A prototype of the strain energy is given in Section 5 and boundary value problems to study the effect of fibre bending resistance are presented in Section 6.

Preliminaries

Deformation

Unless stated otherwise, all subscripts i, j and k assume the values of 1 or 2 or 3 and we do not use the summation convention. Let y and x denote the position vectors of a solid body particle, respectively, in the current and reference configurations. The deformation gradient F is spectrally [START_REF] Shariff | Residually stressed fiber reinforced solids: a spectral approach[END_REF] described as follows:

F (λ i , v i , u i ) = ∂y ∂x = 3 i=1 λ i v i ⊗ u i , (3) 
where λ i is a principal stretch, u i is an eigenvector of the right-stretch tensor U = F (λ i , u i , u i ) and v i is an eigenvector of the left stretch tensor V = F (λ i , v i , v i ). We can spectrally express the rotation tensor

R = F (λ i = 1, v i , u i ) and the right Cauchy-Green tensor C = F (λ 2 i , u i , u i )
, where F = RU . In this article, we assume that the effect of mechanical body forces is negligible and only incompressible elastic solids are considered. Hence, det F = 1, where det indicates the tensor determinant. We only consider time-independent fields and quasi-static deformations.

Electrostatics

In the absence of distribution of free charges the simplified forms of the Maxwell equations are [START_REF] Shariff | A Generalised Time-Dependent Mathematical Formulation for Magnetoelectrically Coupled Soft Solids at Finite Strains[END_REF] 

div(d) = 0 , curl(e) = 0 , ( 4 
)
where d is the cuurent-configuration electric displacement, e is the current-configuration electric field and, curl and div are, respectively, the curl and divergence operators with respect to y. The relation between d and e in vacuum is

d = ε 0 e , (5) 
where ε 0 = 8.85 × 10 -12 F/m is the vacuum electric permittivity. The condensed matter relation is

d = ε 0 e + p , (6) 
where p is the electric polarization.

Let T be the total symmetric Cauchy stress defined in [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF]. We assume surface electric charges are absent and hence, we have, the continuity equations [START_REF] Kovetz | Electromagnetic theory[END_REF][START_REF] Ogden | Mechanics and electrodynamics of magneto-and electro-elastic materials[END_REF] n

• [[d]] = 0, n × [[e]] = 0, T n = t + T M n, ( 7 
)
where n is the unit outward normal vector to the boundary of the deformed body, t is the external mechanical traction, [[ ]] denotes the difference of a quantity from outside and inside a body and T M is the Maxwell stress tensor outside the body in vacuum defined as

T M = d ⊗ e - 1 2 (d • e)I. (8) 
3 Embedded fibres

We assume the material body consists of a matrix material and fibers. We model this material by considering a transversely elastic solid with the referential preferred unit direction a(x) and it becomes the vector

b = F a = f , = √ a • Ca > 0 , (9) 
in the current configuration, where f is a unit vector. In our proposed model, the directional derivative of the fibre unit vector in the fibre direction, i.e.,

c = ∂f ∂x a , (10) 
plays an important role in modelling elastic resistance due to changes in curvature for the fibres. In view of this we endow a vector m associated with c (we will make the association clear later) in [START_REF] Huang | Novel one-dimensional V3S4@NC nanofibers for sodium-ion batteries[END_REF], which is independent of F , i.e. [START_REF] Shariff | Finite deformations of fibre bending stiffness: A spectral approach[END_REF][START_REF] Shariff | Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres[END_REF][START_REF] Shariff | A nonsecondgradient model for nonlinear elastic bodies with fibre stiffness[END_REF]]

m = 1 ι Λa - 1 ι 3 (a • Λa) Ca , ι = a • Ca , (11) 
where

C = F T F , Λ = F T G - ∂a ∂x , G = ∂ F a ∂x , (12) 
F (x) is the deformation tensor independent of F , i.e., m is not embedded in the matrix, and so in general its image F -T m in the current configuration is not directly connected to the deformation of the matrix. Clearly from [START_REF] Kovetz | Electromagnetic theory[END_REF], we have m • a = 0. If we let F = F , we then have the association c = F -T m [START_REF] Shariff | Finite deformations of fibre bending stiffness: A spectral approach[END_REF][START_REF] Shariff | Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres[END_REF]. To facilitate the process of modelling, we express the vector

m = ρk , ρ = √ m • m , ( 13 
)
where k is a unit vector with the property a • k = 0.

