
HAL Id: hal-04085455
https://hal.science/hal-04085455

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Assessing Safety for Control Systems Using
Sum-of-Squares Programming

Han Wang, Kostas Margellos, Antonis Papachristodoulou

To cite this version:
Han Wang, Kostas Margellos, Antonis Papachristodoulou. Assessing Safety for Control Systems Using
Sum-of-Squares Programming. Michal Kočvara; Bernard Mourrain; Cordian Riener. Polynomial
Optimization, Moments, and Applications, Springer, pp.187-214, inPress. �hal-04085455�

https://hal.science/hal-04085455
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Assessing Safety for Control Systems Using
Sum-of-Squares Programming

Han Wang, Kostas Margellos, Antonis Papachristodoulou

Abstract In this chapter we introduce the concept of safety for control systems in both
continuous and discrete time form. Given a system and a safe set, we say the system
is safe if the system state remains inside the safe set for all initial conditions starting
from the initial set. Control invariance can be employed to verify safety and design
safe controllers. To this end, for general polynomial systems with semi-algebraic
safe/initial sets, we show how Sum-of-Squares (SOS) programming can be used to
construct invariant sets. For linear systems, evaluating invariance can be much more
efficient by using ellipsoidal techniques and dealing with a series of SOS constraints.
Following invariance analysis, safe control design and safety verification methods
are proposed. We conclude this chapter by showing invariant set construction for
both nonlinear and linear systems, and provide MATLAB code for reference.

1 Introduction

The problem of establishing safety of a control system is a topic of significant
research interest. Given a system, a predefined safe set and an initial set, safety
requires that the system trajectories which start from an initial set stay inside the safe
set over a defined time interval. Naturally, verifying safety for a given system and
designing a safe control input under saturation constraints are important tasks. As
the safe set is defined over a state space, the safety requirement can be formulated
as a state constraint in a control verification or design program. Combined with a
performance objective and a receding horizon, model predictive control (MPC) [1–4]
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is a powerful technique for safe controller design with stability guarantees. However,
there are two problems of interest: the first problem is analysis. Safety is a well-
defined property like stability. Certifying safety for a given system, an initial set
and a safe set through a converse theorem is of interest. The second problem is
reducing computational complexity. Finding an online or offline method to design
a safe control input with low computational complexity, even for high dimensional
nonlinear systems is significant.

For the first problem, reach-avoid games based on optimal control offer a direct
interpretation of safety [5–7]. In such a formulation, the cost function is the value
function that encodes the safe set. By computing the least worst value function
achieved by the control input over a given time interval, we can certify safety. The
super (or sub) zero-level set of the value function encodes all the states from which
the system is safe over the time interval under consideration. The set consisting of
these states is referred to as the viability kernel or invariance kernel of the safe
set. Safety is therefore analyzed by the existence of the invariance kernel and an
inclusion relationship between the kernel and the initial set. The corresponding
optimal control input renders the system safe. Numerical computation for the value
function is generally hard, and is obtained as the viscosity solution of a Hamilton-
Jacobian-Isaac PDE [8,9]. Interestingly, sets with similar properties as the invariance
kernel of the safe set, referred as invariant sets, may not be unique. For some cases,
finding an inner or outer approximation of the invariance kernel is sufficient for
safety. The construction and approximation of these sets can be quite efficient using
numerical methods.

Construction and approximation methods for the invariance kernel can be sum-
marized into three categories: the recursive method, optimisation and using neural
networks. Proposed in the pioneering work [10,11] the recursive method deals with
discrete-time systems by backward state propagation from the safe set. Subsequent
work ensures that the propagation could terminate with a finite recursion, and calcu-
lating the set intersection efficiently [12–14]. The main limitation of this method is
that it is only applicable to discrete-time systems. The second method is using convex
optimisation techniques to solve an algebraic geometry problem, i.e., finding a set
of which the tangent cone at every point contains the system vector field [15]. For
polynomial systems with semi-algebraic sets, the algebraic geometry problem can
be relaxed and solved efficiently by sum-of-squares programming [16–24]. A SOS
program is equivalent to a semi-definite program, which can be solved efficiently
with interior-point methods [25]. As it is a convex programming problem, the SOS
programming based method is efficiently implementable for invariant set construc-
tion. This method is also very scalable for different types of polynomial nonlinear
systems. The last method emerged in recent years using deep learning [26–28]. The
invariant set is parameterized by a neural network and data of system flows and
derivation of invariant function is generated by an outside demonstrator using other
control methods. Although more applicable to large scale nonlinear systems, the
neural network based method currently lacks theoretical guarantees. Safety is a very
critical property which requires rigorous guarantees for most applications.
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1.1 Organization

The organization of this chapter is as follows: Section 2 introduces safety in control
systems, and reveals the relationship between invariance and safety. Section 3 shows
the numerical methods using sum-of-squares programming for constructing invariant
sets. Invariance for linear systems is discussed in Section 4. Applications of the
proposed sum-of-squares techniques is elaborated in Section 5. Section 6 concludes
the chapter.

1.2 Notation

R𝑛 denotes the space of 𝑛-dimensional real numbers. R+, N+ denote the space of
positive real and integer numbers, respectively. For a set X, X′ is its complement,
cl(𝑋) is its closure.

2 Safety in Control Systems

Consider a nonlinear system
𝑥† = 𝑓 (𝑥, 𝑢), (1)

where 𝑥(𝑡) ∈ R𝑛 is the 𝑛-dimensional state, and 𝑢(𝑡) ∈ U ⊂ R𝑚 is the𝑚-dimensional
control input, for any time instance 𝑡 to be specified in the sequel. Here we use 𝑥†

to represent the state transition for both continuous and discrete time system. For
continuous-time, we consider

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)),

and for discrete time
𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)).

For such a system, with a slight abuse of notation, 𝑥(𝑡, 𝑢, 𝑥0) denotes the state at
time 𝑡 ≥ 0 (for discrete-time systems we also require 𝑡 to be an integer), with inputs
𝑢 starting from 𝑥0 ∈ I, where I ⊂ R𝑛 is the initial set from which the system starts
and is assumed to be non-empty. Here we assume that 𝑥(𝑡, 𝑢, 𝑥0) is unique for any
𝑡 ∈ L, where L = [0, +∞) for continuous-time systems and L = N+ for discrete
time ones. To ease notation, in some occurrences we drop the dependence of 𝑢 on
time.

Safety is a system-set property which models whether a dynamical system can stay
within a set, S ⊂ R𝑛. Such a set is usually determined by application requirements,
such as collision avoidance in robotic applications. We assume that S is non-empty
and compact, and is the super zero-level set of a differentiable function 𝑠(𝑥) : R𝑛 →
R, i.e.
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S := {𝑥 |𝑠(𝑥) ≥ 0}. (2)

Only time-invariant safe sets are considered in this chapter. Naturally, we should
have I ⊆ S, such that system starts from the safe set.

Definition 1 Consider system (1) and the safe set S and initial set I. The system is
safe if for any 𝑥0 ∈ I, 𝑡 ∈ T := [0, 𝑇], there exists control input with 𝑢(𝑡) ∈ U such
that 𝑥(𝑡, 𝑢, 𝑥0) ∈ S. Such a control input is called a safe control input.

Given the definition of safety we present here two questions of interest. The first
question is to verify safety for a given system, safe and initial sets.

•? Question 1: safety verification

Given a dynamical system (1), control set U, initial set 𝐼 and safe set S, verify
whether (1) is safe.

