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Abstract

The paper proves existence of stationary solutions to the Boltzmann equa-
tion in a bounded set of R? for given indata, hard forces and truncation in
the collision kernel for small velocities and close to parallel colliding veloc-
ities. It does not use any averaging in velocity lemma and uses techniques
from the discrete velocity stationary case recently developped in [7]-[8]-]9],
where the averaging in velocity lemmas are not valid.

1 Introduction.
Consider the stationary Boltzmann equation in Q C R?,

v-V.f(z,0) =Q(f, f), 2z€9Q, veR? (1.1)

where Q is a strictly convex domain with C' boundary. The nonnegative
function f represents the density of a rarefied gas with z the position and v
the velocity. The operator () is the nonlinear Boltzmann collision operator
with angular cut-off and a truncation for small velocities and close to parallel
colliding velocities,

Q(fa f)(Z,’U) = /R2 /81 Xn(’U,’U*,w)B('U — U*aw)(f(z,v,)f(z,v;)
— f(z,0)f(z,v4))dvsdw.  (1.2)



V+Ux [v—v.|

/ V+Vx |U*U*| ! _
L+ S ow, v = 59 — S5 w. For

S is the unit circle in R2, v =
n €]0, 1] and fixed,

o000 0) =0 3 o] <1 or [0 <5 or ] <7 or ] <,
Xn(v,v5,w) =1, else. (1.3)

—

Here (u,v) denotes the angle between vectors u and wv.
The function B is the kernel of the classical nonlinear Boltzmann oper-
ator for hard forces,

v —v,]Pb(w) with B € [0,2], be LL(SY), bw)>c>0 ae (1.4)

From now on denote XnB by B. The inward and outward boundaries in
phase space are

T ={(z,v) €I x R?; v-n(z) >0},
o0 ={(z,v) € N xR?; v-n(z) <0},

where n(z) denotes the inward normal on 9f2.
Given a function f;, defined on 90T, solutions f to (1.1) are sought with

f(z,0) = fo(z,0), (z,v) € oNT. (1.5)
z,v) € Q x R?, denote by

)

) =inf{s > 0; (2 — sv,v) € 90T},

) =inf{s > 0; (2 + sv,v) € 0Q" },

2,0) =2z — st (z,v)v, 2 (2,0)=2z+s (z,0)v. (1.6)

Solutions are understood in mild form, i.e.

st (z,v)
fo) = fi o)+ [ QU () + s,
0
a.a. (z,0) € QA xR% (1.7
The main result of the paper is the following.

Theorem 1.1 Let f, be a non negative measurable function such that

/89+ v-n(z)(1+v* +1n fy) fo(z,v)do(2)dv < oo. (1.8)

Then equation (1.1) has a non negative solution satisfying the boundary
condition (1.5).



For the stationary Boltzmann equation the control of mass and entropy is not
straightforward, contray to the evolutionary case. Existence results in the
slab, i.e. one-dimensional spatial and three-dimensional velocity frame, to-
gether with an invariance with respect to the two remaining space variables
of the distribution function were first established for the nonlinear Boltz-
mann equation. Stationary integrable solutions to the Boltzmann equation
in a slab have been proven in [3], [4] and [5], for different boundary con-
ditions, bounds on the entropy production term and a weighted moment
of the distribution function giving control of the entropy. For higher space
dimension, stationary unsigned solutions close to Maxwellians were con-
structed in convex domains [14], [15]. In [12], the existence and uniqueness
of the stationary solution to the Boltzmann equation close to a uniform
Maxwellian have been proven in a bounded domain of R”?, 1 < n < 3, for
diffuse reflection boundary conditions. Its hydrodynamic limit to a solution
to the steady incompressible Navier-Stokes-Fourier system has been per-
formed in [13]. Existence of stationary solutions to the Boltzmann equation
in a bounded domain of R™, n > 1, and given indata has been proven in
[2]. There, scaling arguments from [1] were used. In this paper, we prove
existence of solutions to the stationary Boltzmann equation in the plane
with the help of the entropy production term and the construction of ’good’
characteristics where the distribution function is bounded and 'bad’ charac-
teristics of arbitrarily small measure. This is inspired by recent results for
discrete velocity models for the Boltzmann equation where averaging lem-
mas do not hold and new arguments are required. In [7], [8], [9] a weaker
property than L' compactness of averages in velocity, i.e. the L' compact-
ness of the integrated collision frequencies of a sequence of approximations
is proven. It strongly depends on the two-dimensional spatial dimension. In
this paper we use the tools developped in [7], [8], [9] and do not use any
averaging lemma.

Work is in progress to fill a gap in the proof of Lemma 4.1 of [10] that uses
these techniques in the discrete velocity evolutionary case.

The construction of a first sequence of approximations with damping and
convolutions is performed in Section 2. In Section 3, the damping and convo-
lutions are removed, leading to a more involved sequence of approximations.
In Section 3, the phase space is split into 'good’ characteristics where the ap-
proximations are uniformly bounded and ’bad’ characteristics of arbitrarily
small measure. In Section 4, the L' compactness of the integrated collision
frequency sequence is proven. The passage to the limit in the mild form
satisfied by the approximations is performed in Section 5.



2 First approximations.

In the paper we denote by ¢ constants that do not depend on approximations.
To emphasize their dependence on the indatum f;, we sometimes denote
them by c,. We use the following approximation scheme. Let (Ba)aco1];
be a family of C°° regularizations of B. Let (¢a)ae)o,1f be mollifiers defined
from ¢ € C§°(R*) such that

o(z,v) =0 for |z]| > 1or |v] > 1, /(p(z,v)dzdv =1,

by va(z,v) = éap(i, 2). Outside the boundary the function to be convolved
with pq, is continued in the normal direction by its boundary value. Let fig

be a smooth mollifier on A2 x R? in a ball of radius % Denote by

for = (min{ fo, k}) * iy,

Lemma 2.1
For every (o, k) €]0, 1[xN*, there is a non negative solution F' to

F Fxp,

F+ 'VZF:/BQ o .
« v (1_1_5(2 U)l-l-F*,f“(ZU)
F F x @, 9
_ )P ) dvedw,  (z,0) € QX RZ, (2.1
e Lo = O0) LRy (2.1)
F(z,v) = fix(z,v), (z,v) € 00T, (2.2)

Proof of Lemma 2.1.