Total energy function

Let W be the total energy. Following the work of [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF][START_REF] Ogden | Mechanics and electrodynamics of magneto-and electro-elastic materials[END_REF], we have,

W = Ŵ(a) (U , a, m, e L ) = W (a) (U , a, k, g, ρ, e) , (14) 
where

g = 1 e e L , e = |e L | > 0 . ( 15 
)
and the Lagrangian electric field e L is defined as e L = F T e [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF].

For an incompressible body, the total symmetric Cauchy stress is [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF] 

T = F ∂Ω ∂F -pI = 2F ∂Ω ∂C F T -pI (16) 
and the Eulerian electric displacement is

d = -F ∂Ω ∂e L . ( 17 
)
The Lagrangian electric displacement is given as [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF] 

d L = - ∂Ω ∂e L , (18) 
where d L = F -1 d. The Lagrangian fields must satisfy the relations [START_REF] Dorfmann | Nonlinear electroelasticity[END_REF] Curl(e L ) = 0 and Div(d

L ) = 0 , (19) 
where Div and Curl are, respectively, the divergence and curl operators with respect to x, associated with the undeformed configuration.

Spectral invariants

The total energy function requires the restriction

W = W (a) (U , a, k, g, ρ, e) = W (a) (QU Q T , Qa, Qk, Qg, ρ, e) , (20) 
for every rotation tensor Q, hence it must depend on invariants with respect to the rotation tensor Q.

Recently, attractive, useful and successful spectral invariants have been used in modelling anisotropic bodies (see for example references [START_REF] Shariff | Physical invariant strain energy function for passive myocardium[END_REF][START_REF] Shariff | Anisotropic separable free energy functions for elastic and non-elastic solids[END_REF][START_REF] Shariff | Residually stressed fiber reinforced solids: a spectral approach[END_REF][START_REF] Shariff | A nonlinear electro-elastic model with residual stresses and a preferred direction[END_REF][START_REF] Shariff | A nonlinear con-stitutive model for a two preferred direction electro-elastic body with residual[END_REF][START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF][START_REF] Shariff | Finite deformations of fibre bending stiffness: A spectral approach[END_REF][START_REF] Shariff | Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres[END_REF]) and, in view of this, we characterise W by the spectral invariants [START_REF] Shariff | On the Smallest Number of Functions Representing Isotropic Functions of Scalars, Vectors and Tensors[END_REF] 

λ i a i = a • u i , b i = k • u i , c i = g • u i , 3 i=1 a 2 i = 1 , 3 i=1 b 2 i = 1 , 3 i=1 c 2 i = 1 . (21) 
and the scalers ρ and e. Hence, we can express

W = W (a) (λ i , a i , b i , c i , ρ, e) , (22) 
taking note the W (a) must satisfy the P -property described in [START_REF] Shariff | Anisotropic separable free energy functions for elastic and non-elastic solids[END_REF] associated with the coalescence of principal stretches λ i . In view of the 3 constraints in [START_REF] Neff | On some fundamental misunderstandings in the indeterminate couple stress model. A comment on recent papers of A.R. Hadjesfandiari and G[END_REF], only 11 of the invariants in [START_REF] Ogden | Non-linear elastic deformations[END_REF] are independent; in the case of an incompressible material, only 10 of the invariants are independent due to the constraint λ 1 λ 2 λ 3 = 1. In our current model, W is independent of the sign of a, k and g, hence we express

W = W (s) (λ i , α i , β i , γ i , ρ, e) , α i = a 2 i , β i = b 2 i , γ i = c 2 i . (23) 

