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Abstract. Phylogenetic networks, both rooted and unrooted, are a ver-
satile and invaluable tool for microbiological research. One of the many
open theoretical questions sourrounding such networks is when it is pos-
sible to orient the edges of a given unrooted network into a valid rooted
network, that is, a network in which all non-root nodes have in-degree
one (corresponding to a speciation event) or out-degree one (correspond-
ing to a hybridization event). We give a characterization based on the
degree of the input graph, showing that graphs of maximum degree three
can be oriented in linear time while orienting graphs that may contain
degree-five nodes is NP-complete.

1 Introduction

Phylogenetic networks have frequently been used to model genomic evolution
for different species and genetic variants of a population. These networks are
divided into unrooted and rooted ones [10, 14]. Unrooted phylogenetic networks
are simple graphs with labeled leaves (degree-one nodes), whereas rooted phy-
logenetic networks are rooted acyclic digraphs with labeled leaves in which the
root is the unique source, all the leaves are sinks and all other nodes either have
in-degree one or out-degree one. Different classes of unrooted and rooted phy-
logenetic networks and their connections have extensively been studied in the
past decade [5, 6, 7, 8, 16].

Unrooted trees and rooted trees are closely related. It is well known that
every unrooted tree can be converted into a unique rooted tree rooted at a
specific non-leaf node by orienting each edge away from the node. It is also known
that nearest neighbor exchange operation for unrooted trees [15] corresponds to
rotation transformation for rooted trees [12, 13].

Far fewer connections between unrooted and rooted phylogenetic networks
are known. Orienting graphs is a task that arises in many fields such as graph
algorithm design, electrical networks in physics and flow transportation networks
in operations research [1, 2, 3]. For instance, topological sorting is one of the most
common orientation used for designing graph algorithms.
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Here, we study the problem of orienting an unrooted graph into a phylo-
genetic network, that is, a (single-)rooted directed acyclic graph in which all
leaves have degree one. Phylogenetic network orientation can be considered as a
restricted version of the so-called bi-polar orientation problem. A bi-polar orien-
tation is an acyclic orientations with exactly two poles. Even and Tarjan devel-
oped a linear-time algorithm to compute a bipolar orientation of a 2-connected
graph [4]. Orientation of degree-3 graphs into rooted phylogenetic networks with
special properties have been studied by different groups [8, 9, 11].

In this paper, we first prove that any unrooted binary phylogenetic network
can always be oriented into a phylogenetic network rooted at any non-leaf node
in linear time, provided that the root can be placed unambiguously. This is done
by a reduction to the st-Numbering problem. We show that it is NP-complete to
determine whether or not an unrooted phylogenetic network with the maximum
degree five can be oriented into a rooted one.

2 Preliminaries

Let G be a simple graph with node set V and edge set E. The set of neighbors of
a node u is NG(u) := {v | uv ∈ E} and dG(u) := |NG(u)|. If clear from context,
we omit the subscript. If dG(u) = 1, then u is called a leaf of G and we use L(G)
to denote the set of all leaves of G.

For a node set X, define G −X to be the subgraph of G that has the node
set V \X and the edge set {xy ∈ E | x, y /∈ X} and abbreviate G−{v} =: G−v
as well as G− (V \X) =: G[X]. A cut-node of G is a node v such that G− v has
strictly more connected components than G. Each cut-node is associated with at
least one tripartition (X, {v}, Y ) of V (G) such that no edge of G has endpoints
in both X and Y . We say that v separates X and Y in G.

Each maximal C ⊆ V (G) such that no node of G[C] is a cut-node in G[C] is
called block (note that some nodes of G[C] might be cut-nodes in G). Since the
graph with a single node is considered to be connected, |C| ≥ 2. If |C| = 2, then
C is an edge which is called a bridge of G and C is called trivial in this case.
Any node v of C is said to be private in G if all neighbors of v in G are in C.
Further, two blocks C and C ′ may overlap, that is, C ∩ C ′ 6= ∅. Observe that
the nodes that appear in at least two blocks are exactly the cut-nodes of G. In
other words, a node of G is a cut-node if and only if it is contained in two or
more blocks.

Let D be a digraph with node set V and arc set A. Depending on context,
we use uv to denote the node set/edge {u, v} or the arc (u, v). For nodes u and
v with uv ∈ A, u is called a predecessor of v and v is called a successor of u.
The sets of the predecessors and successors of a node v are denoted by Nin

D(v)
and Nout

D (v), respectively and their respective sizes are denoted by degin
D(v) and

degout
D (v), respectively. Additionally, if there is a directed path from u to v, then

u is said to be an ancestor of v and v a descendant of u, written as v <D u.