The second question is to design a safe control input.

•? Question 2: safe control input design

Given a dynamical system (1), control set U, initial set I and safe set S, design a
safe control input.

These questions involve solving analysis and control synthesis problems under
input and state constraints; one typical method is to formulate and solve an optimal
control problem as follows: for any (𝑥, 𝑡),

𝑉 (𝑥, 𝑡) = max
𝑢( ·)

min
𝜏∈[𝑡 ,𝑇 ]

𝑠(b (𝜏))

subject to b† = 𝑓 (b, 𝑢),
𝑢(𝜏) ∈ U, for all 𝜏 ∈ [𝑡, 𝑇],
b (0) = 𝑥.

(3)

The cost of the optimal control problem (3) involves choosing the control input 𝑢(𝜏)
that maximizes the minimum value of 𝑠(b) over the time interval T . This is because
a larger 𝑠(b) implies “safer” since the safe set is defined over the super-level set of
𝑠(b). 𝑉 (𝑥, 𝑡) : R𝑛 ×R+ → R is the value function of (3). Given 𝑥, if 𝑉 (𝑥, 0) ≥ 0, we
conclude that the system is safe starting from this state. It is now clear that the set

V := {𝑥 |𝑉 (𝑥, 0) ≥ 0} (4)

contains all the initial states 𝑥0 from which (1) is safe. This is because for any 𝑥0 ∈ V
and 𝑡 ∈ T , there exists 𝑢 ∈ U such that 𝑠(𝑥(𝑡, 𝑢, 𝑥0)) ≥ 0. The following statement
based on V provides an answer to Questions 1 and 2.
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Answer to Questions 1&2

If I ⊆ V, then system (1) is safe in S. Moreover, the control input 𝑢∗ (·) obtained
from (3) renders the system safe.

IfI ⊆ V, we have that for any 𝑥0 ∈ I,𝑉 (𝑥0, 0) ≥ 0, safety is ensured. Conversely,
V is non-empty if the system is safe, since I ⊆ V and I is non-empty. The optimal
control problem (3) is well-posed, but is hard to solve in practice as it is equivalent
to solving a partial differential equation [8]. Our goal is to construct or approximate
the set V efficiently with alternative methods. We conclude and prove that, it V is
non-empty, then

Properties of V

1. V ⊆ S.
2. If 𝑇 < ∞, then for all 𝑡 ∈ [0, 𝑇], 𝑥0 ∈ V, there exists 𝑢(𝑡) ∈ U, such that

𝑥(𝑡, 𝑢, 𝑥0) ∈ S.
3. If 𝑇 → ∞ and V is closed, then for all 𝑡 ≥ 0, 𝑥0 ∈ V, there exists 𝑢(𝑡) ∈ U, such

that 𝑥(𝑡, 𝑢, 𝑥0) ∈ V.

The first two properties are straightforward following the aforementioned discus-
sion. We formalize and prove the last property as it is the backbone of the analysis
in the sequel.

Lemma 1 Consider system (1), initial set I, and safe set S, with 𝑇 → ∞. For any
(𝑥, 𝑡), let 𝑉 (𝑥, 𝑡) be the optimal value function of (3), and define V as in (4). If V
is non-empty, then Property 3 holds.

Proof For any 𝑥0 ∈ I, there always exists a trajectory starting from 𝑥0 ∈ V and for
any 𝑡 ≥ 0, 𝑥(𝑡, 𝑢, 𝑥0) ∈ S. Suppose that for one of the trajectories and for 𝑇 ≥ 0,
we have 𝑥(𝑇, 𝑢, 𝑥0) ∈ S\V. Since 𝑥(𝑡, 𝑢, 𝑥0) is unique for any 𝑡 ≥ 0, we have
that for any 𝜏 ≥ 0, 𝑥(𝑇 + 𝜏, 𝑢, 𝑥0) = 𝑥(𝜏, 𝑢, 𝑥(𝑇, 𝑢, 𝑥0)) ∈ S. This indicates that
𝑥(𝑇, 𝑢, 𝑥0) ∈ V, since the system is safe starting from 𝑥(𝑇, 𝑢, 𝑥0). For 𝜏 → ∞ and
𝑥(𝑇 +𝜏, 𝑢, 𝑥0) → V′, we must have 𝑥(𝑇 +𝜏, 𝑢, 𝑥0) ∈ cl(V) = V (since V is closed),
thus 𝑥(𝑇, 𝑢, 𝑥0) ∈ V. This leads to a contradiction. □

Property 2 is called invariance for a set with respect to a system. The existence
of such a set reveals the safety property for a given system and safe set.
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2.1 Relationship between Invariance and Safety

Definition 2 Consider system (1) and a set K. A set B ⊂ R𝑛 is called a 𝑇-invariance
kernel of K if for any 𝑡 ∈ [0, 𝑇], 𝑥0 ∈ B, there exists 𝑢(𝑡) ∈ U, such that 𝑥(𝑡, 𝑢, 𝑥0) ∈
K.

Note that V is the maximal 𝑇-invariance kernel for system (1) and safe set
S. This is a corollary of Lemma 1, as one can see that any point exhibiting the
invariance property will be within V. As we can see here, if a system is safe, then
we can always construct a set V by solving the optimal control problem (3). The
relationship between the existence of a 𝑇-invariance kernel B of S and safety is
shown in the following converse theorem.

Theorem 1 Consider system (1), initial set I, safe set S and time interval [0, 𝑇]. If
the system is safe, then there exists a 𝑇-invariance kernel B of S, such that I ⊆ B ⊆
S. Conversely, if there exists a 𝑇-invariance kernel B, such that I ⊆ B ⊆ S, then
the system is safe. The same arguments hold for 𝑇 → ∞ if S is closed.

Proof We first consider 𝑇 < ∞. For the sufficiency part of the proof suppose the
system is safe, and for every B such that I ⊆ B ⊆ S, B is not a 𝑇-invariance kernel
of S. Then there exists at least one 𝑥0 ∈ B and 𝑡 ∈ T , such that 𝑥(𝑡, 𝑢, 𝑥0) ∉ S. Let
B = I, this contradicts to the assumption that the system is initially safe. For the
necessity part we have that for such a B, we have that for any 𝑥0 ∈ B and 𝑡 ∈ T ,
𝑥(𝑡, 𝑢, 𝑥0) ∈ B ⊆ S.

We now consider the case where 𝑇 → ∞. The sufficiency follows the same
arguments while the limit points are bypassed by the closeness ofS. For the necessity
part, consider a set B constructed by a collection of points B := {𝑥(𝑡, 𝑢, 𝑥0) |𝑡 ≥
0, 𝑥0 ∈ I, 𝑥(𝑡, 𝑢, 𝑥0) ∈ S}. Then following the arguments in Lemma 1, we have that
B is an invariance kernel of S, and hence B ∈ S. □

With Theorem 1 in hand, the safety verification problem is equivalent to an
existence problem. By constructing a 𝑇-invariance kernel and the corresponding
control input 𝑢, we solve the safety problem. Invariance introduced in Definition 2 is
related to a safe set, as it requires that trajectories starting from the invariance kernel
stay in the safe set. However, there is no safe set appearing in the third property. In
fact, with 𝑇 → ∞, every trajectory starting from V can stay within V for all time.
We pay specific attention to the case 𝑇 → ∞ since this commonly holds for general
nonlinear systems. The set V obtained by (3) is also called a control invariant set if
it is non-empty.

