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In this work, we study a multi-patch model, where the patches are coupled by nonlinear asymmetrical migration terms, and each patch follows a logistic law. First, used the theory of a cooperative differential system, we prove the global stability of the model. Next, in the case of perfect mixing, i.e when the migration rate tends to infinity, we compute the limit of the total equilibrium population, which in general is different from the sum of the n carrying capacities, and depends on the migration terms, carrying capacities and growth rates. Second, we determine the conditions under which fragmentation and nonlinear asymmetrical migration can lead to a total equilibrium population greater or smaller than the sum of the carrying capacities.

We ends by considering the case of two patches. We give the explicit formula of the total equilibrium population, and we compare with the sum of two carrying capacities.

Introduction

There are many factors affecting the growth and the general dynamics of population.

One such important factor is the dispersal amounts and in random ways. These dispersal can cause disturbances to the various ecosystems as well as to the persistence or extinction of organisms. Bibliographies can be found in the work of Allen [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF][START_REF] Allen | Persistence and extinction in single-species reaction-diffusion models[END_REF][START_REF] Allen | Persistence, extinction, and critical patch number for island populations[END_REF],

Hanski [START_REF] Hanski | Metapopulation Ecology[END_REF], Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF]and Levin [START_REF] Levin | Dispersion and population interactions[END_REF][START_REF] Levin | Spatial patterning and the structure of ecological communities[END_REF]. In [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF], Allen considered the n-patch general model given by the following equations:

dx i dt = x i (a i -b i x i ) + Υ i (x), i = 1, . . . , n, (1) 
where a i and b i are positive constants; x = (x 1 , . . . , x n ) T where x i represents the population density in the i-th patch. The function Υ i represent one of the three types of different mechanisms. The mechanism for linear diffusion is given by:

Υ i (x) = n j=1,j =i D ij (x j -α ij x i ) , , i = 1, . . . , n, (2) 
where D ij and α ij are positive constants. Dispersal by linear diffusion implies that the species is able to move to all locations within its environment with equal probability.

The mechanism for biased diffusion is given by:

Υ i (x) = n j=1,j =i D ij x i (x j -α ij x i ) , , i = 1, . . . , n, (3) 
.Note that, the term 'biased' means that the diffusion rate is a function of population density. The diffusion rate is regulated by population density, increasing for large populations and decreasing for small populations. The third type of mechanism, is the directed diffusion which is formulated by Gurney and Nisbet [START_REF] Gurney | The regulation of inhomogeneous populations[END_REF], given by:

Υ i (x) = n j=1,j =i D ij x 2 j -α ij x 2 i , , i = 1, . . . , n, (4) 
Dispersal by directed diffusion implies that the individuals move from high population concentration to low ones, i.e., the movement is a function of species density. For more information on the biological interpretation and also the continuous version of those types of diffusion, we refer the readers to [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF].

The objective of the work of Allen [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF] is to study the effect of different types of the dispersion on the persistence and extinction of the species. The persistence and extinction behavior is completely determined in a two-patch model [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF](2) for n = 2 ( see Theorem 1 in [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF]). For model [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF](3), Allen [1, Theorem 2] showed that a population modelled with biased diffusion is always persistent and in fact represents a strongly persistent population. For more details on the results of persistence and extinction, see Theorem 3 of [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF] for n-patch model (1)(3); Theorem 4 of [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF] for the n-patch model

(1)(4) and Proposition 1 of [START_REF] Allen | Persistence and extinction in Lotka-Volterra reaction-diffusion equations[END_REF] for 2-patch case.

In 1977, Freedman and Waltman [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal II: Differential Survival in a Change of Habitat[END_REF] considered a two-patch model with a single species in logistic population growth as follows:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + (x 2 -x 1 ), dx 2 dt = r 2 x 2 1 - x 2 K 2 + (x 1 -x 2 ), (5) 
where x i represents the population density in patch i, the parameter r i is the intrinsic growth rate, K i is carrying capacity and m is the dispersal rate. Freedman and Waltman show that under certain conditions, the total population abundance can be larger than the total carrying capacities K 1 + K 2 . For more details and information on the existence and stability of [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF], see [START_REF] Freedman | Mathematical Models of Population Interactions with Dispersal I: Stability of two habitats with and without a predator[END_REF]. Holt [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] generalized these results to a source-sink system. In 2015, Arditi et al. [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF] gave a full mathematical analysis of the model ( 5) of Freedman and Waltman with symmetric dispersal.