It follows the lines of the proofs in Section 2 in [8] that we refer to for details.
Let (o, k) €]0,1[xN* be given. Let K be the closed and convex subset of
L' (92 x R?) defined by

K ={feLL(QxR?; /f(z,v)dzdv < 1 /89+ v-n(z2)fo(z,v)do(z)dv}.

(%

Define the map 7 from K into K by T(f) = F, where F is the solution to

F J * o
B( z,v 2,V
oo Do (T e o)

aF(z,v)+v-V.F(z,v) :/R

F a
1L E (z,v)li*ff% (z,m))dv*dw, (z,v) € QA x R?, (2.3)
3 k
F(z,v) = fur(z,v), (z,v) €00QT. (2.4)



F = T(f) can be obtained as the limit in L1 (Q x R?) of the sequence
(F9)4en defined by FO = 0 and
P4 f*u
Fatt 'VFq“:/ B( v (2,0
a +wv z —_ a 1_'_%(3”)1_’_10*]5&(2”*)
Fatl
_ 77 (2,0) f*f/iz (z7v*))dv*dw, (2.5)
14+ B0 e

FI(z0) = fin(z,0), (z,0) € 90T, g € N. (2.6)
In exponential form FIt! can be written as

Fqul(Z v) = fbk(2+( v), ,U)efas*(z,v)

_ f_s+(z ) 1+Fq (1Z+SU 2 J Ba :?i% (z+sv,ux)dusdy ds
*
/ / — g (2 + s, v)f%(z—i—sv,vfk)eo‘s
—st(z,v) 1+ 7Ma
f*#a « du.d~y d
efo I (Z+m o J Ba 1+f — (z+rv,ux)dusdy dr (27)

The sequence (F'%),ey is monotone. Indeed, F 0 < F', by the exponential
form of F1. If F9 < F9t1 then it follows from the exponential forms of
Fatl and F9t2 that F9t! < F9+2. Moreover,

a / FIT (2, v)dzdv < / v-n(2) for(z,v)do(z)dv
o0+

/B Fa—patt [ pa

Z,v 2, Uy )dzdvdvdw,
T 1+—f*,ffa( )

so that
1
/F‘”l(z,v)dzdv < / v-n(z)fo(z,v)do(z)dv, q¢€N. (2.8)
@ Joat

By the monotone convergence theorem, (F9),ecy converges in L1(2 x R?)
to a solution F' of (2.3)-(2.4). The solution of (2.3)-(2.4) is unique in the
set of non negative functions. Indeed, let G be a non negative solution of
(2.3)-(2.4). It follows by induction that

F1<dE, geN (2.9)



Indeed, (2.9) holds for ¢ = 0, since G > 0. Assume (2.9) holds for g. Using
the exponential form of F4+! implies F97! < G. Consequently,

F<G@. (2.10)

Moreover, subtracting the equation satisfied by G from the equation satisfied
by F, and integrating the resulting equation on Q x R? leads to

a/ (G — F)(z,v)dzdv + / |v-n(z)|[(G — F)(z,v)do(z)dv = 0.
OxR2 -
(2.11)

It results from (2.10)-(2.11) that G = F.

The map 7 is continuous in the L'-norm topology (cf [6] pages 124-5).
Namely, let a sequence (f?),en in K converge in L'(Q x R?) to f € K. Set
F% = T(f?. Because of the uniqueness of the solution to (2.3)-(2.4), it is
enough to prove that there is a subsequence of (F'?) converging to F' = T (f).
Now there is a subsequence of (f7), still denoted (f7), such that decreasingly
(resp. increasingly) (G9) = (sup,», f") (vesp. (g9) = (inf,>, f")) converges
to f in L'. Let (S9) (resp. (s9)) be the sequence of solutions to

S GY * g,
@S9+ v-V,81 = /Ba(1 - %(zﬂ/)l e (2, v})
54 9% * pa
- 57 (2,0) o (2, 04) | dvsdw (2.12)
145 14 ke )
S(z,v) = for(z,v), (z,v) € 90T, (2.13)
q q Sq !/ gq * Ha /
as?+v-V,s1 = Ba(l_i_i(z,v)l_l_ngua(z,v*)
54 GY * i,
- -7 (2,0) ——(2,v4) | dvsdw, (2.14)
14 % 14+ qu“a )
51(z,v) = fur(z,v), (2,v) € 0Q". (2.15)

(S?) is a non-increasing sequence, since that holds for the successive iterates
defining the sequence. Then (S9) decreasingly converges in L' to some S.
Similarly (s?) increasingly converges in L! to some s. The limits S and s
satisfy (2.3)-(2.4). It follows by uniqueness that s = F' = S, hence that (F'9)
converges in L! to F.

The map 7 is compact in the L'-norm topology. In [8] an averaging lemma
was used. Here we replace it by the following argument. Let (f;);en be a



bounded sequence of L' and Fj = T'(f;). Denote by Fj = +FZFTZ’ fi = 1}:’}?‘:@ ,
3 k

by B(0,V) the open ball in R? centered at the origin and of radius V > 0,
and by I(a, 3) the interval with end points («, 3) € R2. (F})en is the sum
of

0 ~ ~
(fbk(z+(zv U)? U) + / /Boz-Fl(Z + sv, ’U/)fl(z + sv, U;)dv*de8> )
—st(zw) leN*

(2.16)

and

0 ~
< — / /Baﬁ’l(z + sv,v) fi(z + sv, v*)dv*dwds) . (2.17)
—st(z,v) leN*

In order to prove that (2.16) is compact in L', it is sufficient to prove that
for any V' > 0 and p €]0, 1],