Spectral derivative components

The evaluation of stress tensors requires spectral the Lagrangian spectral tensor components of ∂W ∂C i.e.,

∂W ∂C ii = 1 2λ i ∂W (s) ∂λ i , ( 24 
)
∂W ∂C ij = 1 (λ 2 i -λ 2 j ) ∂W (s) ∂α i - ∂W (s) ∂α j a i a j + ∂W (s) ∂β i - ∂W (s) ∂β j b i b j + ∂W (s) ∂γ i - ∂W (s) ∂γ j c i c j , i = j . (25) 
The Eulerian description of the total Cauchy stress T for an incompressible body is

T = 3 i,j=1 t ij v i ⊗ v j , (26) 
where

τ ii = λ i ∂W (s) ∂λ i -p , τ ij = 2λ i λ j ∂W ∂C ij , i = j . (27) 
The Lagrangian spectral components for the electric displacement d are:

d L = - ∂W ∂e L = - 3 k=1 (d L • u k )u k , (28) 
where

∂W ∂e L = ∂W ∂e g + 1 e [I -(g ⊗ g)] T ∂W ∂g . (29) 
The electric field in the deformed configuration can simply be expressed by

d = - 3 k=1 λ k (d L • u k )v k . (30) 

Strain energy prototype

In this section, a prototype total energy function W is proposed. A more general, but complex form of the total energy function can be constructed following the work of Shariff [START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF], if required. We propose

W = W (T ) + W (Λ) + W (E) , (31) 
where

W (T ) = µ 3 i=1 r 2 1 (λ i ) + 2µ 1 3 i=1 α i r 2 2 (λ i ) + κ 1 2 ( 3 i=1 α i r 3 (λ i )) 2 , (32) 
W (Λ) = 2µ 2 ρ 2 3 i=1 β i r 2 4 (λ i ) + κ 2 2 ρ 4 ( 3 i=1 β i r 5 (λ i )) 2 + κ 3 ρ 2 [ i=1 α i r 6 (λ i )][ 3 i=1 β i r 7 (λ i )] , (33) 
and [START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF] W

(E) = 3 i=1 γ i c 0 (e)r 2 8 (λ i ) -ε 0 γ i e 2 2λ 2 i , (34) 
with the properties [START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF] c 0 (0) = 0 , r α (1) = 0 , r α (1) = 1 , α = 1, 2, . . . 8 .

We note that µ, µ 1 , µ 2 , κ 1 , κ 2 , κ 3 and c 0 (e) are ground-state constants and their restrictions are given in Appendix A. We could also include the following property, when appropriate, r α to represent physical strain measures with the extreme deformation values

r α (λ i → ∞) = ∞ , r α (λ → 0) = -∞ . ( 36 
)
The energy functions ( 31) to ( 34) can be easily extended to construct a more general strain energy function (see for example [START_REF] Shariff | A generalized strain approach to anisotropic elasticity[END_REF]), but the total energy function proposed in this Section should suffice to illustrate our model. From the above and Eqn. [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF], it is clear that

d = ε 0 e -F ∂W (E) ∂e L p = -F ∂W (E) ∂e L . (37) 
In vacuum, W (E) = 0 and we recover the relation

d = ε 0 e . ( 38 
)

Boundary value problem

To illustrate our theory, we consider two simple deformations, pure bending and finite torsion of a right circular cylinder, where their displacements are known. For boundary value problems, where the displacements are unknown, the construction of solutions are described in Appendix B.

To plot the results in this section, for simplicity, we use

r α (x) = ln(x) , α = 1, 2, . . . 8 , (39) 
and the ground-state values

µ = 5kPa , µ 1 = 80kPa , κ 1 = 0 , (40) 
are those associated with skeletal muscle tissue [START_REF] Morrow | Transversely isotropic tensile material properties of skeletal muscle tissue[END_REF][START_REF] Shariff | On the spectral constitutive modelling of transversely isotropic soft tissue: Physical invariants[END_REF]. Since our model is new and there are no experimental values for the following ground-state constants, we use the ad hoc values

µ 2 = 10.0kPa , κ 1 = κ 2 = 0 , κ 3 = -100kPa , c 0 (e) = 0.1ε 0 e 2 , ( 41 
)
to plot the graphs. Take note that the above values satisfy the restrictions given in Appendix A.