In 2018, Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] extended the model ( 5) by considering asymmetric dispersal, i.e. the model:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + ( 12 x 2 -21 x 1 ), dx 2 dt = r 2 x 2 1 - x 2 K 2 + ( 21 x 1 -12 x 2 ), (6) 
where 12 and 21 with ij > 0, i = j and ≥ 0, are the migration terms which describe the flows of individuals from the patch 2 to the patch 1, and from the patch 1 to the patch 2 respectively. These flows can for example depend on the distance between the patches. By noting that the positive equilibrium (x * 1 , x * 2 ) of model ( 6) is the unique positive solution to

       r 1 x 1 1 - x 1 K 1 + r 2 x 2 1 - x 2 K 2 = 0, x 2 = 1 12 21 x 1 - r 1 x 1 1 - x 1 K 1 ,
i.e., the intersection of an ellipse and a parabola, they used a graphical method to completely analyze model [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source?Sink Metapopulation with Explicit Movement[END_REF] in order to determine when dispersal is either favorable or unfavorable to total population abundance. In [START_REF] Elbetch | Effect of dispersal in Two-patch environment with Richards growth on population dynamics[END_REF], Elbetch generalizes the results of [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF][START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] to a Two-patch environment with Richards growth.

Recently, , Elbetch et al. [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] considered the following model:

dx i dt = r i x i 1 - x i K i + n j=1,j =i ( ij x j -ji x i ), i = 1, • • • , n. (7) 
They studied the total population at equilibrium, as a function of the migration rate . They gave conditions on the system parameters that ensure that symmetric and asymmetric migration is beneficial or detrimental.

Our aim in this work is to study the model of n patches coupled by nonlinear migration terms ( same type of dispersion (3)). In particular, we are interested in studying the effect of nonlinear dispersion on the dynamics of population and coexistence of species.

This paper is organized as follows: In Section 2, we introduce the mathematical model and we give some definitions and notations. Next, in Section 3, we prove the global stability of the model [START_REF] Cvetković | Stabilizing the Metzler matrices with applications to dynamical systems[END_REF]. In Section 4, we study the behavior of the system [START_REF] Cvetković | Stabilizing the Metzler matrices with applications to dynamical systems[END_REF] in the case when the migration rate goes to infinity. In Section 5, we compare the total equilibrium population with the sum of the n carrying capacities for all parameter space of the model. In Section 6, using the graphical method of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF], we give a complete analysis of two-patch case. In Appendix A, we recall some inequalities for stability modulus of a cooperative matrix and In Appendix B, we prove the global stability of (43) according to [1, Proposition 1].

Throughout this text, the following notations and names are used for matrices. Let A, B be two n×n-matrices, with A = (a ij ) and B = (b ij ). Then, A ≥ 0 is a nonnegative matrix if a ij ≥ 0 for all i, j, and A ≥ B if A -B ≥ 0. The matrix A > 0 is a positive matrix if additionally, there exists i, j such that a ij > 0, and

A > B if A -B > 0.
A 0 is strongly positive if a ij > 0 for all i, j, and A B if A -B 0. We recall that, the matrix A is reducible if we can partition {1, . . . , n} into two nonempty subsets E and F such that a ij = 0 for all i ∈ E and j ∈ F . Otherwise A is irreducible.

The mathematical model

We consider the general model of multi-patch logistic growth, coupled by asymmetric migration terms given by:

dx i dt = r i x i 1 - x i K i + x i n j=1,j =i ( ij x j -ji x i ), i = 1, • • • , n, (8) 
where x i is the population in patch i, the parameters r i and K i are respectively the intrinsic growth rate and the carrying capacity patch i, n is the number of the patches in the system. The parameter represents the dispersal rate of the population; ij ≥ 0 denotes the flux between patches j and i, for j = i. Note that, if ij > 0 there is a flux of migration between patches i and j and, if ij = 0 there is no migration. The system (8) of differential equations can be written:

dx i dt = r i x i 1 - x i K i + x i n j=1 ij x j , i = 1, • • • , n, (9) 
where

ii = - n j=1,j =i ji , i = 1, • • • , n (10) 
denotes the outgoing flux of patch i. We denote by E the following matrix

E =      -k =1 k1 12 . . . 1n 21 -k =2 k2 . . . 2n • . . . . . . . . . n1 . . . n,n-1 -k =n kn      . ( 11 
)
to 0. if E is irreducible, then 0 is a simple eigenvalue of E and all non-zero eigenvalues of E have negative real part. Moreover, the kernel of the matrix E is generated by a strongly positive vector ( see Lemma 2 in [START_REF] Arino | Number of Source Patches Required for Population Persistence in a Source?Sink Metapopulation with Explicit Movement[END_REF]). In all of this paper, we denote by δ := (δ 1 , . . . , δ n ) T this strongly positive vector. For the existence , uniqueness, and strongly positivity of δ see Lemma 