Definition 3 A set B is called a control invariant set for system (1) if for any 𝑥0 ∈ B,
and 𝑡 ≥ 0, there exists 𝑢(𝑡) ∈ U such that 𝑥(𝑡, 𝑢, 𝑥0) ∈ B.

If B is a control invariant set sucht that B ⊆ S, then it is for sure a 𝑇-invariance
kernel of S by definition. Control invariance is an isolated property for a set B
compared with invariance kernel, which also depends on S. The existence of a
control invariant set B also reveals safety.
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Theorem 2 Consider system (1), initial set I and safe set S. If there exists a control
invariant set B such that I ⊆ B ⊆ S, then the system is safe. Conversely, if the
system is safe, then there exists a control invariant set B such that I ⊆ B ⊆ S.

Proof of Theorem 4 is analogous to that of Theorem 1.

2.2 Control Invariance for Continuous-Time Systems

In this section we introduce and analyze control invariance for continuous-time
systems. We first exploit conditions for control invariance with set representation,
and give alternative conditions with function representation.

2.2.1 Control Invariance with Set Representation

Control invariance is closely related to the concept of tangent cone, which is defined
in a point-wise manner over the set.

Definition 4 Let D be a compact set. The tangent cone of D at 𝑥 is the set

℘D (𝑥) =
{
𝑧 ∈ R𝑛 : lim inf

ℎ→0

dist(𝑥 + ℎ𝑧,D)
ℎ

= 0,
}

(5)

where
dist(𝑥, ℘) = inf

𝑦∈℘
| |𝑥 − 𝑦 | |, (6)

is a distance function and | | · | | denotes the Euclidian norm.

The tangent cone to a set D at 𝑥 is shown in Figure 1. We only illustrate the case
of 𝑥 ∈ 𝜕D since ℘D (𝑥) = R𝑛 if 𝑥 ∈ Int(D), and ℘D (𝑥) = ∅ if 𝑥 ∈ D′. In the
geometric sense, for a convex set D, every vector 𝑓 (𝑥, 𝑢) ∈ ℘D (𝑥) points inside
D, or at least is tangent to the boundary curve of D at 𝑥. The tangent cone clearly
relates to control invariance.

Theorem 3 (Nagumo’s Theorem [15])
Consider a system ¤𝑥 = 𝑓 (𝑥, 𝑢). Let B be a compact and convex set. Then the set

B is a control invariant set for the system if and only if

∀𝑥 ∈ B, ∃𝑢 ∈ U, such that 𝑓 (𝑥, 𝑢) ∈ ℘B (𝑥).

For continuous system dynamics, 𝑓 (𝑥, 𝑢) is required to point inside the set B only for
𝑥 ∈ 𝜕B. We note here that in Theorem 3, B needs to be convex. One can construct
a counter example involving a nonconvex set that is not control invariant even if it
satisfies the requirement in Theorem 3.

The tangent cone is defined point-wise in 𝑥. For special sets such as ellipsoidal
control invariant or polyhedral control invariant sets, the tangent cone can be directly
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Fig. 1 Tangent cone for a compact set B at 𝑥 ∈ 𝜕B.

calculated. However, there is no explicit form for general compact sets B. Verifying
condition (5) and designing the control input are still challenging tasks.

2.2.2 Control Invariance with Function Representation

In this section we consider the invariance condition by the set representation of a set
B. Similarly to the definition of S, suppose B is the zero super-level set of a function
𝑏(𝑥) : R𝑛 → R:

B := {𝑥 |𝑏(𝑥) ≥ 0}.

Then the control invariance condition is summarized in the following theorem.

Theorem 4 Consider a system ¤𝑥 = 𝑓 (𝑥, 𝑢) and a compact set B described by the
zero super-level set of a continuously differentiable function 𝑏(𝑥). ThenB is a control
invariant set for the system if

∀𝑥 ∈ 𝜕B, ∃𝑢 ∈ U, such that
𝜕𝑏(𝑥)
𝜕𝑥

𝑓 (𝑥, 𝑢) > 0. (7)

Theorem 4 certifies control invariance by checking a Lyapunov-like derivative con-
dition for every 𝑥 on the boundary of the set B. Expanding 𝑏(𝑥) at 𝑥(𝑡) with respect
to 𝑡 we have

𝑏(𝑥(𝑡 + 𝛿𝑡)) = 𝑏(𝑥(𝑡)) + ¤𝑏(𝑥) |𝑥=𝑥 (𝑡 )𝛿𝑡 + 𝑜(𝑥(𝑡)),

where 𝑜(𝑥(𝑡)) is a small residual term. If 𝑏(𝑥(𝑡)) = 0 for 𝑥(𝑡) ∈ 𝜕B, then 𝑏(𝑥(𝑡 +
𝛿𝑡)) > 0 if ¤𝑏(𝑥) > 0. We note here that ¤𝑏(𝑥) =

𝜕𝑏 (𝑥 )
𝜕𝑥

𝑓 (𝑥, 𝑢) is necessary to be
strictly positive to bypass the case 𝑜(𝑥(𝑡)) < 0.

Although condition (7) is only sufficient for control invariance and requires the
function 𝑏(𝑥) to be continuously differentiable, it is easy to be checked numerically.
For a given state 𝑥(𝑡) ∈ 𝜕B and function 𝑏(𝑥), checking (7) can be done by solving
a feasibility optimisation problem
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find 𝑢 ∈ U

subject to
𝜕𝑏(𝑥)
𝜕𝑥

𝑓 (𝑥, 𝑢) > 0,∀𝑥 ∈ 𝜕B.

Checking (7) for any 𝑥 ∈ 𝜕B is arduous as there are infinite conditions to check. We
show how to deal with this using sum-of-squares programming in Section 3.

2.3 Control Invariance for Discrete-Time Systems

The control invariance condition for discrete-time systems is slightly different from
that for continuous-time systems. To check the control invariance of a given set B,
one needs to check the state transition for every 𝑥 ∈ B but not only 𝑥 ∈ 𝜕B. This
is because for a discrete-time system 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), there may be the case
that 𝑓 (𝜕B, 𝑢) ∈ B, but 𝑓 (B, 𝑢) ∉ B. The control invariance condition for discrete-
time systems is formalized in the following theorem, as a natural counterpart of the
Nagumo’s Theorem 3.

Theorem 5 Consider a system 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)) and a compact set B defined
by the zero super-level set of a function 𝑏(𝑥). Then B is a control invariant set for
the system if and only if

∀𝑥 ∈ B, ∃𝑢 ∈ U, such that 𝑏( 𝑓 (𝑥, 𝑢)) ≥ 0. (8)

2.4 Summary

In this section we revealed the relationship between invariance and safety. Given a
safe set S, initial set I and system dynamics as in (1), safety is equivalent to the
existence of a 𝑇-invariance kernel B of the safe set S. In the case where 𝑇 → ∞,
safety is equivalent to control invariance of a set B, where I ⊆ B ⊆ S. Control
invariance provides an easier way of verifying safety since it certifies a derivative
condition for a compact subset of B. On the contrary, 𝑇-invariance kernel is built on
an inclusion relationship over trajectories, which is hard to be cast in an algebraic
form. In the next section we introduce sum-of-squares programming, which is a
powerful tool to analyze control invariance under safety, and design a safe control
input.