Pure Bending

A deformation of pure bending in plane strain is depicted in Fig. 1, where a sector of a circular annulus defined by

r = r(x 1 ) , θ = θ(x 2 ) , z = x 3 , 0 ≤ x 1 ≤ B , -L ≤ x 2 ≤ L , -H ≤ x 3 ≤ H ( 42 
)
is obtained via bending a rectangular slab of incompressible material: Note that (r, θ, z) is the cylindrical polar coordinate for the current configuration and (x 1 , x 2 , x 3 ) is the Cartesian referential coordinate with the basis {g 1 , g 2 , g 3 = e z }.

The formula employed here could be used to compare our theory with experiment (for example, a three point bending test experiment described in reference [START_REF] Mathieu | Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[END_REF]). In this case,

F = r e r ⊗ g 1 + rθ e θ ⊗ g 2 + e z ⊗ g 3 . ( 43 
)
In view of det F = 1 and the conditions θ(0) = 0 and r(A) = a at the boundary, we obtain where r(B) = b. Hence, in view of (3), ( 43) and ( 44), we have

r 2 -a 2 = 2χx 1 , θ = x 2 χ , χ = b 2 -a 2 2B > 0 , (44) 
λ 1 = χ r , λ 2 = r χ , λ 3 = 1 (45) 
and the spectral basis vectors are u i = g i , v 1 = e r , v 2 = e θ and v 3 = e z .

We only study the case a = g 2 and e = e 0 r e θ . Hence, e L = e 0 χ g 2 , a 1 = a 3 = 0, a 2 = 1 c 1 = c 3 = 0 and c 2 = 1 and clearly Curle L = 0 is satisfied. If we let F = F , we get

k = -g 1 , ρ = 1 r , b 1 = -1 , b 2 = b 3 = 0 . (46) 
The strain energy function is simplified, i.e.

W (T ) = µ 3 i=1 r 2 1 (λ i ) + 2µ 1 r 2 2 (λ 2 ) + κ 1 2 r 2 3 (λ 2 ) , W (Λ) = 2ρ 2 µ 2 r 2 4 (λ 1 ) + ρ 4 κ 2 2 r 2 5 (λ 1 ) + ρ 2 κ 3 r 6 (λ 2 )r 7 (λ 1 ) , W (E) = c 0 (e)r 2 8 (λ 2 ) - ε 0 e 2 2λ 2 2 , W = W (T ) + W (Λ) + W (E) . (47) 
The non-zero Cauchy stress components simply becomes

σ i = λ i ∂W ∂λ i -p , (48) 
where σ 1 = σ rr , σ 2 = σ θθ and σ 3 = σ zz are cylindrical components of the Cauchy stress. The Maxwell stress simply becomes

T M = ε 0 e 2 2r 2 (-e r ⊗ e r + e θ ⊗ e θ -e z ⊗ e z ) . (49) 
Since σ i depends only on r, the equilibrium equation simply becomes

dσ rr dr + 1 r (σ rr -σ θθ ) = 0 . (50) 
We note that, in view of the Maxwell stress in (49), σ rr = -ε 0 e 2 2b 2 at r = b, we then have

σ rr = - b r G(y) dy + ε 0 e 2 2b 2 , rG(r) = λ 2 ∂W ∂λ 2 -λ 1 ∂W ∂λ 1 . (51) 
Hence, we can evaluate

p = λ 1 ∂W ∂λ 1 + b r G(y) dy - ε 0 e 2 2b 2 . ( 52 
)
The stress-strain relations for σ θθ and σ zz can now be obtained using the above p. The bending moment

M = b a rσ θθ dr (53) 
and the normal force

N = b a σ θθ dr . (54) 
Both M and N are derived per unit length in the x 3 direction, and applied to a section of constant θ.