Definition 1. A digraph D is a phylogenetic network if (i) D has a unique
node of in-degree 0 (called the root), (ii) all nodes have either in-degree at most
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one (called tree nodes) or out-degree exactly one. Nodes with out-degree zero are
called leaves and nodes that are not tree nodes are called reticulations.

An orientation of a graph G is a digraph D obtained from G by assigning a
direction to every edge of G. An orientation D of G is called phylogenetic (or
valid) if D is a phylogenetic network. Although all undirected graphs can be
oriented in an acyclic manner, not all acyclic digraphs are phylogenetic networks.
Thus, it is interesting to identify and characterize which graphs can be oriented
into phylogenetic networks. This leads to the following problem.

Phylogenetic Network Orientation
Input: an undirected graph G
Question: Does G admit a phylogenetic orientation?

Any acyclic digraph D admits a linear layout σ (called topological order) of its
nodes such that all ancestors of a node v in D precede v in σ (implying that all
descendants of v in D succeed v in σ). Likewise, each linear order of the nodes
of G corresponds to a DAG-orientation of G and we call an order valid if it
corresponds to a valid DAG-orientation. For a node or a set of nodes X, we let
(X) denote any sequence on X. Note that paths in (di)graphs can be viewed as
linear orderings of (a subset of) their nodes. Further, for each cut-node v in G
separating the node set X from the node set Y , there is a topological order in
which Y occurs consecutively.

3 Properties of Phylogenetic Network Orientations

In the following, we list some properties of network orientations for graphs. To
this end, suppose that G can be oriented into a phylogenetic network D.

First, define the graph B(G) to be the graph whose nodes are the blocks of G
and blocks C and C ′ are connected by an edge if and only if they overlap, that
is C ∩ C ′ 6= ∅. Then, by maximality of blocks, B(G) is acyclic. Thus, we will
refer to B(G) as the block tree of G. As B(G) is a tree, each block C has at most
one node with parents in another block and we call this node the block-root of
C with respect to D.

Second, observe that all leaves of D have degree one in G and thus appear
in distinct trivial blocks of G. Further, we have the following fact.

Lemma 1. Let G be orientable into a phylogenetic network D. Let z be a cut-
node of G separating the node set X from the node set Y such that L(G) ⊆ X.
Then, Y contains the root of D.

Proof. Since z is a cut-node in G, it is easy to see that D admits a topological
order σ in which the nodes in Y appear consecutively. Let u and v be the
respective first and last nodes of Y in σ and recall that u and v have degree
at least two in G. Now, if z <σ u, then all neighbors of v in G precede v in σ,
implying that v has out-degree zero but in-degree at least two inD, contradicting
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Fig. 1. Two graphs that cannot be oriented into phylogenetic networks. The left graph
contains two or more non-trivial blocks. The right graph is a pseudo d-regular graph
with two leaves.

Definition 1. Thus, z >σ v, implying that all neighbors of u in G succeed u in σ,
that is, u is the root of D. ut

By Lemma 1, non-trivial blocks with at most one cut-node must contain the
root of any valid phylogenetic orientation. Therefore, we call such blocks root-
forcing. In particular, if a graph has multiple root-forcing blocks, then it cannot
be oriented into a phylogenetic network (see Figure 1 (left)). Thus, if G can be
oriented into a phylogenetic network, then each leaf C of B(G) is either trivial
or root-forcing.

Third, we observe that each cut-node of G has parents in at most one of its
blocks.

Lemma 2. Let G be orientable into a phylogenetic network D and let v be a
node of G. Then, all parents of v in D are in the same block of G.

Proof. First, suppose v is a cut-node as, otherwise, the lemma trivially holds.
Let u1 and u2 be parents of v in D. Since both u1 and u2 appear before v in any
topological order σ of D, both are reachable from the root in D − v. Hence, u1
and u2 are connected in G− v and biconnected in G. ut

Lemma 2 implies that the block-root of any non-trivial block is a tree node.
Lemma 2 further implies that, if a graph G can be oriented into a phylogenetic
network D such that the root r of D is a leaf of G, then r is the only parent
of its child u and, thus, reversing the arc ru results in a valid orientation whose
root is u. Thus, if G contains more than two nodes and we can orient G into a
phylogenetic network D, then we can assume that D is rooted at a non-leaf.

Finally, observe that every node v that is neither a leaf nor the root of D
must have at least one parent and at least one child. However, by Definition 1(ii),
it cannot have more than one parent and more than one child at the same time.