0 ~
(/ / BoFy(z + sv,v) fi(z + sv, vi)dmdwds) ,
—st(z,v) JB(0,V)xA, leN*

(2.18)
is compact in L' (2 x B(0,V)) where
Ay ={we s [(0,0) > pand |7 — (v,w)] > p}. (2.19)

Indeed, noticing that v’ is parallel to v if and only if w = :l:ﬁ, and expressing
w by its angle with the vector ﬁ, the integral over Q x B(0,V) of

0 ~
/ / BiFy(z + sv,v) fi(z + sv,v)dv.dwdsdzdv
—sT(z,v) J B(0,V)x Ag,

is smaller than ck?V 2. The sequence (2.18) is uniformly bounded in
LY(QxB(0,V)). Let us prove that it is uniformly equiintegrable with respect
to the 2 variable. By the restriction to A, in (2.18), any (v,v’) € R?* x R?
considered when integrating the absolute value of (2.18) over 2 x B(0,V)
forms a basis in R2. For any h € R?, denote by (a(h),b(h)) its coordinates
in this basis. Split the difference of (2.18) between (z,v) and (z + h, v) into
the three following terms,

/ / BoEy(z 4+ h+ s5v,0") fi(z + h + sv,v.)dv.dwds,
I(—st(z,0),—sT(z+hw)) JA,

7



0 ~ ~
/ (/ BoFi(z 4+ h+ sv,V') fi(z + h + sv,v,)dv.dw
Ap

—st(z,v)

— / BoFi(z 4 b(h)v' + sv,v') fi(z + b(h)V' + sv, v;)dv*dw) ds
Ap

/ / BoEy(z 4+ h + sv,0") fi(z + h+sv,v;)dv*dw)ds,
I(—st(z,v)—a(h),—st(z,v))UI(0,a(h)) Apu

/0 / BoFi(z + b(h)v' + sv,9") (fi(z + b(R)v + sv,v))
Ap

—st(z,v)

— filz + sv, v;))dv*dw) ds,

that tend to zero h — 0 when integrated over Q x {v € R?;|v| < V'}, and

0
/ / B (Fi(z + b(h)v' + sv,v") — Fi(z + sv,0"))
—st(zw) JA,

fi1(z + sv,vl)dv.dwds. (2.20)

Notice that the integrand in the first line of (2.20) is a directional derivative
in the direction v'. Consequently, (2.20) is equal to

0 ~
/ / BoFy(z + 50,0") fi(z + sv, v )e ()
—st(zw) JA,

( ( /b(h) [ Bafi(z + sv 4 v’ ws) dusdy
exp(—
P 0 (1+%)(z+sv+rv’,v’)

dr) — 1) dv.dwds

0 B b(h) B B
—|—/ / Bafl(z—i-sv,v;)(/ /Baﬂ(z+sv+rv’,V’)fl(z+sv—i—rv’,‘/;’)du*dfy
—st(z,v) JAL 0

e?r=b(1) exp (- /b(h) I Bo fi(z + sv 4t u ) dudy
r (1+%)(z+sv+tv’,v’)

dt)dr ) dv. dawds.

(2.21)



Here, V' (resp V) denotes v/ — (v' — uy, )y (resp. us + (v — uy,7y)). (2.21)
tends to zero when h — 0 when integrated over 2 x B(0,V') in absolute
value since all integrands are uniformly bounded and the domains of inte-
gration are of order h. This ends the proof of the uniform equiintegrability
of (2.18) w.r.t. the z variable. The proof of its uniform equiintegrability
w.r.t. the v variable is analogous. The L! compactness of (2.17) can be
proven analogously. Hence the sequence (Fj);en+ is compact in L!. And so,
the Schauder fixed point theorem applies to 7, leading to a solution F' of
(2.1)-(2.2). |

3 Removal of the damping and convolutions.

For any k € N* denote by Q,Jg (resp. Qg, resp. vg(F), resp. DF) the
approximate gain term (resp. collision operator, resp. collision frequency,
resp. entropy production term) defined by

F(' F(v]
Qf (F,F) = / (;’ ) (;i*), v, dw, (3.1)
R2xst 14 2y Pl
1 F (v,
W(F)(0) = — / B (F(v) dv.d, (3.2)
1+ 52 1+ =
Qr(F, F) = Q (F,F) — Fuy,(F),
Fk/ Fk:/ Fk Fk
Dk(Z,’U) = / B( Fk/ *Fk’ - Fk *Fk)
R2xst 1+ -1+ 1+ 514+ 5

k Fk
SRR+ )+ )

]
k! Fk/
FERF1+E£5)(1+ 25)

dvdw . (3.3)

For any (a, k) €]0, 1[xN*, denote by F'** the solution to (2.1)-(2.2) obtained
in the previous section. (Fa’k)ae]o,l[ is weakly compact in L} (€2 x R?) since
it is bounded by a multiple of k2. Denote by F¥ the limit for the weak
topology in Llloc(Q x R?) of a converging subsequence when o — 0. In the

next lemma we prove that for a subsequence, the convergence is strong in
L1(92 x R?).