In figures 2 and 3, the behaviours of, respectively, the radial and hoop stresses are depicted using χ B = 1

and the material is deformed to a B = 1. It is clear from these figures the magnitude of the stresses is affected by bending fibre resistance and by the presence of an electric field.

The bending moment M values are; 

Hence, the presence of bending fibre stiffness and an electric field increases the magnitude of M and N .

We note that

d L = d 1 (x 1 )g 2 , d 1 (x 1 ) = ε 0 e λ 2 2 -c 0 (e)r 2 8 (λ 2 ) (57) 
which implies that Divd L = 0, since the component of d L depends on the variable x 1 only. 

Torsion and extension of a cylinder

The initial geometry of an incompressible thick-walled circular cylindrical annulus is described by

0 ≤ R ≤ A, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (58) 
where R, Θ and Z are reference polar coordinates with the corresponding basis

B R = {E R , E Θ , E Z }.
The boundary value problem illustrated here could be used in an experiment (see, for example, reference [START_REF] Lu | Solid cylinder torsion for large shear deformation and failure of engineering materials[END_REF]) to verify our theoretical predictions.

The deformation is depicted in Fig. 4 and is described by

r = λ -1 2 z R, θ = Θ + λ z τ Z, z = λ z Z, ( 59 
)
where τ is the amount of torsional twist per unit deformed length and λ z is the axial stretch. In the above formulation, r, θ and z are cylindrical polar coordinates in the deformed configuration with the corresponding basis B C = {e r , e θ , e z }. Here, we have allowed e r = E R , e θ = E Θ and e z = E Z . The deformation gradient is

F = λ -1/2 z e r ⊗ E R + λ -1/2 z e θ ⊗ E Θ + λ z γe θ ⊗ E Z + λ z e z ⊗ E Z , (60) 
where γ = rτ and in this paper, we only consider λ z ≥ 1. The Lagrangian principal directions are: 

u 1 = E R , u 2 = cE Θ + sE Z , u 3 = -sE Θ + cE Z , (61) 
with

π 4 ≤ π -tan -1 1 √ λ 3 z -1 2 ≤ φ < π 2 , γ = λ 3 z γ 2 + λ 3 z -1 λ 3 2 z γ ≥ 0 , c 2 -s 2 = -γcs . ( 63 
)
In the case of pure torsion, λ z = 1 and we have γ = γ. The principal stretches for a combined extension and torsion deformation are

λ 1 = 1 λ 1 2 z , λ 2 = 1 λ z + sγ √ λ z c , λ 3 = 1 λ z - cγ √ λ z s . (64) 
In this section, for simplicity, we only consider the cases when a = E z and e L = eE R , where e is a 

b = ∂b ∂R ⊗ E R + 1 R ∂b ∂Θ ⊗ E Θ + ∂b ∂Z ⊗ E Z , (65) 
we obtain The strain energy function then takes the form

k = -E R , ρ = λ 3 z γτ λ 2 z (1 + γ 2 ) , b 1 = -1 , b 2 = b 3 = 0 . (66) 
W (T ) = µ 3 i=1 r 2 1 (λ i ) + 2µ 1 [s 2 r 2 2 (λ 2 ) + c 2 r 2 2 (λ 3 )] + κ 1 2 [s 2 r 3 (λ 2 ) + c 2 r 3 (λ 3 )] 2 , W (Λ) = 2ρ 2 µ 2 r 2 4 (λ 1 ) + ρ 4 κ 2 2 r 2 5 (λ 1 ) + ρ 2 κ 3 [s 2 r 6 (λ 2 ) + c 2 r 6 (λ 3 )]r 7 (λ 1 ) , W (E) = c 0 (e)r 2 8 (λ 1 ) - ε 0 e 2 2λ 2 1 . (67) 
The Maxwell stress