Observation 1 Let D be a valid DAG, let v be a node of D with a parent u
and a child w. Then, either u is the only parent of v or w is the only child of v.

In the following, a graph or digraph is called pseudo d-regular if each node has
either degree one or degree d. Then, we can observe restrictions on the number
of reticulations, tree nodes, and leaves of such graphs.
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Proposition 1. Let G be a graph with ` leaves in which each non-leaf node
is of degree d ≥ 3. Let G be orientable into a phylogenetic network D with r
reticulations and t tree nodes. Then, (d− 2)(t− r) = `− 2.

Proof. Since the root has out-degree d and each non-root tree node has out-
degree d− 1, the total out-degree is

d+ (t− 1)(d− 1) + r = (d− 1)t+ r + 1 = td+ r − t+ 1.

Since each leaf has in-degree one and each reticulation has in-degree d − 1, the
total in-degree is

r(d− 1) + t− 1 + ` = rd+ t− r + `− 1.

Hence, td+ r − t+ 1 = rd+ t− r + `− 1, that is, (d− 2)(t− r) = `− 2. ut

We can combine Proposition 1 with the fact that the sum of degrees in G is
twice the number of edges in G, that is, `+ d(t+ r) is even.

Corollary 1. Let d ≥ 3 and let G be a pseudo d-regular graph with ` leaves that
can be oriented into a phylogenetic network. Then (a) ` ≥ 2 and (b) ` is odd ⇒
d and t − r are odd (that is, |V (G)| is even). Further, if ` = 2, then t = r and
t+ r + ` = |V (G)| is even.

Corollary 1 implies that no pseudo d-regular graph with two leaves can be ori-
ented into a rooted phylogenetic network if there is an odd number of nodes (see
Figure 1 (right)).

4 Orientation Into a Binary Phylogenetic Network

In the following, we assume that the maximum degree in the input graph G is
three. As proven in Section 3, if G has more than one root-forcing block, we
correctly conclude that G cannot be oriented into a phylogenetic network. In
the following, we show that a valid orientation D can be computed in all other
cases. To this end, we select the root of D as follows: if G contains a root-forcing
block C, then select a private node of C, otherwise select any node of G. This
fixes an orientation of the block-tree B(G) and, thus, an orientation of all bridges
of G. Now, the problem reduces to finding a valid orientation in a graph G that
has a single non-trivial block and in which a single node r is annotated to be
the root.

Algorithm 1 produces a topological ordering σ that corresponds to a valid
orientation of G (and this orientation can trivially be obtained from σ and G).
Herein, the nodes x and y returned in line 3 can be found using breadth-first-
search (BFS) or depth-first search (DFS) from the root r and the path p returned
in line 4 can be found using BFS/DFS from y. Note that p always exists since
G is biconnected and, by minimality of p, only its last node is in V (σ) in this
iteration. Thus, no node is added twice into σ, implying that σ is a linear order
of V (G).
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Algorithm 1: Compute a valid topological ordering σ for graph G
containing at most one non-trivial block such that σ starts with r.
1 σ ← any path in G from r to a node in L(G);
2 while V (σ) \ L(G) 6= V (G) \ L(G) do
3 compute a minimal (wrt. σ) node x in σ with a neighbor y /∈ V (σ) ∪ L(G);
4 p← any minimal y-V (σ)-path in G− x;
5 remove the last node of p;
6 insert (p) right behind x in σ;

7 append all nodes of L(G) \ V (σ) to σ in any order;

Lemma 3. The digraph corresponding to the result σ of Algorithm 1 is a valid
orientation of G with root r.

Proof. Let D denote the digraph corresponding to σ and let z ∈ L(G) be the
last node of the r-L(G)-path that σ is initialized with in line 1 of Algorithm 1.

We show that r ≤D y ≤D z for all y ∈ V (σ) at all times in the execution
of Algorithm 1, implying that all nodes except r, z, and L(G) have in- and
out-degree at least one in D which implies validity since the maximum degree
in G is three. The proof is by induction on the iteration of the while-loop in
Algorithm 1. Since σ is initialized with an r-z-path, this is true before the first
iteration. For later iterations, each node z added to σ is part of a path originating
in a node x ∈ V (σ) and terminating in a node x′ ∈ V (σ) with x 6= x′. By
induction hypothesis, r ≤D x <D y <D x′ ≤D z, implying the claim. ut

Regarding the running time, the nodes x for each iteration can be found in linear
amortized time by employing one global DFS while finding the paths p requires
a linear-time DFS on each iteration.