3 Sum-of-Squares Programming

Consider a polynomial optimisation problem
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min
𝑥∈R𝑛

𝑓 (𝑥)

subject to 𝑔(𝑥) ≤ 0,
ℎ(𝑥) = 0,

(9)

where 𝑓 (𝑥) : R𝑛 → R, 𝑔(𝑥) : R𝑛 → R, ℎ(𝑥) : R𝑛 → R are polynomial functions.
For convex 𝑓 (𝑥), 𝑔(𝑥) and ℎ(𝑥), (9) is a convex optimisation problem that can
be solved efficiently. If any of these functions is non-convex, we can consider the
following problem instead:

max
𝛾

𝛾

subject to 𝛾 − 𝑓 (𝑥) ≤ 0,∀𝑥 ∈ K := {𝑥 |𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0} .
(10)

Now the decision variable is 𝛾. The new constraint 𝛾 − 𝑓 (𝑥) ≤ 0 is a nonpositivity
constraint for a polynomial, and scales linearly in 𝛾. However, checking positivity
of polynomials of degree higher than 4 is NP-hard. To deal with this issue, sum-of-
squares decomposition is proposed.

3.1 Sum-of-Squares Decomposition

Definition 5 A polynomial 𝑓 (𝑥) is said to be a sum-of-squares polynomial if there
exists polynomials 𝑓𝑖 (𝑥), such that

𝑓 (𝑥) =
∑︁
𝑖

𝑓𝑖 (𝑥)2. (11)

We also call (11) a sum-of-squares decomposition for 𝑓 (𝑥). Clearly, if a function 𝑓 (𝑥)
has a sum-of-squares decomposition, then it is non-negative for all 𝑥 ∈ R𝑛. One ques-
tion here is whether all positive polynomials admit a sum-of-squares decomposition
- the answer is no. As an example, the Motzkin polynomial 1+𝑥2𝑦4 +𝑥4𝑦2 −3𝑥2𝑦2 is
nonnegative, but has no sum-of-squares decomposition. In the sequel, we useR[𝑥] to
denote the set of real polynomials in 𝑥, and Σ[𝑥] to denote the set of sum-of-squares
polynomials in 𝑥.

Computing the sum-of-squares decomposition (11) can be efficient as it is equiv-
alent to a positive semidefinite feasibility program.

Lemma 2 Consider a polynomial 𝑓 (𝑥) of degree 2𝑑 in 𝑥 ∈ R𝑛. Let 𝑧(𝑥) be a vector of
all monomials of degree less than or equal to 𝑑. Then 𝑓 (𝑥) admits a sum-of-squares
decomposition if and only if

𝑓 (𝑥) = 𝑧(𝑥)⊤𝑄𝑧(𝑥), 𝑄 ⪰ 0. (12)

In Lemma 2, 𝑧(𝑥) is a user-defined monomial basis if 𝑑 and 𝑛 are fixed. In the

worst case, 𝑧(𝑥) has
(
𝑛 + 𝑑

𝑑

)
components, and 𝑄 is a

(
𝑛 + 𝑑

𝑑

)
×
(
𝑛 + 𝑑

𝑑

)
squared
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matrix. The necessity of Lemma 2 is natural from the definition of positive semi-
definite matrix, considering the monomial 𝑧(𝑥) as a vector of new variables 𝑧𝑖 . The
sufficiency is shown by factorizing𝑄 = 𝐿⊤𝐿. Then 𝑧(𝑥)⊤𝑄𝑧(𝑥) = (𝐿𝑧(𝑥))⊤𝐿𝑧(𝑥) =
| |𝐿𝑧(𝑥) | |22 ≥ 0.

Given 𝑧(𝑥), finding 𝑄 to decompose 𝑓 (𝑥) following (12) is a semi-definite pro-
gram, which can be solved efficiently using interior point methods. Selecting the
basis 𝑧(𝑥) depends on the structure of 𝑓 (𝑥) to be decomposed.

Going back to problem (10), 𝛾 should satisfy that the intersected set {𝑥 |𝛾− 𝑓 (𝑥) ≥
0}⋂K⋂{𝑥 |𝛾− 𝑓 (𝑥) = 0} is empty. Here the condition {𝑥 |𝛾− 𝑓 (𝑥) > 0} is expressed
by {𝑥 |𝛾 − 𝑓 (𝑥) ≥ 0}⋂{𝑥 |𝛾 − 𝑓 (𝑥) = 0}. The intersected set has a special structure:
it is defined by a series of polynomial equality and inequality constraints.

Definition 6 A setX ⊂ R𝑛 is semi-algebraic if it can be represented using polynomial
equality and inequality constraints. If there are only equality constraints, the set is
algebraic.

Three types of polynomials are defined based on a series of polynomials
𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥).

Definition 7 The monoid generated by 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥) is denoted by

monoid( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) =
𝑚∏
𝑖=1

𝑓𝑖 (𝑥)𝑘𝑖 , 𝑘𝑖 ∈ N,

where N is the set of non-negative integers.

Definition 8 The ideal generated by polynomials 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥) is denoted by

ideal( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) =
𝑚∑︁
𝑖=1

ℎ𝑖 (𝑥) 𝑓𝑖 (𝑥),

where ℎ1 (𝑥), . . . , ℎ𝑚 (𝑥) are polynomials in 𝑥.

Definition 9 The cone generated by polynomials 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥) is denoted by

cone( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) =
𝑟∑︁
𝑖=1

𝑔𝑖 (𝑥)𝑡𝑖 (𝑥),

where 𝑡𝑖 (𝑥), . . . , 𝑡𝑟 (𝑥) ∈ monoid( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)), and 𝑔1 (𝑥), . . . , 𝑔𝑟 (𝑥) ∈ Σ[𝑥].

The cone and ideal are closely related to the emptiness of semi-algebraic sets.
Specifically, the ideal is related to algebraic sets.
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Lemma 3

−1 ∈ 𝑡 (𝑥) + ideal( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) ⇔ {𝑥 ∈ R𝑛 | 𝑓𝑖 (𝑥) = 0,∀𝑖 = 1, . . . , 𝑚} = ∅,

where 𝑡 (𝑥) ∈ Σ[𝑥].

The cone is related to the sets defined by polynomial inequality constraints.

Lemma 4

−1 ∈ cone( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) ⇔ {𝑥 ∈ R𝑛 | 𝑓𝑖 (𝑥) ≥ 0,∀𝑖 = 1, . . . , 𝑚} = ∅.

Lemmas 3 and 4 are known as Nullstellensatz. Based on these results, we have the
main result of this section, called the Positivstellensatz theorem.

Theorem 6 ( [29, Theorem 4.4.2])
Let K be a semi-algebraic set, K := {𝑥 ∈ R𝑛 | 𝑓𝑖 (𝑥) ≥ 0, 𝑔 𝑗 (𝑥) = 0, ℎ𝑘 (𝑥) ≠

0, ∀𝑖 = 1, . . . , 𝑚, 𝑗 = 1, . . . , 𝑝, 𝑘 = 1, . . . , 𝑞}. We have

0 ∈ cone( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) + ideal(𝑔1 (𝑥), . . . , 𝑔𝑟 (𝑥)) + monoid(ℎ1 (𝑥), . . . , ℎ𝑞 (𝑥))
⇔ K = ∅.