T M = ε 0 λ z e 2 2 (e r ⊗ e r -e θ ⊗ e θ + e z ⊗ e z ) . (68) 
The total Cauchy stress

T = 2F ∂W ∂C F T -pI . (69) 
In view of a ≡ [0, 0, 1] T , we have a 1 = 0, a 2 = s and a 3 = c and T = σ rr e r ⊗ e r + σ θθ e θ ⊗ e θ + σ zz e z ⊗ e z + σ zθ (e z ⊗ e θ + e θ ⊗ e z ) ,

where

σ θθ = 2 l 2 c 2 + l 3 s 2 -2l 4 cs λ z + 2 λ z γ((l 2 -l 3 )cs + l 4 (c 2 -s 2 )) + λ 2 z γ 2 (l 2 s 2 + l 3 c 2 + 2l 4 cs) -p, σ zθ = 2 λ z ((l 2 -l 3 )cs + l 4 (c 2 -s 2 )) + λ 2 z γ(l 2 s 2 + l 3 c 2 + 2l 4 cs) , σ zz = 2λ 2 z l 2 s 2 + l 3 c 2 + 2l 4 cs -p , σ rr = 2l 1 λ z -p , (71) 
where

l i = ∂W ∂C ii , i = 1, 2, 3 , l 4 = ∂W ∂C 23 . (72) 
The normal force per unit deformed area N and the torque per unit deformed area M applied at the ends of the cylinder are as follows:

N = 2 a 2 a 0 σ zz r dr , M = 2 a 2 a 0 σ zθ r 2 dr , a = A √ λ z . (73) 
To remove p in (73) 1 , we use the equilibrium relation

σ rr + σ θθ = 1 r d(r 2 σ rr ) dr . ( 74 
)
and re-expressed (73) 1 as

N = 1 a 2 a 0 (2σ zz -σ rr -σ θθ )r dr + ε 0 λ z e 2 2 . (75) 
It is clear from Fig. 5 that, for an axial stretch λ z = 1.5, we require more torque to twist an elastic solid cylinder with fibre bending stiffness and the torque is independent of the electric field e L = eE R . However, in the case of the normal force (see Fig. 6), the presence of an electric field and fibre bending stiffness, increases the magnitude of the normal force and changes its behaviour.

Since W (E) depends only on the constant principal stretch λ 1 (see Eqn. (67) 3 ), it is clear that the property Divd L = 0 is satisfied.

Conclusion

We have modelled elastic resistance due to changes in the curvature of the fibres without using the second gradient theory. In view of this, our proposed constitutive equation is simpler (as shown in Sections 4 and 5) than the second-gradient constitutive equations given in the literature; solving boundary value problems using our model is also simpler as exemplified in Section 6. Our model does not contain contact torques (which is required in a second gradient model) and hence the proposed model is more realistic in the sense that contact torques do not exist in deformations of non-polar carbon fiber-reinforced EAPs. Our constitutive equation uses recently developed spectral invariants (see Section 4.1) that are attractive and useful for experimental designs. The boundary value problem results in Section 6 indicate that our model manage to simulate fibre bending stiffness. In the near future, stable numerical decoupling strategies will be developed, whereas a level set description can be used to model the fibre direction [START_REF] Laadhari | Eulerian finite element method for the numerical modeling of fluid dynamics of natural and pathological aortic valves[END_REF][START_REF] Laadhari | Fully implicit finite element method for the modeling of free surface flows with surface tension effect[END_REF][START_REF] Laadhari | Implicit finite element methodology for the numerical modeling of incompressible two-fluid flows with moving hyperelastic interface[END_REF]. FEM solutions of the proposed model will be obtained and we will extend this model to EAPs that are reinforced with a family of two fibres.

and this boundary value problem solution is used to evaluate the first approximation d 0 . We then solve the BVP via the following iteration: For i = 0, 1, . . . Solve the BVP using d i and 

W = W (T ) + W (Λ) + W (E) . ( 

Figure 1 :

 1 Figure 1: Bending of a rectangular block into a sector of a cylindrical tube.

Figure 2 :

 2 Figure 2: Radial behaviour of stress σ rr . (a) Elastic solid with fibre bending resistance. e 0 = 0 V/m. (b) Elastic solid with no fibre bending resistance. e 0 = 0 V/m. (c) Elastic solid with fibre bending resistance. e 0 = 5 × 10 6 V/m. (d) Elastic solid with no fibre bending resistance. e 0 = 5 × 10 6 V/m.