Corollary 2. Given a graph G with maximum degree three, one can find a valid
network orientation of G in O(|V (G)|2) time, or correctly conclude that such an
orientation does not exist.

To solve Phylogenetic Network Orientation in linear time on pseudo
3-regular graphs, we reduce to computing st-numberings, which can be done in
linear time [4]. Herein, an st-numbering of a biconnected graph H containing
nodes s and t is a permutation π of V (G) starting with s and ending with t such
that each v ∈ V (H) \ st has a predecessor and a successor (wrt. π) in N(v).

Construction 1 Let G be a connected graph with at most one root-forcing block.
Let r be a node of G such that, if G has a root-forcing block C, then r is private
in C. Then, add new nodes s and t as well as edges sr, st, and vt for each
degree-one node v of G.

Lemma 4. Let H be a graph with nodes s and t resulting from the application
of Construction 1 to a connected graph G. Let π be an st-numbering of H and
let σ be the result of removing s and t from π. Then, H is biconnected and σ is
a valid ordering for G.
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Proof. First, assume that H has a cut-node u separating the node set X from
the node set Y . Clearly, u /∈ st∪L(G) since G is connected. Hence, st∪L(G) ⊆ X
without loss of generality (implying that u is also a cut-node in H−{s, t} = G).
But then, there is a non-trivial block C of H − X = G − X that is a leaf in
B(G) and C contains a single cut-node of G. However, since L(G) ⊆ X, C is
root-forcing in G. Thus, r is a private node of C in G and, thus, we know that
the edge sr in H does not exist in H −u and, thus, r = u, contradicting u being
a cut-node in G.

Second, we show that σ is a valid ordering for G. To this end, letD denote the
DAG corresponding to σ and let v be a node of G. Since π is an st-numbering of
H, we know that v has a predecessor u and a successor w (wrt. π) in H. Now, if
u = s, then v = r by construction, implying that r is the only root of D. Further,
if w = t, then v is a leaf of G, implying that u is the only neighbor of v in G
and, thus, v has in-degree one in D. In all other cases, u and w exist in D and,
since G has maximum degree three, v has at most one additional neighbor x in
G. If x <π v, then v has out-degree one in D and if x >π v, then v has in-degree
one in D. In either case, Definition 1 holds.

Corollary 3. Given a graph G with maximum degree three, one can find a valid
network orientation of G in O(|V (G)|) time, or correctly conclude that such an
orientation does not exist.

5 NP-completeness on Arbitrary Graphs

In this subsection, we prove the NP-completeness of the Phylogenetic Net-
work Orientation problem for graphs that may contain nodes of degree five
by a reduction from the Not-All-Equal 3-SAT (NAE3SAT). Recall that given a
collection of 3-literal clauses over a set of Boolean variables, the NAE3SAT asks
a truth assignment to the variable such that the three values in each clause are
not all equal to each other.

To this end, we call a node r in G pseudo-root with parent u if all valid DAG
orientations of G contain the arcs u→ r and r → x for all x ∈ N(r)− u.

Construction 2 (See Figure 2) Let ϕ be an instance of Not-All-Equal
3-SAT with variables X := {x1, x2, . . . , xn} and clauses C := {C1, C2, . . . , Cm}.
Then, construct the incidence graph (V,E) of ϕ, add a triangle (r0, r1, r2), add
a node r connected to r0, and make all xi adjacent to r. Finally, add a new leaf
yi to each xi.

Lemma 5. Let G be the graph constructed from an instance formula ϕ in Con-
struction 2. Then,
(a) r is a block-root for all valid DAG-orientations of G and
(b) ϕ has a NAE-satisfying assignment if and only if G has a valid DAG-

orientation.

Proof. (a) & (b ⇐): Let D be any valid DAG-orientation of G and let σ be a
topological order of D. By Lemma 1, σ starts with ({r2, r1}, r0, r), implying (a).
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r

x0 x1 x2
x3

C0 C1 C2 C3 C4

Fig. 2. Illustration of Construction 2 for ϕ = {x0x1x2, x1x3, x0x3, x0x2, x1x2x3}.

Then, by Observation 1, each xi either precedes or succeeds all its adjacent
clause nodes in σ. We define an assignment β by setting β(xi) := 0 in the former
case and β(xi) := 1 in the latter case. Towards a contradiction, assume that β
does not NAE-satisfy a clause Cj . If β(xi) = 0 for all variables xi ∈ Cj , then
Cj precedes all its incident variable nodes in σ. If β(xi) = 1 for all variables
xi ∈ Cj , then Cj succeeds all its incident variable nodes in σ. In both cases, Cj
is invalid.