(13)

The Positivstellensatz gives a necessary and sufficient condition to test whether a
semi-algebraic set is empty or not. Testing whether 0 ∈ cone( 𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) +
ideal(𝑔1 (𝑥), . . . , 𝑔𝑟 (𝑥)) + monoid(ℎ1 (𝑥), . . . , ℎ𝑞 (𝑥)) can be done using sum-of-
squares programming. One thing worth mentioning here is the choice of poly-
nomial multipliers ℎ1 (𝑥), . . . , ℎ𝑚 (𝑥) and sum-of-squares polynomial multipliers
𝑡1 (𝑥), . . . , 𝑡𝑟 (𝑥) in the cone and ideal. If there is no sum-of-squares decomposi-
tion for the Positivstellensatz condition, this does not necessarily imply that K = ∅,
but can also be due to improperly chosen multipliers. In this case one can increase the
degree of the multipliers and repeat the test (which is of non-decreasing accuracy)
but this will result in a larger semidefinite programme. The following lemma gives
relaxed conditions to test the emptyness of a semi-algebraic set.

Lemma 5 (S-procedure)
Suppose 𝑡 (𝑥) ∈ Σ[𝑥], then

𝑓 (𝑥) − 𝑡 (𝑥)𝑔(𝑥) ∈ Σ[𝑥] ⇒ 𝑓 (𝑥) ≥ 0,∀𝑥 ∈ {𝑥 |𝑔(𝑥) ≥ 0}. (14)

Suppose 𝑝(𝑥) ∈ R[𝑥], then

𝑓 (𝑥) − 𝑝(𝑥)𝑔(𝑥) ∈ Σ[𝑥] ⇒ 𝑓 (𝑥) ≥ 0,∀𝑥 ∈ {𝑥 |𝑔(𝑥) = 0}. (15)

Compared with Positivstellensatz, the S-procedure only gives a sufficient condi-
tion for the emptiness of a semi-algebraic set. However, a good feature is that there
is no multiplier for 𝑓 (𝑥). This is especially useful when 𝑓 (𝑥) is a parameterized
function to be constructed. We also highlight here that the S-procedure is sufficient
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and necessary for quadratic 𝑓 (𝑥) and 𝑔(𝑥). In this case, 𝑡 (𝑥) degenerates into a
positive scalar.

Using Positivestellensatz for linear functions results in Farkas Lemma.

Lemma 6 ( [30, Farkas Lemma])
The set {𝑥 ∈ R𝑛 |𝐴𝑥 + 𝑏 ≥ 0, 𝐶𝑥 + 𝑑 = 0} is empty if and only if there exist _ ≥ 0

and ` such that
_⊤𝐴 + `⊤𝐶 = 0, _⊤𝑏 + `⊤𝑑 = −1.

We have now shown the necessary basic results of sum-of-squares decomposition,
and how to use it to characterize the emptiness of semi-algebraic sets. In the next
part of this section we will leverage Theorem 6 and Lemma 5 to verify safety, as
well as design a safe control input for polynomial systems over semi-algebraic sets.

3.2 Convex Optimisation for Safety

We still separate our discussion into two parts, first on safety for continuous-time sys-
tems and then on safety for discrete-time systems. We restrict attention to polynomial
control-affine systems and semi-algebraic safe/initial sets.

3.3 Safety for Continuous-Time Systems

Consider a polynomial control affine system

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, (16)

where 𝑥(𝑡) ∈ R𝑛 is the state and 𝑢(𝑡) ∈ R𝑚 is the control input. Here 𝑓 (𝑥) : R𝑛 → R𝑛
and 𝑔(𝑥) : R𝑛 → R𝑛 × R𝑚 are polynomial functions in 𝑥. The initial set I and safe
set S are defined by the zero super-level sets of polynomial functions ℎ(𝑥) and 𝑠(𝑥),
respectively.

To verify safety and design a safe control input for system (16), a control invariant
set B which satisfies I ⊆ B ⊆ S is useful. Theorem 6 gives sufficient and necessary
conditions to construct such a set, as well as the corresponding safe control input 𝑢.
To do this, we use the function representation result in Section 2.2.2. Suppose B is
the zero super-level set of a polynomial function 𝑏(𝑥).

Initial Condition

The initial condition requires 𝑥 ∈ B for any 𝑥 ∈ I. Equivalently we have

{𝑥 |ℎ(𝑥) ≥ 0, 𝑏(𝑥) < 0} = ∅,

which can be re-written into a standard algebraic set condition
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{𝑥 | − 𝑏(𝑥) ≥ 0, 𝑏(𝑥) ≠ 0, ℎ(𝑥) ≥ 0} = ∅.

Given that ℎ(𝑥), 𝑏(𝑥) are both polynomials, using Positivstellensatz we have

𝜎0 (𝑥) − 𝜎1 (𝑥)𝑏(𝑥) + 𝑏(𝑥)2 + 𝜎2 (𝑥)ℎ(𝑥) = 0,

where 𝜎0 (𝑥), 𝜎1 (𝑥), 𝜎2 (𝑥) ∈ Σ[𝑥] are sum-of-squares multipliers. As 𝑏(𝑥) is an
unknown polynomial to be determined, the bilinear term 𝜎1 (𝑥)𝑏(𝑥) and 𝑏(𝑥)2 can
not be transformed into a matrix semi-denifite problem. One way we follow here is
to set 𝜎1 (𝑥) = 1; then we have

𝑏(𝑥) − 𝑠2 (𝑥)ℎ(𝑥) = 𝑠0 (𝑥) + 𝑏(𝑥)2,

which is further relaxed to

𝑏(𝑥) − 𝜎2 (𝑥)ℎ(𝑥) ∈ Σ[𝑥] . (17)

Condition (17) can be cast into a sum-of-squares program with variables 𝑏(𝑥) ∈ R[𝑥]
and 𝜎2 (𝑥) ∈ Σ[𝑥]. We also remark here that (17) can also be derived from S-
procedure, Lemma 5.

Safety Condition

The safety condition requires ∀𝑥 ∈ B, 𝑥 ∈ S. Following the safe steps for the initial
condition, we have the following sum-of-squares constraint

−𝑏(𝑥) + 𝜎1 (𝑥)𝑠(𝑥) ∈ Σ[𝑥], (18)

where 𝜎1 (𝑥) ∈ Σ[𝑥].

Control Invariance Condition

The last condition to be handled is the control invariance condition, given in (7). In
function representation it is

∀𝑥 s.t. 𝑏(𝑥) = 0, ∃𝑢(𝑥), such that
𝜕𝑏(𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥)) > 0,

where 𝑢(𝑥) ∈ R𝑚 [𝑥] is a polynomial control input. In standard algebraic set form
we have

{𝑥 |𝑏(𝑥) = 0,−𝜕𝑏(𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥)) ≥ 0} = ∅.

Using Positivstellensatz we have

𝑡 (𝑥)𝑏(𝑥) + 𝜎4 (𝑥)
(
−𝜕𝑏(𝑥)

𝜕𝑥
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥))

)
+ 𝜎3 (𝑥) = 0,
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where 𝑡 (𝑥) ∈ R[𝑥],𝜎3 (𝑥), 𝜎4 (𝑥) ∈ Σ[𝑥],𝜎3 (𝑥) is a predefined small term. Following
the same simplification steps as above, by letting 𝜎4 (𝑥) = 1 we have

𝜕𝑏(𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥)) − 𝑡 (𝑥)𝑏(𝑥) + 𝜎3 (𝑥) ∈ Σ[𝑥] . (19)

Here 𝜕𝑏 (𝑥 )
𝜕𝑥

is a polynomial in 𝑥. Unlike (17) and (18), (19) has bilinearity in
𝜕𝑏 (𝑥 )
𝜕𝑥

𝑔(𝑥)𝑢(𝑥) and 𝑡 (𝑥)𝑏(𝑥) which cannot be removed easily. Summarizing (17),
(18), (19), we have the following sum-of-squares program.

find 𝑏(𝑥), 𝑢(𝑥), 𝜎1 (𝑥), 𝜎2 (𝑥), 𝑡 (𝑥)
subject to (17), (18), (19)

𝑏(𝑥), 𝑢(𝑥), 𝑡 (𝑥) ∈ R[𝑥], 𝜎1 (𝑥), 𝜎2 (𝑥) ∈ Σ[𝑥] .
(20)

As noted already, the sum-of-squares program (20) can not be directly transformed
into a semi-definite program due to the bilinearity in (19). A typical method to bypass
this difficulty is to solve it iteratively by fixing part of the variables.