Figure 3 :

 3 Figure 3: Radial behaviour of stress σ θθ .(a) Elastic solid with fibre bending resistance. e 0 = 0 V/m. (b) Elastic solid with no fibre bending resistance. e 0 = 0 V/m. (c) Elastic solid with fibre bending resistance. e 0 = 5 × 10 6 V/m. (d) Elastic solid with no fibre bending resistance. e 0 = 5 × 10 6 V/m.

107.8388439 kPam 2 ,

 2 with fibre bending resistance, e 0 = 0 V/m , 80.72073233 kPam 2 , without fibre bending resistance e 0 = 0 V/m , 252.8614021 kPam 2 , with fibre bending resistance, e 0 = 5 × 10 6 V/m , 225.7432905 kPam 2 , without fibre bending resistance, e 0 = 5 × 10 6 V/m . (55) The normal force N values are; 69.32308513 kPam , with fibre bending resistance, e 0 = 0 V/m , 51.29533089 kPam , without fibre bending resistance e 0 = 0 V/m , 176.7433952 kPam , with fibre bending resistance, e 0 = 5 × 10 6 V/m , 158.7156409 kPam , without fibre bending resistance, e 0 = 5 × 10 6 V/m .

Figure 4 :

 4 Figure 4: Torsion and extension of a cylinder

Figure 5 :

 5 Figure 5: Torque, M vs τ . (a) Elastic solid with fibre bending stiffness. (b) Elastic solid with no fibre bending stiffness. λ z = 1.5. The torque is independent of the electric field e L = eE R .

Figure 6 :

 6 Figure 6: Force per unit area N vs τ . (a) Elastic solid without fibre bending resistance. e = 0 V/m. (b) Elastic solid without fibre bending resistance. e = 5 × 10 6 V/m. (c) Elastic solid with fibre bending resistance. e = 0 V/m. (d) Elastic solid with fibre bending resistance. e = 5 × 10 6 V/m. λ z = 1.5

  B2)Obtain d i+1 from the solution of the BVP. If d i+1 -d i < tolerance. Stop. We consider this is the final solution, else Continue with the iteration endif Note that, • is the Euclidean norm and we assume that the above iteration converges.
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Appendix A

The importance of strong ellipticity is explained in [START_REF] Ogden | Non-linear elastic deformations[END_REF]. In this paper, we restrict the material constants given in Section 5 using the following strong ellipticity condition in the incompressible reference configuration (F = I) [START_REF] Ogden | Non-linear elastic deformations[END_REF]:

Let m and n be unit vectors with the condition m • n = 0 [START_REF] Ogden | Non-linear elastic deformations[END_REF]. The strong ellipticity condition

where the Cartesian components of Q(n) are

and n i is a Cartesian component of n. Following the work of Shariff et al. [START_REF] Shariff | A nonlinear electro-elastic model with residual stresses and a preferred direction[END_REF], in view of (A2) and ( 31), we obtain

where

We only consider the case for m and n in a plane, since in Section 6, the boundary value problems can be considered as two dimensional. In view that at F = I, u i is arbitrary, we assume u i = g i .

If we consider a material, where k 1 = k 2 = k 3 = 0, the necessary and sufficient condition for (A1) is

where

In the case where k 1 , k 2 and k 3 have none zero values, the inequalities

and those given (A6) ensure that (A1) is satisfied.

Appendix B

Let d α , α = 0, 1, . . . be approximate values of d that are obtained via the description below. If the deformation is not known, as a first iteration, we first solve the boundary value problem (BVP) using
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