Lemma 3.1
There is a sequence (0y)qen tending to zero when ¢ — +oo, such that when



q — 400, (F*),cn  strongly converges in L'(Q x R?) to F*. Moreover,
F* is a solution to

v-V,F* = Qu(FF F*), (2,v) € Q x R?, (3.4)
Fk(z’v) = fbk(zav)v (Z,U) € 8Q+7

and
/(1 + v F* (2, v)dzdv < o, (3.6)
/Dk(z,v)dzdv <¢, keN-. (3.7)
/ F¥(z,0) | v-n(z) | do(z)dv +/ FFInF(z,0) | v-n(2) | do(z)dv
99~ 90—, Fr<k
k
+ ln/ F* |l v-n(z) | do(2)dv < . (3.8)
2 Joa— Fr>k

Proof of Lemma 3.1
Consider the approximation scheme (f**),en of F' ak

e =o, (3.9)
af Pt oy v, frtl = /Ba(1 _}:O;Zk (2,0") 1204;’;;,]{:/1 (2,0})

_ 1 —{a}p:;;l (z,v) 167;;{& (z,m))dmdw, (3.10)
fOrt(z,0) = fr(z,0), (z,0) €9QT, peN. (3.11)

fol is explicitly given in terms of F®F. Tt follows from the exponential
forms of F** and f®! that

Fok < gal 0 €0, 1]

The sequence (f*”),>2 is constructed as follows. Denote by S the map from
(L*(Q2 x R?))? mapping (X, Z) into W = S(X, Z) € L' (92 x R?) solution to

Fa,k Fa,k
aW +v -V, W = /Ba(ak(z,v')*'ua
1+ £ 1+

W 7 a
(z,0)—L

B X Z% ey
1+ 1 =2fe

W(z,v) = for(z,v), (2,v)€dNT.

Fa’k*ﬂa (Z’ U>/k)
k

(z,’u*))dv*dw,

10



Denote by

fa,l,O — S(O, f(;y,l)v fa,l,'r — S(fa’l’T_l,fa’l),
Fa7k’0 _ S(O,Fa7k), Fa,k,r _ S(Fa’k7r_1, Fa,k)’ r e N*.

First,
fa,l,O < Fa,k,D

Then the sequence (f®'7).cn (resp. (F®*7).cy) is increasing with limit
f2 (vesp. FOF). It follows from fo!" < FokT r ¢ N, that

Fo2 < ook, (3.12)
Let

FO20 . S0, fO2),  fORT = S(faRrl fa2) e NF
It follows from (3.12) that

Fa20 > ko,

The sequence (f*27),cn is also increasing with limit f*3 and with
fo2r > Fekr Hence

fa,3 > Fa,k'
From here by induction on p, it holds that

fa,2p < fa,2p+2 < Fa,k < fa,2p+3 < fa,2p+1’ o E]O, 1[’ pe N.
(3.13)

By induction on r, for each r the sequence ( fa’l””)ae}o’l[ is translationally
equicontinuous in «. The limit sequence ( f""Q)ae]O,l[ is also translationally
equicontinuous. This is so, since given € > 0, r and then hg can be taken so
that

/(fa’2 — fOl) (2, v)dzdv < €
and /\f"’”(z + v R) — LT (2, )| dzdo < €, [B] < ho, || < ho.

It can analogously be proven that for each p € N, (f**),¢jo,1[ is translation-
ally equicontinuous in a. Let (oy)qen be a sequence tending to zero. Take a

11



subsequence in (ag)4en, still denoted by (ag)g4en, such that (f@?),en con-
verges in L' to some %2 when ¢ — +o0.

Continuing by induction gives a sequence (%) ey satisfying

FO20 < fO2042 < ph < 02043 < 02041 o N (3.14)
0,p+1 0,p
vV, o =G~ /Bffo,,,H(Z,U) f = (2, v)dvsdw,
1+ A 1+ T

Oz 0) = fur(z,0),  (2,0v) € 00T,

Here, G is the weak L' limit when o — 0 of the gain term

Fa,k Fa,k
/BO‘ 1 Fak (27 'l)l) F‘jklj’j& (Z, ’U;)dv*dw .

% L+ =

In particular, (f%),en (vesp. (f%?’T1),cn) non decreasingly (resp. non
increasingly) converges in L' to some g (resp. h) when p — +o00. The limits
satisfy

0<g<FF<h, (3.15)
h g
U-Vzh:G—/B ) Z, Uy )dvusdw, 3.16
1+%( )1 %( ) (3.16)
v G/Bg()h( )dv, d (3.17)
V-V,g=0G — 2, 2, Uy )dvudw, .
I 1+2 Y15k

(h—g)(z,v) =0, (z,v) €.

Subtracting (3.17) from (3.16) and integrating the resulting equation on
Q x R? gives that

| len(@)] (- g)(Zv)ao(2)dv =0,
N~
so that h — g = 0 also on 0f2~. Hence,

s (z,) .
/ h(Z + sv, U)er J Bh(z+rv,u)dudydr

—st(z,v)

(/B(h —g)(z + sv, U*)dv*dw> ds =0, (z,0)eQxR2 (3.18)

12



(3.15) and (3.18) imply that g = h and is equal to F*.
(F2ok),cn converges to F* in L1(Q x R?) when ¢ — +oo. Indeed, given
n > 0, choose py big enough so that

| 702t = 02 <y and | £ — ¥ <,
then gy big enough, so that

| frazeott — fO20t i< and || fOt0 — fOR0 <, g2 g
Then split || FeF — F* |1 as follows,

| Foak — F¥ ||

<|| Foak — po2oo ||y 4 || fo2po — f0200 1y || fO2P0 — R

<|| forott — 20 || 42n by (3.13)

<|| fo2eott — 02001y | 020t f0200 | ) fO200  fa2p0 0 oy

<51, q2=qo-

It remains to prove (3.6)-(3.8). Multiplying (3.4) by 1+ v? and integrating
over Q x R?, leads to

/ lv-n(2)|(1+v?)F*(z,v)do(z)dv

o0~

< / v-n(2)(1 4 v?) fy(2,v)do(2)dv. (3.19)
o+

Denote by (v1,v2) the components of v. Multiply (3.4) by v; and integrate
it over Q, x R?, where Q, is the part of  with z; < a. Set

S, =QN{z1=a} and 99, = INNNQ,.

This gives

/ V2F*(a, zp,v)dzodv = — / v1v - n(2)F¥(z,0)dzdv.
Sa xR2 00y xR2

(3.20)
Integrating (3.20) on [I, L], where

| =inf{a; S, # 0}, L =sup{a;S, # 0},

13



and using (3.19) leads to
/ V2R (2, v)dzdv < ¢, (3.21)
QxR?