Alternating Direction Methodology

Let 𝑏𝑘 (𝑥), 𝑢𝑘 (𝑥) and 𝑡𝑘 (𝑥) be the solutions at the 𝑘-th iteration for 𝑏(𝑥), 𝑢(𝑥), 𝑡 (𝑥).
Utilizing the methodology of alternating direction algorithm, the sum-of-squares
program (20) at the 𝑘-th iteration is divided into three programs: updating 𝑏(𝑥),
updating 𝑢(𝑥) and updating 𝑡 (𝑥). In each program, the other two variables are fixed
polynomials.

Updating 𝑏(𝑥) at the 𝑘-th iteration with fixed 𝑢(𝑥) = 𝑢𝑘−1 (𝑥), and 𝑡 (𝑥) = 𝑡𝑘−1 (𝑥)
we have the following feasibility optimisation problem

find 𝑏(𝑥)
subject to (17), (18)

𝜕𝑏(𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢𝑘−1 (𝑥)) − 𝑡𝑘−1 (𝑥)𝑏(𝑥) + 𝜎3 (𝑥) ∈ Σ[𝑥] .

Updating 𝑢(𝑥) at the 𝑘-th iteration with fixed 𝑏(𝑥) = 𝑏𝑘 (𝑥), 𝑡 (𝑥) = 𝑡𝑘−1 (𝑥) we
have the following feasibility optimisation problem

find 𝑢(𝑥)

subject to
𝜕𝑏𝑘 (𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥)) − 𝑡𝑘−1 (𝑥)𝑏𝑘 (𝑥) + 𝜎3 (𝑥) ∈ Σ[𝑥] .

Updating 𝑡 (𝑥) at the 𝑘-th iteration with fixed 𝑏(𝑥) = 𝑏𝑘 (𝑥), 𝑢(𝑥) = 𝑢𝑘 (𝑥) we have

find 𝑡 (𝑥)

subject to
𝜕𝑏𝑘 (𝑥)
𝜕𝑥

( 𝑓 (𝑥) + 𝑔(𝑥)𝑢𝑘 (𝑥)) − 𝑡 (𝑥)𝑏𝑘 (𝑥) + 𝜎3 (𝑥) ∈ Σ[𝑥] .
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Solving the above three programs iteratively until convergence, we complete the
safety synthesis. All the three programs are standard sum-of-squares programs, i.e.,
convex optimisation problems. There are several points we want to highlight here:

• The iterative algorithm is not guaranteed to converge to a feasible solution.
• Selection of monomial parameterization basis for 𝑏(𝑥), 𝑢(𝑥) and 𝑡 (𝑥) influences

the result. If the iterative algorithm does not converge, one can chose other
polynomial basis, especially increase the degree of the monomial basis.

3.4 Safety for Discrete-Time Systems

From the discussion in Section 2.3, safe control invariant set synthesis for discrete-
time system goes beyond just checking a condition at the boundary of the safe set.
Consider a discrete-time control affine system

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡)) + 𝑔(𝑥(𝑡))𝑢(𝑡), (21)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢 ∈ U. The initial and safe sets are constructed in the same
way as those in the continuous-time case. Using the result of Theorem 5 yields the
following SOS program:

find 𝑏(𝑥), 𝑢(𝑥), 𝜎1 (𝑥), 𝜎2 (𝑥), 𝜎3 (𝑥)
subject to (17), (18), 𝜎1 (𝑥), 𝜎2 (𝑥), 𝜎3 (𝑥) ∈ Σ[𝑥]

𝑏( 𝑓 (𝑥) + 𝑔(𝑥)𝑢(𝑥)) − 𝜎3 (𝑥)𝑏(𝑥) + 𝜎4 (𝑥) ∈ Σ[𝑥] .
(22)

Beyond the bilinearity experienced in the continuous-time program case (20), un-
avoidable non-convexity occurs in the term 𝑏( 𝑓 (𝑥) +𝑔(𝑥)𝑢(𝑥)), since 𝑏(𝑥) and 𝑢(𝑥)
are both parameterized functions. The iterative algorithm cannot be used for this
type of problems. To make computation efficient, a special form of control invariant
sets, polyhedral sets, will be considered:

𝑏(𝑥) = 𝑝𝑥 + 𝑞, (23)

where 𝑝 ∈ R𝑚 × R𝑛, 𝑞 ∈ R𝑚 and 𝑏(𝑥) : R𝑛 → R𝑚 is a vector function. Using the
polyhedral invariant set, the SOS program is

find 𝑏(𝑥), 𝑢(𝑥), 𝜎1 (𝑥), 𝜎2 (𝑥), 𝜎3 (𝑥)
subject to − 𝑝𝑥 − 𝑞 + 𝜎1 (𝑥)ℎ(𝑥) ∈ Σ𝑚 [𝑥],

𝑝𝑥 + 𝑞 − 𝜎2 (𝑥)𝑠(𝑥) ∈ Σ𝑚 [𝑥],
𝑝 𝑓 (𝑥) + 𝑝𝑔(𝑥)𝑢(𝑥) + 𝑞 − 𝜎3 (𝑥)𝑏(𝑥) + 𝜎4 (𝑥) ∈ Σ𝑚 [𝑥],
𝜎1 (𝑥), 𝜎2 (𝑥) ∈ Σ[𝑥], 𝜎3 (𝑥) ∈ Σ𝑚 [𝑥] .

(24)

Here Σ𝑚 [𝑥] is the set of 𝑚-dimensional SOS polynomial vectors. The alternative
directional algorithm is now applicable to (24).
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3.5 Summary

In this section we introduced sum-of-squares programming and its application to
safety assessment. For polynomial systems with semi-algebraic initial and safe sets,
invariance conditions proposed in Section 2 can be encoded as algebraic constraints
in convex programs, and solved iteratively.

4 Safety for Linear Systems with Constrained Inputs

In this section we pay special interest to continuous-time linear systems under unit
peak input. The system dynamics are given by

¤𝑥 = 𝐴𝑥 + 𝐵𝑢, (25)

where 𝑥(𝑡) ∈ R𝑛 denotes the state, and 𝑢(𝑥) ∈ R𝑚 the control input, while the
matrices 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚. Here we define 𝑢 as feedback control input of
state 𝑥. Define the compact semi-algebraic set S := {𝑥 |𝑠(𝑥) ≥ 0} as the safe set.
Throughout the paper, we assume that the system can be safely controlled within S.
For the sake of brevity, we assume the system is fully observable without state and
output noise.