* ii ) = (-1) n-1 .
As in our work, the matrix E is assumed to be irreducible,

then (-1) n-1 (E * 11 , . . . , E * nn ) T is strongly positive, i.e δ i = (-1) n-1 E * ii > 0 for all i.
Therefore, we have explicit formula for the components of the vector δ, as functions of the coefficients of E, at our disposal. For two patches we have δ = ( 12 , 21 ) T , and

for three patches we have δ = (δ 1 , δ 2 , δ 3 ) T , where 

   δ 1 =
In Lemma 2.1 of Guo et al [START_REF] Guo | Global stability of the endemic equilibrium of multigroup SIR epidemic models[END_REF] gives explicit formulas of the components of the vector δ, with respect of the coefficients of as follow:

δ k = T ∈Tk (i,j)∈E(T ) ij , k = 1, . . . , n, (13) 
where T k is the set of all directed trees of n vertices rooted at the k-th vertex, and E(T ) denotes the set of arcs in a directed tree T . The matrix

E 0 := E -diag( 11 , . . . , nn ) (14) 
which is the same as the matrix E, except that the diagonal elements are 0, is called the connectivity matrix. It is the adjacency matrix of the weighted directed graph G, which has exactly n vertices (the patches), and there is an arrow from patch j to patch i precisely when ij > 0, with weight ij assigned to the arrow.

The system (8) can be also rewritten in matrix form as follow:

dx dt = f (x) + diag(x 1 , . . . , x n )Ex, (15) 
where

x = (x 1 , . . . , x n ) T and f (x) = (f 1 (x 1 ), . . . , f n (x n )) T with f i (x i ) = r i x i (1 - x i /K i ).
Note that, the system (8) is cooperative, and without diffusion (i.e for = 0) he has a strongly positive globally stable equilibrium point (K 1 , . . . , K n ). The main result in the next section shows that the strongly positive and globally stable equilibrium point of model [START_REF] Cvetković | Stabilizing the Metzler matrices with applications to dynamical systems[END_REF] with diffusion term continues to exist for any diffusion rate .

Global stability

Our aim in this part is to study the global stability of [START_REF] Cvetković | Stabilizing the Metzler matrices with applications to dynamical systems[END_REF]. We prove the result:

Theorem 3.1. Assume that the matrix E = ( ij ) n×n (or equivalently, the connectivity matrix E 0 ) is irreducible. The model ( 8) has a unique positive equilibrium point which is globally asymptotically stable (GAS), in the positive cone R n + \ {0}.

Proof. The equilibrium points of the system (8) are given by the solutions of the following algebraic system:

0 = r i x i 1 - x i K i + x i n j=1,j =i ( ij x j -ji x i ), i = 1, • • • , n, (16) 
which can be written in the form:

0 = x i   r i 1 - x i K i + n j=1,j =i ( ij x j -ji x i )   , i = 1, • • • , n, (17) 
So, the interior equilibrium points of ( 8), if they exist, are the solutions of the following linear system:

0 = r i 1 - x i K i + n j=1,j =i ( ij x j -ji x i ) := F i (x), i = 1, • • • , n, (18) 
where x = (x 1 , . . . , x n ) T . The system [START_REF] Gantmacher | The Theory of Matrices[END_REF] is writes in matrix form as follows

(E -diag(α 1 , . . . , α n ))x = -(r 1 , . . . , r n ) T . ( 19 
)
Let we prove that the stability modulus of the matrix E -diag(α 1 , . . . , α n ) is negative.

Indeed, let u = (1, • • • , 1) T . We have (E -diag(α 1 , . . . , α n )) T u = -(α 1 , . . . , α n ) T ≤ λu,
where λ = -max {α 1 , . . . , α n } < 0. Therefore, since the matrix E -diag(α 1 , . . . , α n ) is a cooperative matrix, according to Lemma A.2, we have

s(E -diag(α 1 , . . . , α n )) = s((E -diag(α 1 , . . . , α n )) T ) ≤ λ < 0.
Therefore, based on Lemma A.3, the matrix E -diag(α 1 , . . . , α n ) is stable and invertible. We conclude also according to [26,Theorem 6.

