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1 Abstract

CO2 geological storage is an essential instrument for efficient Carbon Capture
and Storage policies. Numerical simulations provide the solution to the multi-
phase flow equations that model the behavior of the CO2 injection site.

However, numerical simulations of fluid flow in porous media are computation-
ally demanding: it can take up to several hours on a HPC cluster in order to
simulate one injection scenario for a large CO2 reservoir if we want to accurately
model the complex physical processes involved. This becomes a limiting issue
when performing a large number of simulations, e.g. in the process of ’history
matching’.

During the numerical simulation of CO2 storage in the subsurface, well events
cause important numerical difficulties due to their instant impact on the pressure
and saturation unknowns. This often forces a drastic reduction of the time step
size to be able to solve the non-linear system of equations resulting from the
discretization of the continuous mathematical model. However, these specific
well events in a simulation have a relatively similar impact across space and
time.

We propose a methodology to alleviate the impact of well events during the
numerical simulation of CO2 storage in the underground. We complement the
standard numerical algorithm by predicting an initialization of Newton’s method
directly in the domain of convergence using supervised learning.

More specifically, we replace the initialization in pressure by a linear approxima-
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tion obtained through an implicit solver and we use a Fourier Neural Operator
(FNO) to predict the saturation initialization.

We apply our methodology to two test cases derived from a realistic C02 stor-
age in saline aquifer benchmark. We reduce the required number of Newton
iterations to handle a well opening by 53% for the first test case, i.e required
number of linear system to solve and by 38% for the second test case.
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2 Introduction

Context

The reduction of CO2 emissions into the atmosphere is mandatory to achieve
ecological transition. CO2 geological storage is an essential instrument for effi-
cient Carbon Capture and Storage (CCS) policies. Numerical simulations pro-
vide the solution to the multi-phase flow equations that model the behavior of
the CO2 injection site. They are an important tool to decide whether or not to
operate a potential carbon storage site and to monitor these operations (long
term storage of injected CO2, potential gas leakage, optimal positioning of CO2

injection wells, etc.).

However, numerical simulations of fluid flow in porous media are computation-
ally demanding: it can take up to several hours on a HPC cluster in order to
simulate one injection scenario for a large CO2 reservoir if we want to accu-
rately model the complex physical processes involved. This becomes a limiting
issue when performing a large number of simulations, e.g. in the process of
”history matching” : in order to fit the various model parameters to match the
available historical data, a large number of simulations corresponding to various
parameter sets needs to be performed.

More specifically, well events (opening and closure) cause important numerical
difficulties due to their large impact on the pressure and saturation unknowns.
This often forces a drastic reduction of the time step size to be able to solve the
non-linear system of equations resulting from the discretization of the continuous
mathematical model. However, these specific well events in a simulation are
relatively similar across space and time: the degree of similarity between two well
events depends on a few parameters such as the injection condition, the state
of the reservoir at the time of the event, the boundary conditions or the porous
media parameters (permeability and porosity) around each well. Therefore,
the potential of machine learning algorithms to alleviate numerical difficulties
related to well events is worth investigating.

State of the art

Recent interest in machine learning applied to the prediction of physical pro-
cesses has fueled the development of ”Physics Informed Deep Learning”, wherein
machine learning models either substitute or enhance traditional numerical al-
gorithms while preserving the inherent constraints from the physical model.
These models can be trained in a supervised or unsupervised manner.

In unsupervised learning, no labeled data is available and the objective is to
directly enforce physical constraints. This can be achieved, for instance, by min-
imizing the residual of the partial differential equations governing the evolution
of the solution or by penalizing deviations to mass conservation, etc. Physics
Informed Neural Networks (PINN) , as introduced by Lagaris et al. [14] in 1998
typically is an example of unsupervised learning applied to the resolution of

3



differential equations. More recently in 2019, Raissi et al. [22] remastered the
PINN approach in a semi-supervised manner in order to solve PDE problems.

In supervised learning, the objective is to match the labeled data available from
experiment or previous simulations. In particular, the supervised learning of
mappings between infinite dimensional function space through neural operators
[13] [19] has yielded notable outcomes in learning PDE solutions [28]. Especially
Fourier Neural Operator (FNO) [16] has demonstrated great performances and
a lot of recent architectures based on it have emerged [34] [17] [23].