4.1 Unit Peak Input

Unit peak input implies a constraint on the Euclidean norm. In the meaning of
2-norm, the control input 𝑢 is bounded by | |𝑢 | |22 ≤ 𝑢max, where 𝑢max > 0 is a
positive scalar. The system is assumed to be locally stabilizable around 𝑥∗ ∈ S.
Among different types of invariance sets, we select the ellipsoidal invariance set as
a candidate. Our choice stems from the fact that, if the system (25) is stabilizable
(or locally stabilizable) with state feedback control law 𝑢 = 𝑘𝑥, then there exists a
quadratic Lyapunov function 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 with 𝑃 ≻ 0 [31, Theorem 4.17]. Then
every sub-level set of 𝑉 (𝑥) serves as an invariant set. Under this set-up, we use

𝑏(𝑥) = −𝑥⊤𝑃𝑥 + 𝑙, (26)

where 𝑃 and 𝑙 are parameters to be determined for a candidate function for the safe
invariance set.

According to Theorem 2, 𝑏(𝑥) satisfies:
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∃𝑢 ∈ {𝑢 | | |𝑢 | |22 ≤ 𝑢max},
𝜕𝑏(𝑥)
𝜕𝑥

(𝐴𝑥 + 𝐵𝑢) ≥ 0,∀ 𝑥 such that 𝑏(𝑥) = 0, (27a)

𝑏(𝑥) < 0, for any 𝑥 such that 𝑠(𝑥) < 0. (27b)

To guarantee condition (27a) holds, we require that

sup
| |𝑢 | |22≤𝑢max

𝜕𝑏(𝑥)
𝜕𝑥

(𝐴𝑥 + 𝐵𝑢) ≥ 0, for any 𝑥 such that 𝑏(𝑥) = 0. (28)

By (26), we have 𝜕𝑏 (𝑥 )
𝜕𝑥

= 2𝑃𝑥. The maximizing 𝑢 satisfies〈
𝐵⊤ 𝜕𝑏(𝑥)

𝜕𝑥

⊤
, 𝑢

〉
=

𝜕𝑏(𝑥)𝜕𝑥
𝐵

 · | |𝑢 | |, (29)

where ⟨·, ·⟩ denotes the inner product operator. We directly have 𝑢 = −Z𝐵⊤𝑃⊤𝑥,
where Z is a positive scaled scalar. Without control limitation, Z should be large
enough to maximize 𝜕𝑏 (𝑥 )

𝜕𝑥
𝐵𝑢. Under the assumption that 𝑢 is bounded, then Z is a

function of both state 𝑥 and matrix 𝑃. Condition (27a) turns out to be

𝑥⊤ (−𝑃𝐴 + Z𝑃𝐵𝐵⊤𝑃⊤)𝑥 ≥ 0, (30)

which is equivalent to

−𝑃𝐴 − 𝐴⊤𝑃 + 2Z𝑃𝐵𝐵⊤𝑃⊤ ⪰ 0. (31)

We omit the boundary condition 𝑏(𝑥) = 0 since B is convex and compact [32]. In
fact, for a point 𝑦 such that 𝑏(𝑦) ≠ 0, we can always find 𝑥 ∈ R𝑛 and 𝑡 ∈ R, such
that 𝑥 = 𝑡𝑦 and 𝑏(𝑥) = 0. We directly have that 𝑥⊤ (−𝑃𝐴 + Z𝑃𝐵𝐵⊤𝑃⊤)𝑥 ≥ 0 ⇔
𝑦⊤ (−𝑃𝐴 + Z𝑃𝐵𝐵⊤𝑃⊤)𝑦 ≥ 0.

To overcome the bilinear term Z𝑃𝐵𝐵⊤𝑃⊤ in (31), we propose the following
conditions:

− 𝑃𝐴 − 𝐴⊤𝑃 + 2Z �̂� ⪰ 0, (32a)[
�̂� 𝑃𝐵

𝐵⊤𝑃⊤ 𝐼

]
⪰ 0. (32b)

Theorem 7 states that (32) is sufficient for (31).

Theorem 7 If there exist Z > 0, 𝑃 ⪰ 0 and �̂� satisfying (32) then 𝑃 and Z satisfy
(31).

max
𝑃,�̂�,𝑙,𝜎

𝑙 (33a)

subject to 𝑥⊤𝑃𝑥 − 𝑙 + 𝜎𝑠(𝑥) ∈ Σ[𝑥], (33b)
satisfying (32) (33c)



Assessing Safety for Control Systems Using Sum-of-Squares Programming 19

max
Z ′≥0,𝜎

Z ′ (34a)

subject to − Z ′𝑥⊤𝑃𝐵𝐵⊤𝑃⊤𝑥 − 𝜎(−𝑥⊤𝑃𝑥 + 𝑙) + 𝑢max ∈ Σ[𝑥], (34b)

Here we use Σ[𝑥] to represent the set of sum-of-squares polynomials in 𝑥, and 𝜎 ∈
Σ[𝑥] to be a sum-of-squares multiplier. The programs (33) and (34) are computed
iteratively following the alternating directional algorithm. Solving (33) requires to
fix Z which is initialized to be a small constant. We remark that in (34) we use a new
nonnegative decision variable Z ′ instead of Z2 to obtain a linear program.

An alternative methods to overcome the bilinearity in (31) is to multiply 𝑃−1 on
both sides, which yields

𝑃−1{−𝑃𝐴 − 𝐴⊤𝑃 + 2Z𝑃𝐵𝐵⊤𝑃⊤}𝑃−1 ⪰ 0
⇐⇒− 𝐴𝑄 −𝑄𝐴⊤ + 2Z𝐵𝐵⊤ ⪰ 0, (35)

where 𝑄 = 𝑃−1. This new condition is a linear matrix inequality in 𝑄 and Z . Here
the variables substitution leads to a necessary and sufficient condition since 𝑃 is full
rank.

4.2 Summary

In this section we use ellipsoidal techniques to construct a control invariant set for a
linear system with quadratic initial and safe sets, under unit peak input. Compared
with general polynomial systems, the computation for linear systems is more efficient
since the control invariant set is assumed to be an ellipsoid.

5 Applications

In this section we show how to use the SOS parser SOSTOOLS [33] together with
the SDP solver SeDuMi [34] to solve the proposed SOS programs for safe control
invariant sets and controllers. Code in MATLAB is provided for reference. Two
types of systems are given for example, including a general polynomial control
affine system (solving (20)) and a linear system (solving (33), (34)). Both of them
are continuous-time systems.

5.1 Nonlinear Control Affine System

Consider a system
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¤𝑥1
¤𝑥2

]
=

[
𝑥2

𝑥1 + 1
3𝑥

3
1 + 𝑥2

]
+
[
𝑥2

1 + 𝑥2 + 1
𝑥2

2 + 𝑥1 + 1

] [
𝑢1
𝑢2

]
, (36)

with unit peak input 𝑢1 ∈ [−1.5, 1.5], 𝑢2 ∈ [−1.5, 1.5]. The safe set is defined by
a disc 𝑆 = {𝑥 |𝑥2

1 + 𝑥2
2 − 3 ≤ 0}, and initial set defined by 𝐼 = {𝑥 | (𝑥1 − 0.4)2 +

(𝑥2 − 0.4)2 − 0.16 ≤ 0}. 𝑏(𝑥) is parameterized by a forth-order polynomial, 𝑢(𝑥) is
parameterized by a quadratic function. The synthesized control invariant set B as a
subset of S, while enclosing I as shown in Figure 2.

Fig. 2 Control invariant set (inside the black curve) and safe control input. Vector field on 𝜕B
points inside the set.