1] that -(E -diag(α 1 , . . . , α n )) -1
0. Then, the system (8) admits unique strongly positive equilibrium, locally asymptotically stable (LAS), given by:

E * n ( ) := -(E -diag(α 1 , . . . , α n )) -1 (r 1 , . . . , r n ) T . Let
we prove the global stability of this equilibrium by applying Lemma A.4. Let ξ > 0 and we denote E * n ( ) = (x * 1 ( ), . . . , x * n ( )). We have:

F i (ξE * n ( )) = r i 1 - ξx * i ( ) K i + ξ n j=1,j =i ( ij x * j ( ) -ji x * i ( )), i = 1, • • • , n, (20) 
where F i is given by the equation [START_REF] Gantmacher | The Theory of Matrices[END_REF]. At the equilibrium, we have n j=1,j =i

( ij x * j ( ) -ji x * i ( )) = -r i 1 - x * i ( ) K i , i = 1, • • • , n. (21) 
We replace [START_REF] Holt | Population dynamics in two patch environments: some anomalous consequences of an optimal habitat distribution[END_REF] in [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF] we get:

F i (ξE * n ( )) = r i (1 -ξ) > 0 if ξ < 1, < 0 if ξ > 1. ( 22 
)
According to Lemma A.4 , the equilibrium

E * n ( ) is GAS in the positive cone R n + \ {0}.
In all of this work, the GAS equilibrium of the system (8), whose existence is shown

in Theorem 3.1, is denoted by E * n ( ) = (x * 1 ( ), . . . , x * n ( ))
, and by T * n ( ) the total equilibrium population

T * n ( ) = n i=1 x * i ( ). ( 23 
)

The limit of fast dispersal

We have the following result which prove that the equilibrium E * n ( ) converges to an element of ker E:

Theorem 4.1. We have:

lim →+∞ E * n ( ) = n i=1 r i n i=1 δ i α i (δ 1 , . . . , δ n ) ( 24 
)
where

α i = r i /K i . Moreover, if the matrix E is symmetric, then lim →+∞ E * n ( ) = n i=1 r i n i=1 α i (1, . . . , 1). ( 25 
)
Proof. The equilibrium E * n is a solution of the algebraic system:

0 = r i 1 - x i K i + n j=1,j =i ( ij x j -ji x i ), i = 1, . . . , n. (26) 
The sum of these equations shows that E * ( ) satisfies the following equation

n i=1 r i 1 - x i K i = 0. ( 27 
)
Therefore E * ( ) belongs to the hyper plane:

H n-1 := x ∈ R n + : n i=1 α i x i - n i=1 r i = 0 . (28) 
Note that, this hyper plane is independent of the migration terms and ij . The hyper plane H n-1 passes through the point A = (K 1 , . . . , K n ).

So, the equilibrium E * n is the solution in the positive cone, of the equation F = 0, where

F (x) := F 1 (x), . . . , F n-1 (x), n i=1 r i 1 - x i K i , (29) 
with

F i (x) = 1 r i i 1 - x i K i + n j=1,j =i ( ij x j -ji x i ), i = 1, . . . , n -1. ( 30 
)
On the other hand, the limit equations (obtained when → ∞) are given by:

F ∞ (x) := F ∞ 1 (x), . . . , F ∞ n-1 (x), n i=1 r i 1 - x i K i , (31) 
with

F ∞ i (x) = n j=1,j =i ( ij x j -ji x i ), i = 1, . . . , n -1. ( 32 
)
According to Lemma B.1 of [START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF], the system (32) admits unique solution given by:

x i = δi δn x n for all i = 1, • • • , n -1.
So, the solutions of the equation F ∞ (x) = 0 is given by the solutions of the following system:

       x i = δ i δ n x n , i = 1, • • • , n -1. n i=1 r i 1 - x i K i = 0, (33) 
which admits x n = n i=1 ri n i=1 δiαi δ n as solution. So, the equation F ∞ = 0 admits unique solution

E * n (∞) := n i=1 r i n i=1 δ i α i (δ 1 , . . . , δ n ).
Since the hyper plan is compact, the equilibrium E * n ( ) converge to E * n (∞) when tend to infinity.

If the matrix E is symmetric, one has δ i = 1, for all i.

As a corollary of the previous theorem we obtain the following result which describes the total equilibrium population for large growth rate:

Corollary 4.2. We have

T * n (+∞) = n i=1 δ i n i=1 r i n i=1 δ i α i . ( 34 
)
Moreover, if the matrix E is symmetric, then:

T * n (+∞) = n n i=1 r i n i=1 α i . ( 35 
)
Proof. The sum of the n components of the point E * n (∞) immediately gives the equation (34).