(b⇒): Let β be an assignment for ϕ such that all clauses are covered by both
β−1(0) and β−1(1). We show that the DAG-orientation D corresponding to the
order σ = (r2, r1, r0, r, β

−1(1), C, β−1(0), L(G)) is valid. We prove the properties
of Definition 1: For (i), note that all nodes except r2 have a predecessor before
them in σ since β−1(1) covers C. For (ii), suppose there is some node v in D
with both in-degree and out-degree at least two. Clearly, v /∈ {r2, r1, r0, r} by
construction and v /∈ C ∪ L(G) since v has degree at least four. Thus, v = xi
for some i. However, if xi ∈ β−1(1), then r is the unique parent of xi in D and
if xi ∈ β−1(0), then yi is the unique child of xi in D, contradicting xi being
invalid. ut

Degree Reduction. In order to produce graphs of maximum degree five, we can
first use a version of Not-All-Equal 3-SAT where each variable occurs at
most thrice (this can be achieved using clauses of the form xixj which is equiv-
alent to xi ⇐⇒ xj so xj can be used as an alias for xi). This leaves the node
r with a high degree of n + 1 in the result of Construction 2 and we reduce its
degree using the following rule.

Rule 1 Let r ∈ V (G) be a pseudo root with parent u and let v, w ∈ N(r) − u.
Then, add a new node x with two leaves ` and `′ and replace the edges rv and
rw by rx, xv and xw.

Lemma 6. Let G′ be the result of applying Rule 1 to G. Then, (a) r and x
are pseudo roots with parents u and r, respectively, in G′ and (b) G has a valid
DAG orientation if and only if G′ has.
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Proof. (a) & (b⇐): Let D′ be any DAG-orientation of G and let σ be a topolog-
ical order of D. By Lemma 1, σ starts with ({r2, r1}, r0, r), implying (a) for r.
Since ` and `′ are leaves, we know that D′ contains the arcs x` and x`′. By
Observation 1, D′ also contains the arcs xv and xw, implying (a) for x. Let D
be the result of removing x, ` and `′ and adding the arcs rv and rw and note
that D is an orientation of G. Further, since r <D′ v and r <D′ w, we know
that D is a DAG and D is valid since r is a pseudo root by Lemma 5(a) and all
other nodes have the same in- and out-degree as in D′.

(b ⇒): Let D be a valid DAG for G and let σ be a topological order of D.
Since r is a pseudo root, we have u <σ r <σ {v, w}. Let D′ be the result of
replacing the arcs rv and rw by the arcs rx, xv, xw, x`, x`′ and note the D′
is an orientation for G′. Further, D′ admits a topological order π which is the
result of adding x right after r and adding ` and `′ in the end of σ. To show that
D′ is valid, note that r is a pseudo root by (a), x is valid since r is its unique
predecessor, ` and `′ are valid leaves, and the in- and out-degrees of no other
node change compared to D. ut

With Rule 1, we can reduce the maximum degree in the graph produced by
Construction 2 to five.

Corollary 4. It is NP-hard to decide if a graph G with maximum-degree five
has a valid ordering.

Noting that in the proof of Lemma 5, when G has a valid DAG-orientation,
the resulting DAG is actually a tree-child network if the part above r is ignored.
Since each variable xi is a tree node if and only if the corresponding variable is
true, thus, r has at least one child that is a tree node. Since each clause contains
at least one true variable, each clause vertex Ci has at least one child that is a
tree node. Finally, every variable vertex xi has a leaf child. Therefore, we have
the following fact.

Corollary 5. It is NP-hard to decide if a graph with maximum-degree five with
a designated node r can be oriented into a tree-child network rooted at r.

6 Conclusion

In this work, we considered the problem of orienting the edges of a given graph G
such that the result is a valid phylogenetic network. It turns out that, if the root
is not forced into different components, then this is always possible if G contains
no node of degree at least four and a valid orientation can be computed in linear
time in this case. We further showed that the problem becomes NP-hard if G
may contain nodes of degree five, leaving open the case that the maximum degree
in G is four. By providing some general observations about positive instances of
the orientation problem, we lay the foundation for future work in this direction.
In particular, for graphs of degree larger than three, it is no longer sufficient to
be able to unambiguously place the root, as shown in Figure 1. Is there maybe a
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finite list of forbidden substructures characterizing degree-four graphs that can
be oriented into phylogenetic networks?

Finally, we are interested in orientations of G into certain classes of networks.
Note that, even for graphs of maximum degree three, it may not be easy to orient
G into a network that is tree-child, tree-based, reticulation-visible, etc.
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