([ v3F¥(2,v)dzdv)en- is analogously bounded from above. Thus the bound-
edness of energy holds. Recalling the small velocity cut-off x,, this in turn
implies the boundedness of mass. The boundedness of the mass outflow in
(3.8) follows from an integration of (3.4) on Qx R2. Finally, Green’s formula
for F*1n ; il

- implies that for some ¢, > 0,

k
Fk’
/ lv-n(2)|(F¥In F* — (k+ F*)In(1 + ?)) (z,v)do(z)dv
o0~
—I—/ Dk(z,v)dzdv <, keN.
OxR2

Moreover,

Fk i
k/m In(1 4+ )z, 0) | v-n(2) | do(2)dv < /m_F (2,0) | v-n(2) | do(2)dv

b-

IN
o

Hence

Fk
/ FFln ——(2,0) | v-n(z2) | do(z)dv +/ D¥(z,v)dzdv < ¢,

k
o0~ 1+ 4= QxR

(3.22)
It holds that

k
/ Fhin(1 + %)@,U) v n(2) | do(z)dv
o0~

Fk
< / FFIn(1+ =) (z,v) | v-n(z) | do(z)dv
00 Fk<k k

Fk
+ FRIn(l 4+ =) (2,0) |- n(2) | do(z)dv
00~ Fk>k k
k gy 2FF
<In2 F¥(z,v) | v-n(z) | do(z)dv + Ffln —(z,v) | v-n(z) | do(z)dv
o0~ 00~ Fk>k k
< +/ FFInF*(z,v) |v-n(2) | do(z)dv
90— Fk>k

k
— ln/ F*(z,v) |v-n(z) | do(z)dv.
2 Joa— Fr>k
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Together with (3.22), this implies that

/ FFInF¥(z,0) |v-n(2) | do(z)dv + lnk/ FF | v-n(z2) | do(z)dv < .
90— Fk<k 2 Joa— Frk>k

This ends the proof of Lemma 3.1. |

4 Compactness of the integrated collision frequency.

Denote by Q1 (f, f) (resp. v(f)) the gain term (resp. the collision frequency)
of the nonlinear Boltzmann collision operator,

Q@ (1.0)0) = [ B f(e v,
v(f)(z,v) = /Bf(z,v*)dv*dw, (4.1)
so that

Lemma 4.1
For any V > 1, the sequence

s (z,0)

(/ v(FF)(z + sv, v)ds)keN*
—st(z,0)

is uniformly bounded by cV? on Q x {v € R%; n < |v| < V}.

Proof of Lemma 4.1.
For any (Z,v) € 901 with n < |v] < V, the truncation x,, in B implies that

V(F*)(Z + sv,v) = / B(v, vy, W) F*(Z + sv,v,)dv,dw

[vs[>n

< c/xn(v,v*,w)(v2 +02)F*(Z + sv,v.)dv,

— 4

V2 2 —
<c sl /vf sin? (v, v,) F¥(Z 4 sv,v,)dv,. (4.2)
n

Let Q27 be one of the two subsets of {2 split by the segment [Z, Z+s~ (Z,v)v]
and 00z, = 002N Qz,. Let v™ be one of the vectors orthogonal to v such
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that |[v*| = |v]. Multiply (2.1) written in the variables (z,v4) by vs - % and

integrate the resulting equation over (z,v,) € 2z, X R2. This gives

—(Zw)
/ / v v Fk Z + sv,v4)dvgds
\0\2

/ (v - | | )(v* . n(z))Fk(z, vy )do(z)dvy
Ny , xR2 v
<c, (Z,v)€dn. (4.3)

Together with (4.2) this ends the proof of the lemma. |

Lemma 4.2
The sequence (F¥)pen- is weakly compact in L.

Proof of Lemma 4.2.
By (3.6) it is sufficient to prove that for any V > 1 the sequence
(F/]“‘QX{UE]RQ,|U|<V});€6N* is weakly compact in L'(Q x {v € R%;n < |v| < V}).

It follows from the exponential form of F*(z, v) from the outgoing boundary
o0,

s (z,v)
Frao) = P oho)exp ([ v(F9) (e 4 sv.0)ds)
0
s (z,) s
— / QT (F*, F*) (2 + sv,v) exp (/ v(F®)(z + rv, v)dr) ds,
0 0
and Lemma 4.1 that

FF(z,0) < ceCVQFk(z*(z,v),v), zeQ, n< |y <V (4.4)

By (3.8), (F*/sq- )ren- is weakly compact in Lﬂv.n(Z” (0927). This completes
the proof of the lemma. [

Lemma 4.3
For k € N* and € €]0, 1], there is a subset Q%€ of characteristics of

1
Q x {veR?% n<\v|<g},

16



with measure smaller than ce, such that

< 1
FF(z,0) < %662, (z,0) € Ax{veR: n< v < =}\ QP (4.5)
€ €

Proof of Lemma 4.3.
Let € €]0, 1] be given. By the strict convexity of Q and its C! regularity, the
set

1
Wi :={(Z,v) €I xR? n<|v] < = and —€* <v-n(Z) <0} (4.6)
€

is of measure smaller than ce for some constant ¢ > 0 and € small enough.
It follows from (3.8) that the measure of the subset of 9Q~ where

1 1
n<lvl <= wv-n(Z)<—¢ and Fk(Z,v)>—3,
€ €

is smaller than cye. Denote this set by wlg’e. Define Q%€ as
O = {(Z+sv,0); (Zv) ewfUwh®, sel-sT(Z,0),0]}. (4.7)

Together with (4.4), this ends the proof of the lemma. |

For any (k,¢) € N*x]0, 4+oc[, denote by x*¢ the characteristic function of
(Qk,e)c‘

Lemma 4.4 -
For any V > 0 the sequence (ffsiz(zvl) v(F*)(z + sv,v)ds)ren- is compact in
LY x {v e R% v < V}).