We remark that, the total equilibrium population for large migration rate (35) is equal the total equilibrium population for large migration rate of the multi-patch logistic model with linear diffusion obtained in [9, Equation 24]. This result show that, if the movement between the n patches is symmetric, the biased diffusion has no influence on the total equilibrium population for large migration rate compared to the linear diffusion.

Total equilibrium population

In the next proposition we give sufficient and necessary conditions for the equilibrium not to depend on the migration rate.

Proposition 5.1. The equilibrium E * n ( ) does not depend on if and only if (K 1 , . . . , K n ) T ∈ ker E. In this case we have E * n ( ) = (K 1 , . . . , K n ) for all > 0.

Proof. The equilibrium E * n ( ) is the unique positive solution of the equation

diag(r i -α i x i ) + Ex = 0. ( 36 
)
Suppose that the equilibrium E * n ( ) does not depend on , then we replace in Equation (36):

diag(r i -α i x * i ( )) + E(E * n ( )) = 0. ( 37 
)
The derivative of (37) with respect to gives

E(E * n ( )) = 0. ( 38 
)
Replacing the equation (38) in the equation (37), we get E * ( ) = (K 1 , . . . , K n ). From the equation (38), we conclude that (K 1 , . . . , K n ) T ∈ ker E. Now, suppose that (K 1 , . . . , K n ) T ∈ ker E, then (K 1 , . . . , K n ) satisfies the equation (36), for all ≥ 0. So, E * n ( ) = (K 1 , . . . , K n ), for all ≥ 0, which proves that the total equilibrium population is independent of the migration rate . 

= . . . = α n , then T * n ( ) = n i=1 K n , for all ≥ 0.
Proof. The equilibrium is always in the hyper plane

n i=1 α i x * i ( ) = n i=1 r i .
If we suppose in the previous equation that all α i are equals, then we get that

n i=1 x * i ( ) = n i=1 K i , for all ≥ 0.
Lemma 5.1. The derivative of the total equilibrium population at = 0 is given by:

dT * n d (0) = i j =i ij K j -ji K i α i . ( 39 
)
Proof. The equilibrium E * n is a solution of the algebraic system:

0 = r i 1 - x i K i + n j=1,j =i ( ij x j -ji x i ), i = 1, . . . , n, (40) 
which implies

x i = K i + 1 α i n j=1,j =i ( ij x j -ji x i ), i = 1, . . . , n. (41) 
The derivative of x * i with respect to , at = 0 gives

dx * i d (0) = i j =i ij x * j (0) -ji x * i (0) α i . ( 42 
)
The sum of the previous equations give the formula of the derivative since x * i (0) = K i for all i.

We have the following result:

Theorem 5.1. Consider the total equilibrium population of [START_REF] Cvetković | Stabilizing the Metzler matrices with applications to dynamical systems[END_REF]. Let dT * n d (0) be the derivative of the total equilibrium without dispersal. If there exists i and j = i such that α i = α j , then

• If dT * n d ( 
0) > 0, then T * n ( ) ≥ i K i for all ≥ 0, and

• if dT * n d (0) < 0, then T * n ( ) ≤ i K i for all ≥ 0.
Proof. The equilibrium E * ( ) belongs to the hyper plane H n-1 . Consider the hyper 10 plan P which passes by (K 1 , . . . , K n ) and has the following cartesian equation:

P : i x i = i K i .
The two hyper planes are identical if and only if, α i are equals. So, if there exists α i = α j , the this two hyper plans intersect in a straight line passing through the point (K 1 , . . . , K n ), and withe respect the sign of the derivative of the total equilibrium without dispersal, we conclude the complete proof.

Two-patch case

In this section, we consider the two patches model coupled by migration terms and

with assumption that the diffusion rate is a function of population density. The model can be written as follows:

       dx 1 dt = r 1 x 1 1 - x 1 K 1 + x 1 ( 12 x 2 -21 x 1 ) , dx 2 dt = r 2 x 2 1 - x 2 K 2 + x 2 ( 21 x 1 -12 x 2 ) . (43) 
where x i represents the population density in the i-th patch, the parameters r i and K i are respectively the intrinsic growth rate and the carrying capacity of patch i. The parameter is the migration rate, 12 and 21 are positive and denotes the flux of migration between patches. If 12 = 21 , the migration is symmetric.