5.2 Linear System

Consider a linear system with 𝐴 =

[
0.8 0.7
−0.4 −0.6

]
, 𝐵 =

[
1 1
1 1

]
, and −1 ≤ 𝑢 ≤ 1. The

safe set is the interior of a disc:S := {𝑥 |−𝑥2
1−𝑥

2
2+1 ≥ 0}. Without a control input, the

system’s dynamics are an unstable spiral; establishing safety starting from a closed
safe set is therefore challenging. Figure 3 and 4 show the synthesized invariant set
and value of control input. The control input 𝑢(𝑥) satisfies | |𝑢(𝑥) | |22 ≤ 1 for 𝑥 ∈ B.
The sum-of-squares programs (33) and (34) are solved using SOSTOOLS [33] with
SeDuMi v1.3.5 [34] as the SDP solver.

By assuming 𝑏(𝑥) is an ellipsoidal and 𝑢(𝑥) is a linear input, the computation of
the control invariant set for linear systems can be fairly efficient.
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Fig. 3 Ellipsoidal control invariant set for an unstable linear system

Fig. 4 Level sets of | |𝑢 | |22 , 𝑢 = −Z 𝐵⊤𝑃⊤𝑥

6 Conclusion

In this chapter we demonstrate how to assess safety for control systems. The rela-
tionship between safety and invariance theory for both continuous and discrete-time
systems is illustrated. For polynomial systems with semi-algebraic initial sets and
safe sets, safety can be encoded into algebraic conditions, and synthesized by a sum-
of-squares program. For linear systems with quadratic initial/safe sets, ellipsoidal
techniques can be applied for efficient computation. Numerical simulation of the
introduced methodology is performed over a polynomial system and a linear system.
A sample code in MATLAB is included.
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Appendix

Program Code with SOSTOOLS

options.solver=’sedumi’; % you need to add SeDuMi into work path

% Constructing the vector field

pvar x1 x2;

x = [x1;x2];

f = [ x2;

+x1+x1ˆ3/3+x2];

gx = [x1ˆ2+x2+1;

x2ˆ2+x1+1];

limits = 1.5;

% Define the safe set S >= 0 is safe

bias = 0;

S = -(x1-bias)ˆ2-(x2-bias)ˆ2+3; % Avoid a round region

% Define the initial set I >= 0

I = -(x1-bias-0.4)ˆ2-(x2-bias-0.4)ˆ2+0.16; % Start from a round region

% Initialize the SOSP

prog = sosprogram(x);

% The barrier function

[prog,B] = sospolyvar(prog,monomials(x,0:4),’wscoeff’);

% The multipliers

[prog,sigma1] = sossosvar(prog,monomials(x,0:1));

[prog,sigma2] = sossosvar(prog,monomials(x,0:1));

[prog,sigma3] = sossosvar(prog,monomials(x,0:1));

% =============================

% Inequality constraints

% Constraint 1: B(x) < 0 when S < 0

prog = sosineq(prog,-B+sigma1*S-0.001); % 0.001 is used for strict inequality

% Constraint 2: B(x) >= 0 when I >= 0

prog = sosineq(prog,B-sigma2*I);

% =============================

% Iterative procedure below, we interatively solve the problem, first find

% a feasible control input

% Initialize the control input

SolU1 = 0;

SolU2 = 0;



Assessing Safety for Control Systems Using Sum-of-Squares Programming 23

% Initialize the barrier function

g = [gx(1)*SolU1;

gx(2)*SolU2];

prog_barrier = prog;

expr = diff(B,x1)*(f(1,1)+g(1,1))+diff(B,x2)*(f(2,1)+g(2,1));

prog_barrier = sosineq(prog_barrier,expr);

% Solve the problem

prog_barrier = sossolve(prog_barrier,options);

% Get the resulting invariant set

SolB = sosgetsol(prog_barrier,B);

clear prog_barrier

% Initialize the polynomial multiplier

SolLambda1 = 0;

SolLambda2 = 0;

SolLambda3 = 0;

SolLambda4 = 0;

SolLambda5 = 0;

for i=1:20

% ============================

% First fix the multiplier, control input, solve for the invariant set

% ============================

% Constraint 1: dB/dx*f(x)+alpha B > 0 when B = 0

g = [gx(1)*SolU1;

gx(2)*SolU2];

prog_barrier = prog;

expr = diff(B,x1)*(f(1,1)+g(1,1))+diff(B,x2)*(f(2,1)+g(2,1))+SolLambda1*B;

prog_barrier = sosineq(prog_barrier,expr);

prog_barrier = sosineq(prog_barrier,-SolU1+limits-SolLambda2*B);

prog_barrier = sosineq(prog_barrier,SolU1+limits-SolLambda3*B);

prog_barrier = sosineq(prog_barrier,-SolU2+limits-SolLambda4*B);

prog_barrier = sosineq(prog_barrier,SolU2+limits-SolLambda5*B);

% Enlarge the area

expr = B-sigma3*SolB;

prog_barrier = sosineq(prog_barrier,expr);

% Solve the problem

prog_barrier = sossolve(prog_barrier,options);

% Get the resulting invariant set

SolB = sosgetsol(prog_barrier,B);

% Delete the temporary variable

clear prog_barrier;

% ============================
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% Then fix the invariant set, solve for the control input

prog_u = sosprogram(x);

[prog_u,u1] = sospolyvar(prog_u,monomials(x,0:3));

[prog_u,u2] = sospolyvar(prog_u,monomials(x,0:3));

g = [gx(1)*u1;

gx(2)*u2];

expr = diff(SolB,x1)*(f(1,1)+g(1,1))+diff(SolB,x2)*(f(2,1)+g(2,1))+SolLambda1*SolB;

prog_u = sosineq(prog_u,expr);

% Control limits

[prog_u,lambda2] = sospolyvar(prog_u,monomials(x,0:2));

[prog_u,lambda3] = sospolyvar(prog_u,monomials(x,0:2));

[prog_u,lambda4] = sospolyvar(prog_u,monomials(x,0:2));

[prog_u,lambda5] = sospolyvar(prog_u,monomials(x,0:2));

prog_u = sosineq(prog_u,-u1+limits-lambda2*SolB);

prog_u = sosineq(prog_u,u1+limits-lambda3*SolB);

prog_u = sosineq(prog_u,-u2+limits-lambda4*SolB);

prog_u = sosineq(prog_u,u2+limits-lambda5*SolB);

prog_u = sossolve(prog_u,options);

% Get the control input

SolU1 = sosgetsol(prog_u,u1);

SolU2 = sosgetsol(prog_u,u2);

% Get the multipliers

SolLambda2 = sosgetsol(prog_u,lambda2);

SolLambda3 = sosgetsol(prog_u,lambda3);

SolLambda4 = sosgetsol(prog_u,lambda4);

SolLambda5 = sosgetsol(prog_u,lambda5);

% Delete the temporary variable

clear prog_u;

% ============================

% Then fix the invariant set, solve for the multipler lambda

prog_lambda = sosprogram(x);

[prog_lambda,lambda1] = sospolyvar(prog_lambda,monomials(x,0:2));

g = [gx(1)*SolU1;

gx(2)*SolU2];

expr = diff(SolB,x1)*(f(1,1)+g(1,1))+diff(SolB,x2)*(f(2,1)+g(2,1))+lambda1*SolB;

prog_lambda = sosineq(prog_lambda,expr);

% Solve the problem

prog_lambda = sossolve(prog_lambda,options);

% Get the resulting polynomial multipler

SolLambda1 = sosgetsol(prog_lambda,lambda1);

% Delete the temproray variable

clear prog_lambda;

end
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