Proof of Lemma 4.4.
Let V' > 0 be given. By (3.6) and Lemma 4.2, it is sufficient to prove that
for any € > 0 and W > 0, the sequence

s7(z,0)

( / ByFeFF(z + sv,v*)dv*ds)keN* (4.8)
|U*|<W

—st(z,v)

is compact in L1(Q x {v € R%;|v| < V}). By (3.6) this sequence is bounded
in L'. Let us prove that it is uniformly equiintegrable w.r.t. the z variable.

17



For any (a, 3) € R?, denote by I(a, 3) the interval with end points a and
3. For any h € R?, split

s7(z+h,w)
/ /Bxk’EFk(z + h + sv,vy)dv.ds
—st( z+h v)

/ /Bxk F¥(z + sv,v,)dvsds (4.9)

—st(2,v)

into

/Bxk FF(z 4 h 4 sv,v,)dv.ds,
(4.10)

/I(—s*(z,v),—s*(z—i—h,v))UI(s(z, ),s~ (z+h,v))

which absolute value tends to zero when integrated over  x R? and h — 0
by the continuity of (s™,s7) on Q x {v;|v| <V}, and

/ /Bxk6 Fk(z + h+ sv,v,) — Fk(z + sv v*))dv*ds (4.11)
—st(z,v)

Almost every (v,v,) € R? x R? considered when integrating the absolute
value of (4.11) over  x {v € R?;|v| < V'} forms a basis in R%. Denote by
(a(h),b(h)) the coordinates of h in this basis. Split (4.11) into

/ /BX]” Fk(z+h+sv v,) — F¥(2 4 b(h)v, + sv, vy))dv,ds

= / /Bxk’E (Fk(z +h+sv,0.) — FF(z 4+ h + (s — a(h))v, vy))dv.ds
_s¥

/Bxk’EFk(z + h + sv, vy)dv.ds,
(4.12)

/I(—s+ (z,v)—a(h),—sT(z,0))UI(s™ (z,v),s~ (z,v)—a(h))

and

/ /Bxk’6 (F*(2 + b(h)v, + sv,0.) — F¥(2 + sv, v,) ) dv,ds

—s+(z v

/ : /Bxk’E for (21 (2 + b(h)vi + 50, 04),04) — for (27 (2 4 sv,v4),v4) ) dvuds
7S+

Z’U

e sy X QR Fe 50t 7o
—st(z,v) 1(0
(4.13)
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When integrated over Q x {v € R?;|v| < V}, the limit when h — 0
of the first term of (4.13) is zero by the integrability of f;. Notice that
(xX"Qr(F*, F*))en- is weakly compact in L'(2 x {v € R?; [v| < V}), since

1 cA -
k,E k k < k 2 k .
X Qk(F,F)_—lnAD +—636 v(F%), A>1

When integrated over Qx {v € R?; |v| < V'}, the limit when h — 0 of the sec-
ond term of (4.13) is zero by the weak L' compactness of (x*Qr(F¥, F*))pen=
and
lim b(h) =0 4.14
Jim b() = 0, (4.14)
uniformly on  x {v € R?; |v| < V}.
The uniform equiintegrability w.r.t. the v variable of

57 (zv)
( / BX"FF (2 + sv,v,)dv.ds) LeN
—st(z,0) J|v|<V
follows from similar arguments. ]

5 Passage to the limit in the approximations

For each € > 0, let F be the weak L' limit of a subsequence of (Xk*EFk)keN*.
(Fe)ee]o,l[ is non increasing with respect to decreasing € and bounded in L'.
Let f be its strong L' limit when € — 0. Notice that f is also the weak L'
limit of (F*)pen when k — +oo0.

For proving that f is a mild solution of (1.1)-(1.5), it is sufficient to prove
that for any 8 > 0, there is a set X? of characteristics with complementary
set of measure smaller than ¢, such that if xz denotes the corresponding
characteristic function,

(xsf)(2,0) = Cea o)z (2,0),0)
0
T / (x5 QUs )= + s0,0)ds,  (2,0) € Q x B2, (5.1)

—st(z,v)

This in turn is satisfied if for any test function ¢ € L% (2 x R?), continuously
differentiable along characteristics, with v - V.o € L®(£2 x R?), compact
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support and vanishing on 9§,

/ oxpf(z,v)dzdv = / goxﬁfb(f'(z, v),v)dzdv
QxR2 QxR2

0
t / / (xgfv- Voo +oxsQ(f, f)) (2 + sv,v)ds dzdv.
OxR2 J—st(z,v)
(5.2)

Let ¢y > 0 be such that the support of ¢ is included in Qx {v € R?;|v| < %}

Define the set X# as follows. Using the weak L'(€ x R?) compactness of
(F¥)ren+ and the weak L'(027) compactness of (F/kagf)k‘EN*v pass to the
limit when £ — 400 in

5 1

FR(z,0) < ce O FF (27 (2,0),0), aa. z€Q, n<lvo]<—, keN*
€0

(5.3)

It implies that

5 1
f(z,0) <ced f(z7(z,0),0), aa zeQ, n<|v<—.
€0
From here the proof follows the lines of the proof of Lemma 4.3, so that given
B > 0, XP can be defined as a set of characteristics, with complementary
set of measure smaller than ¢, such that

f(z,v) < ;Z%ec(%Jrg) , aa. (z,0) € XP, (5.4)

The following lemma is a preliminary step to pass to the limit when &k — +o0
in quadratic terms along the ’good characteristics’ (z 4 sv,v), (z,v) ¢ QF*.

Lemma 5.1
For any test function ¢ € L>®(Q x R?), continuously differentiable along

characteristics, with v - V.o € L®(Q x R?), compact support and vanishing
on 0™,

0
lim / / OxpXCFFU(FF) (2 + sv,v)ds dzdv
k=+oo Jaxr2 J—st(z0)

0
= / / oxpgFv(f)(z + sv,v)dsdzdv. (5.5)
OxXR2 J—sT(z,v)
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Proof of Lemma 5.1.

Since ¢ has compact support, one can restrict to the passage to the limit
when k — +oo and V fixed of

0
/ / @Xﬁxk’EFku(Fk)(z + sv,v)dsdzdv. (5.6)
Ox{veRZ;|v|<V} J—st(z,v)

By an integration by parts,

0
/ / SOXBXk’EFkV(Fk)(z + sv,v)dsdzdv
Qx{veER2;|v|<V} J —st(2,v)
0

= / / @Xﬁxk7€fbk(z+(zav)av)
Ox{veRZ;|v|<V} J—st(z,v)

</0 v(FF)(z + sv,v)ds(z + sv, v)ds) dzdv

—st(z,v)

0
* / / XX (v Vo PP 4+ oQu(F*, FY)) (2 + sv,0)
Qx {veR2;|v|<V}

—st(z,0)
0
(/ v(F¥)(z + rv, v)dr) dsdzdv. (5.7)
The change of variables
(z,8) = (Z,5) = (2 + sv, s), (5.8)

moves the domain Q x| — s*(z,v),0[ into the domain

{(Z,s) ; Z—svefl and s<O0}, ie (Z,—s)e€0x]0,s (Z,v)[

Hence,

0
/ / SOX/BXk’EFkV(Fk)(Z + sv,v)dsdzdv
Ox {veRZ;|v|<V}

—st(z,v)

0
- | [ ettt o)
Ox{veRZ;|v|<V} J—st(2,v)

</0 v(FF)(z + sv,v)ds(z + sv, v)ds) dzdv

st (z,w)

+/ XaX" (v - Vo) F* + Qi (F*, F*))(Z,v)
Qx {veR?;|v|<V}

</Os(z,v)(s—(z, 0) = () (Z + ro,v)dr) dZdv.  (5.9)
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Lemma 5.1 follows from the passage to the limit when k — +o0 in (5.9). It
uses the weak L' compactness of (x*<F*) and (x*“Q(F*, F¥)), the strong
L' compactness of (fos_(z’v)(s_(Z,fu) — r)v(F*)(Z + rv,v)dr), and the L™
boundedness of (x*<(Z,v) gi(z’v)(s_(Z,v) — r)u(F*)(Z + rv,v)dr). An
integration by parts back in the s variable is finally performed, taking into

account that

XPQu(FE, F¥) (2 + sv,v) = C%((Xk’eFk)(z + sv,v)).

Lemma 5.2
f is a solution of (1.1)-(1.5), i.e. for test functions ¢ defined as in Lemma
5.1,

/ oxpf(z,v)dzdv = / gpngb(z+(z, v),v)dzdv
QxR2 QxR2

0
+/ / (xafv- Voo +oxsQ(f, f))(z + sv,v)dsdzdv.
OxXR2 J—sT(z,v)
(5.10)

Proof of Lemma 5.2.
For € €]0, ¢g[, write the mild form of pxsx*<F* and integrate it on  x R2.
It results

/ gpxﬁxk’eFk(z,v)dzdv :/ cpxﬂxk’efbk(z+(z,v),v)dzdv
OxR2 QxR2
0
+ / / ngk’eFkv -V2o(z + sv,v)dsdzdv
OxR2 J—s1(2,v)
0
+ / / 0 i (Q+(Fk, Fky — Fky(Fk))(z + sv,v)dsdzdv.
OxR2 J—s1(2,v)
(5.11)
By the weak L' compactness of (F¥)pen+ and the linearity with respect
to x®€F* of the first two lines of (5.11), their passage to the limit when

k — +oo is straightforward. The passage to the limit when & — 400 in
the last term of (5.11) follows from Lemma 5.1. Finally, using monotonicity
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arguments together with the L> boundedness of xf allows to pass to the
limit when € — 0 in

/ oxpF(z,v)dzdv — / oxsfo(27(2,v),v)dzdv
QxR2 QxR2
0
- / / xpEF v - V(2 + sv,v)dsdzdv
OxR2 J—st(z,v)

0
+ / / oxpgFv(f)(z + sv,v)dsdzdv, (5.12)
OxR2 J—st(z,v)
and obtain the limit

/ oxpf(z,v)dzdv — / oxpfo(zT (2z,0),v)dzdv
OxR2 QOxR2
0
- / / xgfv-Vo(z+ sv,v)dsdzdv
OxR2 J—st(z,v)

0
+ / / oxpfr(f)(z+ sv,v)dsdzdv. (5.13)
OxXR2 J—s1(z,v)
Let us prove that

e—0 k—+oco

0
lim lim / / oxpX QT (F*, F*) (2 + sv,v)ds dzdv
OxR2 J—s51(z,v)
0
= / / oxsQT(f, f)(z + sv,v)ds dzdv. (5.14)
OxR2 J—sT(2,v)

For any (v, vs,w), the change of variables
(2,8) = (Z,s) = (z + s, 5), (5.15)
moves the domain Q x| — s*(z,v’),0[ into the domain

{(Z,s) 3 Z—sv'€Q and s<0}, ie (Z,—s)eQx]0,s (Z)]
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Hence,

0
/ / SOXBXk’EQJr(Fk, F®)(z + sv,v)ds dzdv
OxR2 J—s1(z,v)

0
2/(// exax" (2 + sv',0')B
QJ—st(z,0)
Fk

Fk

24 sv',v)———=(2 + sv’, v, dsdz) dvdv,.dw
1+ %k( s %’“( )
k.e — / Fk Fk
= ( oxpx"s (Z,v')B——(Z, v*)dv*dw> ——(Z,v)dZdv.
OxR2 1+ 4 1+ 5
(5.16)
One can restrict to the study of the limit of
Fk
/ (/ ¢Xﬁxk’63_(z’ v/)BiFk(Z, v*)dv*dw)
OxR2 {v« €ERZ;|sin(0,05 ) |[>p} xSt 1+ T
k
—(Z,v)dZdv, p€]0,1], (5.17)
14+ 4=
2
since
Fk
/ (/ @Xﬁxk’es_(z’ v/)BiFk(Z, v*)dv*dw)
QxR? {v« €ERZ;|sin(0,05 ) |<p} xSt 1+ =
Fk
——(Z,v)dZdv
14+ 4=
2
c cAp <
= m + 673662 A>1, p 6]0, 1[. (5.18)

The sequence

<(Z,v) — F*(Z,v) /

o € in oo} S X" (Z,0) B (Z,0,)dv.dw)
v« €ER=;[sin(v,v% ) |>p } X

keN*

is weakly compact in L!. Indeed, using the change of variables v, — v/, for
every (v,w), which holds since |sin(v, vx)| > u,

F*(Z,v) / ©xpX" s (Z,0"BF*(Z, v,)dvedw

& k A < k ’ ’
<= e
< lnAD (Z,v) +6636 /F (Z,vy)dvl,, A>1,
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where (D¥)pen+ is defined in (3.1) and uniformly bounded in L' by (3.7).
Consequently one can restrict to the passage to the limit when & — 400 in

/ (/ ‘PX,BXk’ES_(Z, v’)BF’“(Z, U*)dv*dw)
(Z0)eQxR2s™ (Zp)>a N J{v R [sin(075:)| >} xSt

(X" F*) (Z,v)dZdv, (a,e) €]0,1[2. (5.19)

Moreover,

/ ( / XX 5T (Z,0) BF(Z,0.)dv.dw)
(Zw)is= (Zw)>a N J{v. €ER2;[sin(5,05)|<p}xS?

(X" F*)(Z,v)dZdv

s (Zw) k.e1 pk
- X
=/ (/ / oxex" s (Z,v)——(Zv)
{0+ €R2;|sin(T,05)|<p} xS NS Zs—(Zw)>a JO s

F*(Z, v*)dsdz) Bdvdv,dw

s (z,v) Xkﬁl k
/ (/ / goxﬁxk’es_(z + sv,0") —— (2 + sv,v)
{v« ERZ;|sin(v,05 ) |[<p} xSt Q Jmax{0,a—s~ (z,v)} S

Fk (z + sv, v*)dsdz) Bdvdv,dw

s (z,v) k.e1 pk
:/ (/ X —— (2 + sv,v)
QxR2 max{0,a—s~(z,v)} s

{/Bgoxﬂxk’es_(z + sv,0")F*(z + sv, v*)dv*} ds) dzdv.
(5.20)

As in the proof of Lemma 5.1,

s7(z,) k,e1 Fk
lim (/ Xi_(z—i—sv,fu)
k—=+oo JoxRr? max{0,a—s—(z,0)} S

[/Bgoxgxk’es(z + sv,0")F*(z + sv, v*)dv*} ds) dzdv

s (z,0) €1
:/ (/ F_ (z + sv,v)
QxR2 max{0,a—s—(z,0)}

Bpxss™ (z 4 sv,v') f(z + sv, v*)dv*} ds) dzdv

[/{U*GRQ;sin(@)Ku}Xsl

N / (/ pxss (Z,0)Bf(Z, ’U*)dv*dw>
(Zw)is— (Zw)>a N J{v.eR2;|sin(0;03 ) |<p} xS?

FY(Z, v)dZdv. (5.21)

25



Passing to the limit when (o, €1, 1) — (0,0,0) in (5.21) leads to (5.14). m

References

[1]

2]

[10]

[11]

L. Arkeryd, On the stationary Boltzmann equation in R™, IMRN 12
(2000), 626-641.

L. Arkeryd, A. Nouri, The stationary Boltzmann equation in R™ with
given indata, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. I (2002),
359-385.

L. Arkeryd, A. Nouri, L' solutions to the stationary Boltzmann equation
in a slab, Ann. Fac. Sci. Toulouse Math. 9 (2000), 375-413.

L. Arkeryd, A. Nouri, The stationary Boltzmann equation in a slab,
with given weighted mass for hard and soft forces, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 27 (1998), 533-556.

L. Arkeryd, A. Nouri, A compactness result related to the stationary
Boltzmann equation in a slab, with applications to the existence theory,
Ind. Univ. Math. Journ., 44 (3) (1995), 815-839.

L. Arkeryd, A. Nouri, On the stationary Povzner equation in R™, J.
Math. Kyoto Univ. 39 (1) (1999), 115-153.

L. Arkeryd, A. Nouri, Stationary solutions to the two-dimensional
Broadwell model, Doc. Math. 25 (2020), 2023-2048, hal-02520758.

L. Arkeryd, A. Nouri, On stationary solutions to normal, coplanar dis-
crete Boltzmann equation models, Commun. Math. Sc. 18 (8) (2020),
2215-2234, hal-02520761, arXiv:2007.02094.

L. Arkeryd, A. Nouri, Discrete velocity Boltzmann equations in the
plane: Stationary solutions, hal-03523783, arXiv:2112.08640, to appear
in 2023 in Anal. PDE.

L. Arkeryd, A. Nouri, On the evolutionary velocity-discrete Boltzmann
equation , working file, hal-03909146v1.

R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equa-
tions: Global existence and weak stability, Ann. of Math. 130 (1989),
321-366.

26



[12] R. Esposito, Y. Guo, C. Kim, R. Marra, Non-Isothermal Boundary
in the Boltzmann Theory and Fourier Law, Comm. Math. Phys. 323
(2013), 177-239.

[13] R. Esposito, Y. Guo, C. Kim, R. Marra, Stationary solutions to the
Boltzmann equation in the hydrodynamic limit, Ann. PDE 4, 1 (2018).

[14] J. P. Guiraud, Probléeme auz limites intérieur pour l’équation de Boltz-
mann linéaire, Jour. de Mécanique 9 (1970), 183-231.

[15] J. P. Guiraud, Probléme aux limites intérieur pour [’équation de
Boltzmann en régime stationnaire, faiblement non linéaire, Jour. de
Mécanique 11 (1972), 443-490.

[16] F. Golse, L. Saint-Raymond, Velocity averaging lemma in L' for the
transport equation, C. R. Acad. Sci. Paris, Ser I 334 (2002), 557-562.

27