In this part, we study the effect of the variation of migration rate in [0, ∞[ on the total population at the equilibrium E ++ ( ). Denote T * 2 ( ), the total equilibrium population, which is the sum of the coordinates of the equilibrium E ++ ( ), i.e

T * 2 ( ) = (K 1 r 1 K 2 12 + K 1 K 2 12 r 2 + K 2 r 1 K 1 21 + K 2 K 1 21 r 2 ) + K 1 r 2 r 1 + r 1 K 2 r 2 (r 1 K 2 12 + K 1 21 r 2 ) + r 2 r 1 . (44) It's clear that T * 2 (0) = K 1 + K 2 , and 
T * 2 → T * 2 (∞) = ( 12 + 21 ) r 1 + r 2 12 α 1 + 21 α 2 , as → ∞. (45) 
In the remainder of this section, we analyze the effect of biased dispersal on the total equilibrium population for the two-patch system (43). Using the method of Arditi et al. [START_REF] Arditi | Asymmetric dispersal in the multi-patch logistic equation[END_REF] ( see also [START_REF] Arditi | Is dispersal always beneficial to carrying capacity? New insights from the multi-patch logistic equation[END_REF]), we describe the position affects the equilibrium E ++ of (43) when the migration rate varies from zero to infinity, we will give the condition whether T * 2 is greater or smaller than sum of carrying capacity

T * 2 (0) = K 1 + K 2 .
We consider the regions in the set of the parameters 21 and 12 , denoted J 1 and

                     If α 2 > α 1 then    J 1 = ( 21 , 12 ) : 21 12 < K2 K1 J 2 = ( 21 , 12 ) : 21 12 > K2 K1 If α 2 < α 1 then    J 1 = ( 21 , 12 ) : 21 12 > K2 K1 J 2 = ( 21 , 12 ) : 21 12 < K2 K1 (46) Case α 2 > α 1 0 J 1 J 2 21 12 12 21 = K1 K2 Case α 2 < α 1 0 J 2 J 1 21 12 12 21 = K1 K2 Figure 1.
The domains J 1 and J 2 . In the figure

α 1 = r 1 /K 1 and α 2 = r 2 /K 2 .
We have the following result which gives the conditions for which patchiness is beneficial or detrimental in model (43).

Theorem 6.1. The total equilibrium population (44) of (43) satisfies the following properties

(1) If α 1 = α 2 then T * 2 ( ) = K 1 + K 2 for all ≥ 0.
(2) If α 1 = α 2 , let J 1 and J 2 , be defined by (46). Then we have:

• if ( 21 , 12 ) ∈ J 1 then T * 2 ( ) > K 1 + K 2 for any > 0, • if ( 21 , 12 ) ∈ J 2 then T * 2 ( ) < K 1 + K 2 for any > 0, • if 12 21 = K1 K2 , then E ++ = (K 1 , K 2 ) for all ≥ 0. Therefore T * 2 ( ) = K 1 + K 2 for all ≥ 0.
Proof. The equilibrium E ++ is given by the solution of the following system

       0 = r 1 1 - x 1 K 1 + ( 12 x 2 -21 x 1 ) , 0 = r 2 1 - x 2 K 2 + ( 21 x 1 -12 x 2 ) . (47) 
The sum of these equations show that E ++ is in a straight line

L : α 1 x 1 + α 2 x 2 = r 1 + r 2 .
To facilitate comparison of the total equilibrium population T * 2 ( ) and T * 2 (0) = K 1 + below the line ∆, then T * 2 ( ) ≤ T * 2 (0), whereas if E ++ is on or above the line, then

T * 2 ( ) ≥ T * 2 (0). The equilibrium point E * 2 (
) is always in the line L, then, for = 0, the equilibrium point states at A, and when increases, E ++ describes an arc of the line L and ends at point E ++ (∞) := lim →∞ E ++ ( ).

If we take α 1 = α 2 , we get that the equations of L and ∆ are the same, which gives the prove of the first item. Assume that α 1 = α 2 , then the two lines intersect at a single point A. Therefore, if ( 21 , 12 ) ∈ J 1 then T * 2 ( ) > K 1 + K 2 for any > 0, and if ( 21 , 12 ) ∈ J 2 then T * 2 ( ) < K 1 + K 2 for any > 0 ( see figure 2).

Under the hypothesis 12 21 = K1 K2 , the equilibrium simplify to

E ++ = (K 1 , K 2 ). 0 L ∆ • A x 1 x 2 0 L ∆ • A x 1 x 2 Figure 2.
The two possibles configurations of the lines L (shown in red) and ∆ ( shown in blue) in the case when α 1 = α 2 . When varies from 0 to infinity, the equilibrium E ++ varies in the line L which starts at point A = (K 1 , K 2 ) and has two possible directions as shown by the arrows.