Physics Informed Deep Learning have a been applied to geological sequestra-
tion of CO2 using a wide range of machine learning techniques, either for Phys-
ical property prediction [2][38][41][25][40][4][12][37][36][30][18][35][29][27][5][33],
CO2 migration and leakage analysis [32][31] or reservoir monitoring [21]. In
most of the cases, the resulting machine learning model is used as a surrogate
model that supplant the traditional solver. This allows for faster evaluation of
new input parameters in contrast to the original numerical solver. This becomes
especially valuable when the numerical solver is computationally expensive and
time-consuming, as surrogate models can provide quick approximations. How-
ever, this ’black-box’ approach lacks a guarantee of predicting solutions accu-
rately, in contrast to the reliability of a numerical solver. Consequently, hybrid
approaches that complement the numerical solver with a machine learning model
while preserving the numerical guarantees are worth considering for evaluation.

Contribution

We propose a methodology to alleviate the impact of well events during the
numerical simulation of CO2 storage in the subsurface. We complement the
standard numerical algorithm by predicting an initialization of Newton’s method
directly in the domain of convergence using a supervised learning approach based
on recently developed Fourier Neural Operators. Our results show a significant
decrease in the number of Newton iterations required for convergence, while
ensuring the convergence to the correct solution.

Plan

In the first section 3 We begin by formulating the continuous model alongside
the numerical solver associated with underground CO2 storage. Next, in section
4, we provide a comprehensive exposition of our methodology, while section
5 outlines the database generation process using two test cases inspired by a
realistic benchmark. Finally, we apply our methodology to the test cases and
present the results in section 6.
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3 Problem formulation

3.1 Continuous model

Let us consider a two-phase fluid composed of an aqueous phase noted w and
a gaseous phase noted g flowing in a porous medium. We are interested in
determining the evolution of the pressure Pα and saturation Sα in each phase.

The standard approach of modeling a two-phase flow in a porous medium is
based on the application of Darcy’s law [11] for each phase α ∈ {w, g} that
relates the phase velocity vα with the pressure gradient:

vα = −Kkrα(Sα)

µα
∇Pα, (1)

where K is the permeability tensor, krα is the relative permeability that depends
on the saturation Sα, and µα is the dynamic viscosity.

We consider the medium as isotropic, hence the tensor of permeability K can be
considered as a scalar field K.We consider reservoir geometries such that gravity
can be neglected. Capillary effects are neglected, therefore Pw = Pg. Finally,
we use a quadratic relative permeability law , i.e krα(Sα) = S2

α

For incompressible fluids, the conservation equations describing the evolution of
the pressure P and saturations Sw and Sg are then:

ϕ
∂

∂t
(Sw) + div(vw) = 0, ϕ

∂

∂t
(Sg) + div(vg) = qg, (2)

vw = −Kkrw(Sw)

µw
∇P, vg = −Kkrg(Sg)

µg
∇P, (3)

Sg + Sw = 1, (4)

where ϕ is the medium porosity field and qg is the gas flow injected in the wells.

We directly substitute Sw for 1−Sg using equation (4) so that we can drop the
indices: the unknowns are the pressure P and the gas saturation denoted by S.

We suppose that the permeability K and the porosity ϕ vary in space but are
constant through time. The viscosities µα are constant.
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3.2 Numerical resolution

The continuous model is discretized using a standard two-points finite volume
spatial scheme on a cartesian mesh and an implicit Euler time scheme. The pres-
sure and saturation are solved simultaneously through a fully implicit scheme
[6][15]. Finally, the resulting non-linear system of equations is solved using
Newton’s method.

Newton initialization

In the ’standard’ or ’classic’ Newton’s method, the initialization for step n+ 1
is derived from the solution Xn

sol obtained in the preceding step n. Therefore,
we denote Xn+1

init = Xn
sol the standard initialization of the step n+ 1.

Time step management

In theory, the time step of a fully implicit reservoir simulator is not restricted
by stability since the Euler implicit time scheme is unconditionally stable. How-
ever, in practice, the standard Newton’s method may encounter converge issues
with large time steps. To address this, a common practice is to allow a maxi-
mum number of Newton iterations Nmax for the Newton’s method to converge.
If convergence is not achieved, we reduce the time step by a factor two and
start over. This sometimes necessitates multiple time step reductions to achieve
Newton convergence, resulting in a significant number of superfluous iterations.

3.3 Impact of well events during the numerical resolution

Well events generate pressure and saturation discontinuities (in time) inside the
reservoir and lead to nonlinear convergence problems as they act as singular
point sources that are tightly coupled to the reservoir model [1]. These dis-
continuities often prevent Newton’s method from converging while attempting
to solve the system as the initial guess may be far from the solution. In such
situations, we attempt to solve the system again with a reduced time step and
continue this process until convergence is achieved. Well events can thus ac-
count for a significant portion of the actual simulation time. An illustrative
scenario, inspired by the test case 2 discussed in Section 5, is depicted in Figure
1. This scenario involves a simulation of 40 time steps, each spanning 2 years.
At 4 years, an injection well is opened using an well injection flow rate of 10−3.1

and closed at 24 years. We observe that immediately following the well open-
ing, Newton’s method necessitates 40 iterations to reach convergence, with a
minimum of 5 iterations required at each subsequent step throughout the entire
well opening process. In contrast, in the absence of well events, the maximum
number of Newton iterations is 5 immediately after well closure and 3 otherwise.
Consequently, the well event-induced Newton iterations constitute the majority
of the total Newton iterations throughout the entire scenario, accounting for
54%. Furthermore, if the maximum allowable iteration count were less than 40,
the time step would be halved, resulting in significantly longer simulation times.

6



0 2 5 10 12 15 20 25 30 35 40
Time− step number

0

2

4

6

8

10

20

30

40

N
u

m
b

e
r

o
f

N
e
w

to
n

it
e
ra

ti
o
n

s

Well opening

Well closing

Figure 1: Example of scenario and it’s impact on Newton’s method. The sce-
nario is composed of a well event opened after 2 time steps (red dashed line)
and closed at 12 time steps (red dotted line).

4 Methodology

We propose a methodology based on the Hybrid Newton algorithm [20] [10] [39]
[3] to alleviate the impact of well events. It consists in predicting via machine
learning an initialization closer to the solution than the standard initialization,
hence accelerating the Newton’s method convergence while still guaranteeing
the correct solver solution. We use a fixed reservoir geometry and configuration
where a well event occurs at a specific location. We aim to alleviate the impact
of the well opening for a wide range of scenarios.

4.1 Hybrid Newton algorithm

The hybrid Newton algorithm is a modification of the standard Newton algo-
rithm with respect to the initialization. Indeed, the hybrid method proposes to
initialize with a more accurate solution instead of using the standard initializa-
tion (i.e. the previous time step solution). By using an initialization closer to
the solution, we aim to converge in fewer iterations.

In this article, our primary focus is on the hybrid guess construction Xn+1
ML and

its performance compared to the standard initial guess Xn+1
init . We will compare

them through their impact on the number of Newton iterations.
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4.2 Initial guess construction

In the hybrid Newton algorithm, a prediction guess Xn+1
ML := (Ppred, Spred) is

required. We propose the following construction for the pressure and saturation:

1. Ppred: Implicit Pressure solver

2. Spred: Prediction using supervised learning

4.2.1 Pressure

During a well event, the pressure discontinuity is global in the reservoir and
instantaneous in time. We propose to use the solution of an implicit pressure
solver Pimp (IMP) [24] at the step n+1 as a prediction guess Ppred. The implicit
pressure solver solves the linear elliptic equation (5) and catches the main global
variations of pressure but does not catch the small local variations of pressure
due to saturation variations. Moreover, the implicit pressure solver only requires
to solve a linear system. Therefore, we consider that it is not worth it to train
a machine learning model as we have a cheap good approximation.

div(v(Pimp, S
n)) = 0 (5)

with v = vg+vw, v, vg and vw are respectively the total velocity, the gas velocity
and the water velocity inside the reservoir.

4.2.2 Saturation

During a well event, the saturation discontinuity inside the reservoir is local and
near to the well. One could use an implicit saturation solver (IMS) which would
require a Newton’s method to solve a non linear system. Therefore, we propose
to predict the saturation using a neural network considering that the inference
of a neural network is rather fast compared to the multiples Newton iterations
of the IMS solver which each require to solve a linear system. The predicted
saturation is denoted SML.

The standard methodology uses the initial guess Xn+1
init = Xn

sol = (Pn
sol, S

n)
and the hybrid methodology uses the initial guess Xn+1

ML = (Pimp, SML). Given
that we aim to conduct a fair assessment of the impact of a saturation predic-
tive model, we compare the hybrid initialization with the standard initializa-
tion. Therefore we use in this article the following initial guess for the standard
methodology Xn+1

init = (Pimp, S
n).

In the end, we will compare in terms of Newton iterations the two following
initialization:

1. Standard initialization: Xn+1
init = (Pimp, S

n)

2. Hybrid initialization: Xn+1
ML = (Pimp, SML)

8



4.3 Neural Network architecture

The objective is to predict using reservoir and well information the global satu-
ration state reached after a well event. A well event at a specific location and a
specific well geometry can be described with few parameters: an injection well
flow qg and a time-step dt. A neural network architecture with good predictive
capability for different physics-based processes is required.

Fourier Neural Operator

Neural networks are commonly used to learn relationships between finite-dimensional
spaces, but they can struggle to adapt to changes in governing equations or
conditions [7]. The Fourier Neural Operator (FNO) [16] addresses this issue
by learning relationships between infinite-dimensional spaces using data-driven
methods. This allows the FNO to understand the rules governing an entire
family of partial differential equations. Additionally, the FNO improves com-
putational efficiency by converting convolution operations in neural networks to
multiplication through the use of discrete Fourier transforms.

Selected Architecture

We use the architecture presented on figure 2 based on an uplifting dense layer,
four Fourier Layers (see figure 3) and two dense layers. We use the Gaussian
Error Linear Units (GELU) [9] as activation function for each layer. We use
two different versions of this general architecture for the training on the two
test cases. Nc and Ni are parameters respectively representing the number of
channels and the number of inputs.

Figure 2: Selected neural network architecture composed by an uplifting dense
layer, four Fourier layers, a dense layer and a projection dense layer. Nc and
Ni are parameters respectively representing the number of channels and the
number of inputs.

The architecture of a Fourier layer fig. 3 is composed of two parts, one that
apply Fourier transform, a linear transform on the lower Fourier modes and a
filter on the higher mode, then it applies the inverse Fourier transform. The
other part is composed of a local linear transformation applied to the original
input. Finally, the output of the two parts are added together and an activation
function is applied.
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Figure 3: The Fourier layer starts with an input vector v, applies the Fourier
transform F to it, then performs a linear transformation R on the lower Fourier
modes while filtering out the higher modes. The inverse Fourier transform F−1

is then applied. A local linear transformation W is applied to the original input
vector v. The output of the top and bottom operations are then added together
and an activation function is applied.

Input Features
There are multiple features that can be considered as input features for the
selected neural architecture. We select four possible input features, the time-
step dt, the injection flow rate qg, the initial saturation Sn and the implicit
pressure Pimp. As Sn and Pimp have the same shape as the output feature,
they can be used straightforward. However, as qg and dt are scalars, they need
to be reshaped. We propose to reshape dt into a constant map of value dt
everywhere. For the injection flow rate qg, we reshape it to a map of value zero
everywhere except at the well location where it takes the value qg.

Figure 4: Qualitative view of Neural network input feature possible assembly.

5 Test case and Database Generation

5.1 SHPCO2 benchmark

Context

As a practical use case, we use the SHPCO2 [8] benchmark to test our methods.
This benchmark was created for modelling reactive transport for CO2 geological
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storage. The SHPCO2 geological configuration is inspired from Sleipner, the
world’s first commercial CO2 storage project. Sleipner is an area located in the
North-Sea, belonging to Norway and exploited for its natural gas field since the
mid-1990s.

As the natural gas produced contains up to 9% CO2, the Sleipner CO2 gas
processing and capture unit is built to evade the expensive 1991 Norwegian CO2

tax. The captured CO2 is thus injected and stored in a deep saline formation
one kilometer below the seabed.

Reservoir configuration

We adapt the original 2D SHPCO2 benchmark by removing the gas zone and
replacing it by a well at its center.

Figure 5: Adapted 2D SHPCO2 case geometry

The domain after modification is separated in two zones, the first zone called
”Barrier zone” is coloured in green on the figure 5 and the second zone called
”Drain zone” is formed of the rest of the domain. These two domains have
different petrophysical properties.

Petrophysical properties

Barrier zone Drain zone
Porosity [-] 0.2 0.2

Permeability[m2] 1.e-15 100.e-15

Table 1: Petrophysical Parameters

Phase properties
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Gas phase Water phase
Viscosity [Pa.s] 0.0285e-03 0.571e-03

Table 2: Physical properties of fluids

Relative permeability model

We use a quadratic relative permeability model:

Quadratic kr kr(S) = S2 and kr(Sw) = (1− S)2

Boundary Conditions

The boundary conditions of the adapted SHPCO2 5 are presented in the fol-
lowing table 3:

Pressure[Pa] Composition
Injector 1 110.e+05 Water
Injector 2 105.e+05 Water
Productor 100.e+05 -

Table 3: Boundary condition parameters

It is to note that the Productor has the composition of what is produces. We
consider the following mesh geometry which corresponds to the small (S) mesh
size of the SHPCO2 benchmark.

Mesh Dx [m] Dy [m] Nx Ny NCell
S 50 50 95 60 5700

Table 4: 2D mesh parameters

Well conditions

We detail the well conditions in the following table 5

5.2 Test cases

We propose two different test cases based on the SHPCO2 benchmark and it’s
reservoir configuration presented in 5.1. The test case 1 has constant initial
saturation S0 while the test case 2 has more realistic initial saturations.

5.2.1 Test case 1

Database Generation

We launch simulations with a constant reservoir configuration except for three
parameters, S0 the initial saturation, qg the well injection flow rate and dt

12



Injection Flow rate Composition well radius Opening period
parameters [m2/s] [m] [s]
CO2 injector qg Gas (S = 1.) 0.1 dt

Table 5: CO2 injection well conditions

the time-step. We allow a maximum of 200 Newton iterations to converge.
The convergence criterion is based on the residual norm and we iterate till
dt∥R∥∞ ≤ ϵ with ϵ = 1e−6 and R the residual of the physical system.

We generate 5004 parameter combinations through a Latin Hypercube Sampling
strategy [26] within the following ranges: S0 ∈ [0, 0.6] , |qg| ∈ [1e−5, 1e−3]m2/s
which corresponds to a well pressure ∈]10, 20] MPa and dt ∈ [0.1, 10] years.
Note that Pimp is obtained using the Implicit Pressure solver (IMP).

Figure 6: Test case 1 example of reservoir Pressure (left) and Saturation (right)
obtained after a time-step with S0 = 3.81e−4, qg = 7.61e−4m2/s and dt =
2.4e+8s.

5.2.2 Test case 2

In the test case 1, we use constant reservoir saturation maps as initial satura-
tion S0 and realised one well opening with a particular well injection flow rate
qg and time-step dt. In the test case 2, we use more realistic initial saturation
maps. To do so, we realise N consecutive well opening and closure events (see
figure 7. We use Latin Hypercube Sampling strategy to generate parameter
combinations. The initial parameters are qg, dt and Sn. After the first simu-
lation, we close the well (i.e qg = 0m2/s) and launch another simulation using
the previous reservoir state obtained and a new time-step dt (sampled through
Latin Hypercube Sampling). Finally we open the well and launch a simulation
with qg and dt as parameters. The opening and closure step are repeated as
many times as needed (see figure 7). The reservoir state is saved at every well
opening or closure.

We generate data with N = 9 (i.e 5 well openings and 4 closures) and 3600
parameter combinations for each step. The parameters are sampled using a
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Figure 7: Test case 2 workflow with multiple well openings and closures. A step
of time with a null well flow is realised between each closure and opening.

Latin Hypercube Sampling strategy within the following ranges: S0 ∈ [0, 0.6] ,
qg ∈ [−1e−5,−1e−3]m2/s and dt ∈ [1, 10] years in seconds.

We perform simulations for each parameter combination and we only consider
data where the well injected flow rate qg is not null. For N = 9, we have 5 wells
openings (i.e qg > 0) and 3600 parameter combinations for each one. Therefore,
there is a total of 18000 samples. When splitting the samples in train and test
sets, data coming from a same scenario are sent together in a set (i.e 5 per 5 for
N = 9).

Figure 8: Example of reservoir Pressure (left) and Saturation (right) obtained
after a time-step with qg = −9.8e−4m2/s and dt = 3.1e+8s. The simulation
required 12 Newton iterations to converge.
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6 Results and discussion

6.1 Neural Network training

6.1.1 Test case 1

We use the Neural Network architecture presented in figure 2 with Nc = 32
channels in the Fourier layers and {qg, dt, Sn} as inputs (i.e Ni = 3). The input
parameter dt is a scalar, therefore, we reshape it in a constant map of shape
(95, 60). Moreover, qg is also a scalar. We reshape it in a (95,60) map which
values are zeroes everywhere except at the well location where it takes qg as
value.

We split the data in a train and test sets with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 27 hours using Adam optimizer, a
batch size of 10, a learning rate of 5e−5, a momentum of 0.9, a weight decay
of 1.e−4 and keep the model parameters corresponding to the lowest test loss
value. We show the relative L2 loss evolution on the figure 9. The lowest test
loss value is 1.9e−3 reached at epoch 17285. The corresponding train loss value
is 2.0e−3.

0 5000 10000 15000
Epoch

10 3

10 2

10 1

Lo
ss

Train/Test loss
Train loss
Test loss

Figure 9: L2 loss evolution through epochs for test case 1. The lowest test loss
value is 1.9e−3 reached at epoch 17285. The corresponding train loss value is
2.0e−3.

6.1.2 Test case 2

We use the Neural Network architecture presented in figure 2 with Nc = 64
channels in the Fourier layers. As the case is more complex than the test case 1,
the neural network is harder. To alleviate this complexity, the implicit pressure
is added to the input features . We therefore use {Pimp, qg, dt, S

n} as input
features (i.e Ni = 4). The input parameter dt is a scalar, therefore, we reshape
it in a constant map of shape (95, 60). Moreover, qg is also a scalar. We reshape
it in a (95,60) map which values are zeroes everywhere except at the well location
where it takes qg as value. Sn and Pimp can be used straightforward.
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We split the data in a train and test set with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 132 hours using Adam optimizer,
a batch size of 128, a momentum of 0.9, a weight decay of 1.e−4 and keep the
model parameters corresponding to the lowest test loss value. We start with a
learning rate of 1.e−4, at iteration number 1000, we decrease it to 5.e−5, then
1.e−5 at iteration number 1600 and finally we set the learning rate to 5.e−7 at
iteration number 3600 and until the end.

We show the L2 loss evolution in the figure 10. The lowest test loss value is
8.7−4 reached at epoch 7295. The corresponding train loss value is 9.3e−4.

0 2000 4000 6000
Epoch

10 3

10 2

10 1

Lo
ss

Train/Test loss
Train loss
Test loss

Figure 10: L2 loss evolution through epochs for the test case 2. The lowest test
loss value is 8.7−4 reached at epoch 7295. The corresponding train loss value
is 9.3e−4. We start with a learning rate of 1.e−4, at iteration number 1000, we
change it to 5.e−5, then 1.e−5 at iteration number 1600 and finally we set the
learning rate to 5.e−7 at iteration number 3600 and until the end.

6.2 Results

In this section, we present the results obtain using the hybrid methodology, first
on the scenario presented in the figure 1 and then on the two tests cases. We
compare the performances in term of Newton iterations obtained between the
standard and hybrid approaches.

6.2.1 Single prediction example

We apply the hybrid methodology on the example scenario presented in figure 1
only during the well event, this implies that every step outside of the well event
requires the same number of Newton iterations for the standard and hybrid
approaches.

We observe a significant reduction in the number of Newton iterations during the
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Figure 11: Hybrid Newton approach applied to the example scenario and it’s
impact on Newton’s method.

well event. Immediately after the well opening, the standard approach (depicted
by blue crosses) requires 40 iterations, whereas the hybrid approach (represented
by green crosses) only necessitates 3 iterations. Furthermore, throughout the
entire well event, the hybrid approach consistently requires fewer Newton it-
erations compared to the standard approach, resulting in a 68% reduction in
Newton iterations during the well event and a 38% reduction across the entire
scenario.

6.2.2 Test case 1

We launch simulations with the same parameters combinations of test case 1,
Xn+1

init = (Pimp, S
n) and Xn+1

ML = (Pimp, SML) as initial guesses. Pimp is calcu-
lated using the Implicit Pressure Solver and Spred using the model obtained in
the previous section. The results are presented in figure 12.

We observe that the hybrid methodology facilitates Newton’s method initializa-
tion directly within the domain of quadratic convergence, resulting in a max-
imum of 5 Newton iterations for the training set and 4 for the test set. This
is particularly intriguing as it appears to scale with problem complexity. In
essence, the more challenging the problem using the standard methodology, the
greater the potential benefit from employing the hybrid methodology. With the
hybrid formulation, we achieve an average speedup of 54%, translating to 54%
fewer Newton iterations compared to the standard methodology for the training
set and a 53% reduction for the test set.
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Figure 12: Test case 1 scatter plot of the number of Newton iterations needed
to converge using standard methodology versus using hybrid methodology on
the train set (left figure) and on the test set (right figure). The color bar shows
the distribution of Newton iterations using standard and Hybrid methodologies
for the train and test set respectively.

6.2.3 Test case 2

We launch simulations with the same parameters combinations of test case 2,
Xn+1

init = (Pimp, S
n) and Xn+1

ML = (Pimp, SML) as initial guesses. Pimp is calcu-
lated using the Implicit Pressure Solver and SML using the model obtained in
the previous section.

Considering every simulations and using the hybrid methodology, we speed up
by 39% , i.e 39% less Newton iterations than the standard methodology the
computations for the training set and by 38.7% for the test set.

6.3 Discussion

Considering a wide range of injection scenarios, we show that it is possible to
learn the impact of a well event on a reservoir. We speed up by 53% the handling
of well events for the test case 1 and by 38% for the test case 2. Moreover the
hybrid Newton methodology is quite general and can be applied to any problem
that requires an important number of costly iterations. Finally, we observe that
the more challenging the problem is using the standard methodology, the greater
the potential benefit from employing the hybrid methodology. However, there
are some limiting issues that needs to be considered.

Constant discretization

We use a specific discretization (SHPCO2 S mesh) for the data generation and
we predict on the same discretization. This implies that the model would not
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Figure 13: Test case 2 scatter plot of the number of Newton iterations needed
to converge using standard methodology versus using hybrid methodology on
the train set (left figure) and on the test set (right figure). The color bar shows
the distribution of Newton iterations using standard and Hybrid methodologies
for the train and test set respectively.

work for different meshes. A new model has to be generated. However, the idea
of a model invariant to discretization is developed through Neural Operators
[13]. A model could be trained using data from different discretizations and
predict the solution on multiple discretizations.

Constant well position

The methodology is applied on a constant grid with a constant well position.
While the pressure variations are global during a well event, the saturation vari-
ations are local. Therefore, if we change the well position, the model prediction
will not be accurate. To alleviate this issue, a local approach could be used, i.e
create a model that predicts the saturation only around a well.

7 Conclusion

We proposed in this article a methodology to alleviate the impact of well events
during the numerical simulation of CO2 storage in the subsurface. We comple-
ment the standard numerical algorithm by predicting an initialization of New-
ton’s method directly in the domain of convergence using a supervised learning
approach based on recently developed Fourier Neural Operators. Our results
show a significant decrease in the number of Newton iterations required for con-
vergence, while ensuring the convergence to the correct solution. Moreover the
hybrid Newton methodology is quite general and can be applied to any prob-
lem that requires an important number of costly iterations. Finally, we observe
that the more challenging the problem is using the standard methodology, the

19



greater the potential benefit from employing the hybrid methodology.
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