Remark 6.1. In the case when α 1 = α 2 =: α, the equilibrium E ++ ( ) becomes as:

E ++ ( ) = (r 1 + r 2 ) 12 + αr 1 ( 21 + 12 )α + α 2 , (r 1 + r 2 ) 21 + αr 2 ( 21 + 12 )α + α 2 ,
and the sum of the coordinates of E ++ ( ) equal to

K 1 + K 2 .
Let we denote by x * 1 ( ) and x * 2 ( ) the coordinates of E ++ ( ) given by (B3), we have

dx * 1 d ( ) = K 1 r 1 r 2 2 (K 2 12 -K 1 21 ) (r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 ) 2 , and dx * 2 d ( ) = K 2 r 2 r 2 1 (K 1 21 -K 2 12 ) (r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 ) 2 . The sum of dx * 1 d and dx * 2 d
gives the derivative of T * 2 with respect to :

dT * 2 d ( ) = α 1 α 2 (α 2 -α 1 )(K 2 12 -K 1 21 ) K 2 1 K 2 2 (r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 ) 2 . ( 48 
)
In particular, the derivative of T * 2 ( ) at = 0 is given by:

dT * 2 d (0) = ( 12 K 2 -21 K 1 ) 1 α 1 - 1 α 2 . ( 49 
)
We have the following result which describes the variation of the population in each patch as function of the rate of migration as well as the variation of the total equilibrium population in two patches: Proposition 6.1. Consider the equilibrium population x * 1 ( ) and x * 2 ( ) of (43). Assume that α 1 = α 2 , let J 1 and J 2 , be defined by ( 46). Then we have: 

• if ( 21 , 12 ) ∈ J 1 then x * 1 is increasing, x *

Conclusion

In summary, this work was aimed to find out whether the total equilibrium population of the n patches connected by nonlinear migration asymmetrical migrations can be greater than the sum of the carrying capacities of the n isolated patches, i.e. at equilibrium. Is there a way to make connections between patches that increases the total population? we have assumed that the population obey a logistic type growth at each patches.

For two-patch model, the parameter space is fully classified as to whether nonlinear dispersal is beneficial or detrimental to the sum of two carrying capacities. For npatch model, we have shown that for high movement rates between the patches, the total equilibrium population cloud exceed total carrying capacity of the n patches for certain combinations of the parameters r i , K i and δ i . We have shown that if α i are equal in all patches, then the total equilibrium population on the n connected patches is independent to the sum of capacities, and if α i are different, then , the total equilibrium population take two case: either greater or smaller than the sum of carrying capacities.

Finally, comparisons the present results with previous work [START_REF] Elbetch | The multi-patch logistic equation[END_REF][START_REF] Elbetch | The multi-patch logistic equation with asymmetric migration[END_REF] indicate that this simple density-dependent dispersal mechanism has an effect on the dynamics of population. Some questions remain open, for example, for susceptible-infected-susceptible (SIS) patch-model ( see [START_REF] Gao | How does dispersal affect the infection size?[END_REF]), how does the nonlinear dispersal affect the infection size?

Appendix A. Some inequalities for stability modulus of a cooperative matrix In this section, our goal is to recall some inequalities for stability modulus of a cooperative matrix. First, we start by giving some definitions.

Definition A.1. A matrix A = (a ij ) is called cooperative if a ij ≥ 0 for all i = j.

Definition A.2. The stability modulus of a matrix A is given by s(A) = max {Re(λ) : λ is an eigenvalue of A} , (A1)

The trace and the determinant of the matrix J(E ++ ) are given by: Hence by the Routh-Hurwitz criteria for stability, the real parts of the eigenvalues value of the Jacobian matrix J(E ++ ) are negative, proving that the equilibrium of coexistence is locally asymptotically stable (LAS) for the system (43).

     trJ(E ++ ) = - (r 2 r 1 +
Our aim in the remainder of this section, is to prove the global stability of the equilibrium of coexistence Since, the system (43) is cooperative ( see the jacobian matrix (B4)). For general cooperative systems, we have the following result, which guarantees that all solutions converge to equilibria/infinity without periodic oscillation ( see page 28 in Hofbauer and Sigmund [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF]). As the solutions are bounded and E ++ is LAS, hence the stability must be global.

  E ++ . According to[1, Proposition 1] for n = 2, every solution x(t) of System 1 considered by Allen, is unbounded, limt→∞ x i (t) = ∞, i = 1, 2, if and only if b1 b2 -D 12 D 21 ≤ 0, where bi = b i + j =i D ij α ij , i = 1, 2. (B5) If inequality (B5) does not hold, then lim t→∞ x(t) = x * > 0. For the following choice of the parameters: D 12 = 12 , α 12 = 21 / 12 , D 21 = 21 , α 21 = 12 / 21 , a i = r i and b i = r i /K i , the system 1 of Allen transform to our model (43), and the condition (B5) becomes as: every solution x(t) of System (43) is unbounded, lim t→∞ x i (t) = ∞, i = 1, 2, if and only if b1 b2 -2 12 21 ≤ 0, where b1 = α 1 + 21 and b2 = α 2 + 12 . (B6) We have b1 b2 -2 12 21 = α 1 α 2 + (α 1 12 + α 2 21 ) > 0 for all ≥ 0. Therefore, from [1, Proposition 1], the solutions x(t) of (43) are bounded.

  12 13 + 12 23 + 32 13 , δ 2 = 21 13 + 21 23 + 31 23 , δ 3 = 21 32 + 31 12 + 31 32 .

  i = 1, . . . , n, are equal if and only if E * n = (K, . . . , K), where K is the common value of the K i . This is [9, Proposition 3.2].

	Proposition 5.2. If α 1

  r 1 K 2 12 + K 2 12 r 2 ) (r 1 + K 1 21 ) r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 -(r 1 K 1 21 + r 2 r 1 + K 1 21 r 2 ) (r 2 + K 2 12 ) r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 < 0, det J(E ++ ) = (r 2 r 1 + r 1 K 2 12 + K 2 12 r 2 ) (r 1 K 1 21 + r 2 r 1 + K 1 21 r 2 ) r 2 r 1 + r 1 K 2 12 + K 1 21 r 2 > 0.

B Existence of equilibria and stability of (43)
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ρ(A) = max{| λ |: λ is an eigenvalue of A}.

(A2)

We have the following result [24, Lemma 8]:

Lemma A.1. Let A be a non negative matrix. Let u ∈ R n be a non-zero vector and λ ∈ R be a real number. If Au ≥ λu then ρ(A) ≥ λ. If for a strictly positive vector u we have Au ≤ λu then ρ(A) ≤ λ.

Proof. If Au ≥ λu then, since A is non negative, A k u ≥ λ k u for all k. Therefore

we obtain that ρ(A) ≥ λ. The second statement is a simple consequence of the representation (2) in [START_REF] Nesterov | Computing closest stable nonnegative matrix[END_REF].

We have also the following result [8, Lemma 8]:

If for a strictly positive vector u we have Au ≤ λu then s(A) ≤ λ.

Proof. Let A be a cooperative matrix, there exists h > 0 such that A + hI, where I is the identity matrix, is non negative. Let u and λ be such that Au ≥ λu. Since s(A+hI)u ≥ (λ+h)u, using Lemma A.1, we deduce that ρ(A+hI) ≥ λ+h. According to the Perron-Frobenius Theorem [18, Theorem 3, page 66], we have

Therefore we have s(

By the same method, we prove the second statement.

Recall that the differential system

is said to be cooperative, if its jacobian matrix is cooperative, i.e., for all i = j, i, j = 1, . . . , n, (∂F i /∂x i ) ≥ 0, for all x positive. To prove local stability in this paper, we used the following Lemma [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF][START_REF] Smith | Cooperative systems of differential equations with concave nonlinearities[END_REF]:

Lemma A.3. For a cooperative matrix A = (a ij ), we have s(A) < 0 ⇐⇒ There exists a vector u positive such that Au < 0.

To prove global stability in this paper, we used the following Lemma [START_REF] Freedman | Global stability and predator dynamics in a model of prey dispersal in a patchy environment[END_REF][START_REF] Takeuchi | Cooperative system theory and global stability of diffusion models[END_REF]:

Lemma A.4. Consider the system (A3). Assume that the jacobian matrix of (A3) is irreducible. If system (A3) possesses a positive equilibrium point x * satisfying

then x * is globally stable.

Appendix B. Existence of equilibria and stability of (43)

The equilibria points of (43) are given by the solutions of the following system:

which can written as follows:

Therefore, the system (B2) admits four solutions given by:

, 0 , and

In the next, we will study the local stability of the equilibrium of (43). Let J be denote the Jacobian matrix of the system (43) evaluated at x, given by

(B4) The matrix (B4) evaluated at the equilibrium E 00 gives J(E 00 ) = diag(r 1 , r 2 ), which prove that the origin is unstable. The Jacobian matrix evaluated at E 0+ (resp. at E +0 ) is given by:

< 0 ), then, Routh-Hurwitz criteria for stability assure that the both equilibrium E 0+ and E +0 are unstable.

The Jacobian matrix evaluated at E ++ is given by: