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1 Abstract

CO4 geological storage is an essential instrument for efficient Carbon Capture
and Storage policies. Numerical simulations provide the solution to the multi-
phase flow equations that model the behavior of the CO5 injection site.

However, numerical simulations of fluid flow in porous media are computation-
ally demanding: it can take up to several hours on a HPC cluster in order to
simulate one injection scenario for a large C'O5 reservoir if we want to accurately
model the complex physical processes involved. This becomes a limiting issue
when performing a large number of simulations, e.g. in the process of "history
matching’.

During the numerical simulation of C'O5 storage in the subsurface, well events
cause important numerical difficulties due to their instant impact on the system.
This often forces a drastic reduction of the time step size to be able to solve the
non-linear system of equations resulting from the discretization of the continuous
mathematical model. However, these specific well events in a simulation are
relatively similar across space and time.

We propose a methodology to alleviate the impact of well events during the
numerical simulation of C'O; storage in the underground. We complement the
standard numerical algorithm by predicting an initialization of Newton’s method
directly in the domain of convergence using supervised learning. We apply our
methodology to two test cases derived from a SHPC' Oy benchmark.



Contents

1 Abstract 1
2 Introduction 2
3 Problem formulation 4
3.1 Continuous model . . . . . . . .. ... ... ... 4
3.2 Numerical resolution . . . . . . . . .. ... ... ... ... ... 5
3.3 Impact of well events during the numerical resolution . . . . . . . 5

4 Methodology 5
4.1 Hybrid Newton algorithm . . . ... ... ... ... ... .... 6
4.2 Initial guess construction . . . .. .. ... ... oL 6
4.2.1 Pressure . . . . oo oo e e e e e e e 6

4.2.2 Saturation . . . . . . . . ... 7

4.3 Neural Network architecture . . . . . . . . . . .. ... ... ... 7

5 Test case 8
51 SHPCO02 benchmark . . . ... .. ... ... ... ... ..... 8
5.2 Testcases . . . . . . . . e 11
5.2.1 Testcasel . ... . . . . . . . ... 11

5.2.2 Testcase2 . . . . . . . ... 13

6 Results and discussion 16
6.1 Results. . . . . . . 16
6.1.1 Testcasel . ... . . . . . . . ... 16

6.1.2 Testcase2 . . . . . . . . . .. 17

6.2 Discussion . . . . . ... e 17

7 Conclusion 18

2 Introduction

Context

The reduction of CO2 emission into the atmosphere is mandatory to achieve eco-
logical transition. CO5 geological storage is an essential instrument for efficient
Carbon Capture and Storage (CCS) policies. Numerical simulations provide the
solution to the multi-phase flow equations that model the behavior of the CO,
injection site. They are an important tool to decide whether or not to exploit a
potential carbon storage site and to monitor the operations (long term storage
of injected C'O,, potential gas leakage, optimal positioning of C'Os injection
wells, etc.).

However, numerical simulations of fluid flow in porous media are computation-
ally demanding: it can take up to several hours on a HPC cluster in order to



simulate one injection scenario for a large COy reservoir if we want to accu-
rately model the complex physical processes involved. This becomes a limiting
issue when performing a large number of simulations, e.g. in the process of
”history matching” : in order to fit the various model parameters to match the
available historical data, a large number of simulations corresponding to various
parameter sets needs to be performed.

Problem

More specifically, well events (opening and closure) cause important numerical
difficulties due to their instant impact on the system. This often forces a drastic
reduction of the time step size to be able to solve the non-linear system of equa-
tions resulting from the discretization of the continuous mathematical model.
However, these specific well events in a simulation are relatively similar across
space and time: the degree of similarity between two well events depends on
a few parameters such as the injection condition, the state of the reservoir at
the time of the event, the boundary conditions or the porous media parameters
(permeability and porosity) around each well.

State of the art

Recent interest in machine learning applied to the prediction of physical pro-
cesses has fueled the development of ”Physics Informed Deep Learning”, where
machine learning models either replace or complement traditional numerical
algorithms while preserving the inherent constraints from the physical model.
These models can be trained in a supervised or unsupervised manner. In su-
pervised learning, the objective is to match the labeled data available from
experiment or previous simulations. In unsupervised learning, no labeled data
is available and the objective is to directly enforce physical constraints, e.g.
by minimizing the residual of the partial differential equations describing the
evolution of the solution, by penalizing deviations to mass conservation, etc.

Contribution

We propose a methodology to alleviate the impact of well events during the
numerical simulation of C0y storage in the subsurface. We complement the
standard numerical algorithm by predicting an initialization of Newton’s method
directly in the domain of convergence using a supervised learning approach based
on recently developed Fourier Neural Operators. Our results show a significant
decrease in the number of Newton iterations required for convergence, while
ensuring the convergence to the correct solution.

Plan

We first formulate the continuous model and it’s numerical resolution associated
to C'O4 storage in the underground. We then apply our methodology on two
test cases based on the SHPCO2 benchmark. Finally we discuss the obtained
results and the next steps that should be done.



3 Problem formulation

3.1 Continuous model

Let us consider a two-phase fluid composed of an aqueous phase noted w and a
gaseous phase noted g flowing in a porous medium. The standard approach of
modeling a two-phase flow in a porous medium is based on the application of
Darcy’s law for each phase o € {w, g} with dimensionless factors kr, in front
of the tensor of permeability K, called relative permeabilities of the phases. We
consider the medium as isotropic. Therefore, the tensor of permeability K can
be considered as a scalar field K.

We consider reservoir geometries such that gravity can be neglected. A well
can be modeled by a source term in the conservation equation. For incompress-
ible fluids, the equations describing the conservation of pore volume and phase
volume, the conservation of momentum, the capillary forces between the two
phases are written:

0

. 0 )
¢a(sw) + dlv(vw) = Guw;, ¢§(Sg) + d”’(vg) = Qg (1)
v = _KIW"T,J(Sw)pr7 vy = _Kk:rg(Sg)VPg, @)
Haw Hg
Sy +Sw =1, (3)
Py — Py :Pcw,g(Sw) (4)

Where S, is the phase saturation, v, the Darcy flow velocity of the phase in the
porous medium, p, the phase viscosity, P, the phase pressure, I, = the cap-
illary pressure and ¢ the medium porosity. The relative permeabilities kr, are
increasing functions of the saturation only. ¢, g, are respectively the water
flow and gas flow injected or produced in the wells.

We suppose that the permeability K and the porosity ¢ vary in space but are
constant through time. The viscosities u, are constant. Moreover, we neglect
the capillary forces between the two phases leading to rewrite equation 4 as 5.

P,=P,=P (5)

The unknowns are thus the common pressure P and the saturation in gas de-
noted by S.



3.2 Numerical resolution

The continuous model is discretized using a two-points finite volume scheme and
a Fuler type time integration. The pressure and saturation are solved simulta-
neously through a fully implicit scheme [2][9]. Finally, the resulting non-linear
system of equations is solved using Newton’s method. This last is initialized
using the solution obtained at the previous step X™ as an initial guess and re-
turns the solution at the next step X" t1.

Time-step management

In theory, the time-step size of a fully implicit reservoir simulator is not limited
by stability (i.e unconditionally stable). However, in practice, when using the
standard Newton’s method, convergence may fail for larger time-step sizes. This
necessitates multiple time-step reductions to achieve convergence, resulting in a
significant number of superfluous iterations.

At the scale of a single time-step (in opposition with the global simulation
scale), the time-step is driven by Newton’s method. One can allow a maximum
number of Newton iterations N,,q, under which the method must converge.
Above this number, we start over with a smaller time-step, usually by dividing
by a factor two. There are other time-step management mechanisms at the
global simulation scale but they do not concern us in this study.

3.3 Impact of well events during the numerical resolution

WEell events generate pressure and saturation discontinuities inside the reservoir
and lead to nonlinear convergence problems as they act as singular point sources
that are tightly coupled to the reservoir model [I]. These discontinuities can
prevent Newton’s method from converging while attempting to solve the system
as the initial guess may be far from the solution. In this case, we try to solve
the system again with a lower time step and repeat till convergence. Well events
can therefore contribute to a large percentage of the actual simulation time.

4 Methodology

We propose a methodology based on the Hybrid Newton algorithm [11] [6] [15]
to alleviate the impact of well events. It consists in predicting via machine
learning an initialization closer to the solution than the standard initialization.
We use a fixed reservoir geometry and configuration where a well event occurs
at a specific location. We aim to alleviate the impact of the well opening for a
wide range of scenarios.



4.1 Hybrid Newton algorithm

The hybrid Newton algorithm is comparable to Newton algorithm except for
the initialisation. Indeed, the hybrid method proposes to initialize with a more
accurate solution instead of using the previous step solution. By using an ini-
tialisation closer to the solution, we aim to converge in fewer iterations. We
compare the residuals of the standard initialization XSLH and the hybrid ini-
tialization X1 and select the one which is closer to the solution.

pred
Hybrid Newton’s method Hybrid initialization
Initial stat Hybrid
| Hybrid initialization [ nitial state ybrid guess
X, X
T 0 pred
Initial guess \\ N
X | Comparison
T 1
Initial guess
Newton’s method X

Figure 1: Hybrid Newton’s method schematic. The method is composed of two
parts (left figure), a hybrid initialization and the well-known Newton’s method.
The hybrid initialization (right figure) compares the initial guess, usually the
solution at the previous time step and a hybrid guess.

In this article, we focus on the hybrid guess construction and performances com-
pared to the standard initial guess performances. We will compare them through
their impact on the number of Newton iteration and not by their residuals.

4.2 Initial guess construction

In the hybrid Newton algorithm, a prediction guess X gﬁg}i := (Ppred, Spred) is re-
quired to be compared in term of residuals with the initial guess X5 := (P™, S").

We propose the following construction for the pressure and saturation:
1. Ppreq: Implicit Pressure solver

2. Spred: Prediction using supervised learning

4.2.1 Pressure

During a well event, the pressure discontinuity is global in the reservoir and
instantaneous in time. We propose to use the solution of an implicit pressure
solver Pj,, (IMP) [13] as a prediction guess Ppreq. The implicit pressure solver
solves the linear elliptic equation (6) and catches the main global variations
of pressure but does not catch the small local variations of pressure due to
saturation variations. Moreover, the implicit pressure solver only requires to
solve a linear system. Therefore, we consider that it is not worth it to train a
machine learning model as we have a cheap good approximation.



div(v(Pimp, S™)) =0 (6)

with v = vy +vy, v, v4 and v, are respectively the total velocity, the gas velocity
and the water velocity inside the reservoir.

4.2.2 Saturation

During a well event, the saturation discontinuity inside the reservoir is local and
near to the well. One could use an implicit saturation solver (IMS) which would
require a Newton’s method to solve a non linear system. Therefore, we propose
to predict the saturation using a neural network considering that the inference
of a neural network is rather fast compared to the multiples Newton iterations
of the IMS solver which each require to solve a linear system.

The standard methodology uses the initial guess Xg”'l = X" = (P™ S™) and
the hybrid methodology uses the initial guess X;Tg}i = (Pjmp, Spred). Given
that we aim to conduct a fair assessment of the impact of a saturation predic-
tive model, we compare the hybrid initialization with the standard initializa-
tion. Therefore we use in this article the following initial guess for the standard

methodology XSLH = (Pipnp, S™)

4.3 Neural Network architecture

The objective is to predict using reservoir and well information the global sat-
uration state reached after a well event. A well event at a specific location and
a specific well geometry can be described with few parameters: an injection
well flow g, and a time-step dt. We also know the previous reservoir state at
X" = (Pinp, S™).

A neural network architecture with good predictive capability for different physics-
based processes is required.

Fourier Neural Operator

Neural networks are commonly used to learn relationships between finite-dimensional
spaces, but they can struggle to adapt to changes in governing equations or con-
ditions [3], [8], [12]. The Fourier Neural Operator (FNO) [10] addresses this issue

by learning relationships between infinite-dimensional spaces using data-driven
methods. This allows the FNO to understand the rules governing an entire
family of partial differential equations. Additionally, the FNO improves com-
putational efficiency by converting convolution operations in neural networks to
multiplication through the use of discrete Fourier transforms.

Selected Architecture



We use the architecture presented on figure 2 based on an uplifting dense layer,
four Fourier Layers (see figure 3) and two dense layers. We use the Gaussian
Error Linear Units (GELU) [5] as activation function for each layer. We use
two different versions of this general architecture for the training on the two
test cases. Nc and Ni are parameters respectively representing the number of
channels and the number of inputs.

(128,95,60)

(Ni,95,60)  (Nc,95,60)  (Nc,95,60) (Nc,95,60) (Nc,95,60) (Nc,95,60) 1x95x60

Fourier Fourier Fourier Fourier
layer layer layer layer

Figure 2: Selected neural network architecture composed by an uplifting dense
layer, four Fourier layers, a dense layer and a projection dense layer. Nc¢ and
Ni are parameters respectively representing the number of channels and the
number of inputs.

The architecture of a Fourier layer fig. 3 is composed of two parts, one that
apply Fourier transform, a linear transform on the lower Fourier modes and a
filter on the higher mode, then it applies the inverse Fourier transform. The
other part is composed of a local linear transformation applied to the original
input. Finally, the output of the two parts are added together and an activation
function is applied.

Input Features

There are multiple features that can be considered as input features for the
selected neural architecture. We select four possible input features, the time-
step dt, the injection flow rate g, the initial saturation S™ and the implicit
pressure Pj,,. As S™ and P, have the same shape as the output feature,
they can be used straightforward. However, as g, and dt are scalars, they need
to be reshaped. We propose to reshape dt into a constant map of value dt
everywhere. For the injection flow rate g4, we reshape it to a map of value zero
everywhere except at the well location where it takes the value g,.

5 Test case

5.1 SHPCO02 benchmark
Context

As a practical use case, we use the SHPCO2 [4] benchmark to test our methods.



Figure 3: The Fourier layer starts with an input vector v, applies the Fourier
transform % to it, then performs a linear transformation R on the lower Fourier
modes while filtering out the higher modes. The inverse Fourier transform .# ~1
is then applied. A local linear transformation W is applied to the original input
vector v. The output of the top and bottom operations are then added together
and an activation function is applied.

Pimp Sn dq dt

Figure 4: Qualitative view of Neural network input feature possible assembly.

This benchmark was created for modelling reactive transport for CO, geological
storage. The SHPCO2 geological configuration is inspired from Sleipner, the
world’s first commercial CO4 storage project. Sleipner is an area located in the
North-Sea, belonging to Norway and exploited for its natural gas field since the
mid-1990s.

As the natural gas produced contains up to 9% CO; , the Sleipner CO5 gas pro-
cessing and capture unit is built to evade the expensive 1991 Norwegian C'Oq
tax. The captured C'O; is thus injected and stored in a deep saline formation
one kilometer below the seabed.

Reservoir configuration

We adapt the original 2D SHPCO2 benchmark by removing the gas zone and
replacing it by a well at its center.

The domain after modification is separated in two zones, the first zone called
”Barrier zone” is coloured in green on the figure 5 and the second zone called
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Figure 5: Adapted 2D SHPCO2 case geometry

”Drain zone” is formed of the rest of the domain. These two domains have
different petrophysical properties.

Petrophysical properties

Barrier zone Drain zone
Porosity [-] 0.2 0.2
Permeability[m?] l.e-15 100.e-15

Table 1: Petrophysical Parameters

Phase properties

Gas phase Water phase
Viscosity [Pa.s]  0.0285e-03  0.571e-03

Table 2: Physical properties of fluids

Relative permeability model

We use a quadratic relative permeability model:

Quadratic kr kr(S) = 52 and Er(Sy) = (1—5)2

Boundary Conditions

The boundary conditions of the adapted SHP CO, 5 are presented in the fol-
lowing table 3:

10



Pressure[Pa] Composition
Injector 1 110.e+05 Water
Injector 2 105.e+05 Water
Productor 100.e4-05 -

Table 3: Boundary condition parameters

It is to note that the Productor has the composition of what is produces. We
consider the following mesh geometry which corresponds to the small (S) mesh
size of the SHPCO2 benchmark.

Mesh | Dx [m] Dy [m] | Nx Ny | NCell
S 50 50 95 60 | 5700

Table 4: 2D mesh parameters

‘Well conditions

We detail the well conditions in the following table 5

Injection Flow rate | Composition | well radius | Opening period
parameters [m? /3] [m] [s]
CO2 injector g Gas (S=1.) 0.1 dt

Table 5: C'O4 injection well conditions

5.2 Test cases

We propose two different test cases based on the SHPCO2 benchmark and it’s
reservoir configuration presented in 5.1. The test case 1 has constant initial
saturation S0 while the test case 2 has more realistic initial saturations.

5.2.1 Test case 1
Case construction

We launch simulations with a constant reservoir configuration except for three
parameters, SO0 the initial saturation, g, the well injection flow rate and dt
the time-step. We allow a maximum of 200 Newton iterations to converge.
The convergence criterion is based on the residual norm and we iterate till
dt||R|ls < € with € = 1e7% and R the residual of the physical system.

We generate 5004 parameter combinations through a Latin Hypercube Sampling
strategy [14] within the following ranges: S0 € [0,0.6] , |g,| € [le75, 1le~3]m?/s
which corresponds to a well pressure €]10,20] MPa and dt € [0.1,10] years.
Note that Pj,, is obtained using the Implicit Pressure solver (IMP).

11
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Figure 6: Test case 1 example of reservoir Pressure (left) and Saturation (right)
obtained after a time-step with SO = 3.8le™%, ¢, = 7.6le™*m?/s and dt =
2.4eT8s.

Numerical performances using standard method

For each combination of parameters, we plot on the figure 7 the number of
Newton iterations needed to converge for each parameter combinations (gg, dt).
Even though the initial saturation S0 has impact on the number of newton
iterations, we do not plot it here for clarity purpose. We observe the the number
of Newton iterations needed to converge increases with the well injection flow
rate and the time-step and that there is a maximum of 30 Newton iterations
required to converge.
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Figure 7: Distribution of test case 1 Newton iterations considering well event
parameters g, the well injection flow and dt the time-step in seconds. The

maximum number of Newton iterations needed to converge is 30.

Neural Network training

We use the Neural Network architecture presented in figure 2 with Nc = 32
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channels in the Fourier layers and {g,, dt, S™} as inputs (i.e Ni = 3). The input
parameter dt is a scalar, therefore, we reshape it in a constant map of shape
(95,60). Moreover, g, is also a scalar. We reshape it in a (95,60) map which
values are zeroes everywhere except at the well location where it takes g, as
value.

We split the data in a train and test sets with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 27 hours using Adam optimizer, a
batch size of 10, a learning rate of 5e™5, a momentum of 0.9, a weight decay
of 1.e™* and keep the model parameters corresponding to the lowest test loss
value. We show the L2 loss evolution on the figure 8. The lowest test loss
value is 2.02¢~2 reached at epoch 17285. The corresponding train loss value is
1.91e~2.

Train/Test loss

= Train loss
10° 4 st loss

107 1

T T T T T T T T
o 2500 5000 Y500 10000 12500 15000 17500
Epoch

Figure 8: L2 loss evolution through epochs for test case 1. The lowest test loss
value is 2.02e72 reached at epoch 17285. The corresponding train loss value is
1.91e72.

5.2.2 Test case 2

In the test case 1, we use constant reservoir saturation maps as initial satura-
tion SO and realised one well opening with a particular well injection flow rate
gy and time-step dt. In the test case 2, we use more realistic initial saturation
maps. To do so, we realise N consecutive well opening and closure events (see
figure 9. We use Latin Hypercube Sampling strategy to generate parameter
combinations. The initial parameters are q,, dt and S™. After the first simu-
lation, we close the well (i.e ¢; = 0m?/s) and launch another simulation using
the previous reservoir state obtained and a new time-step dt (sampled through
Latin Hypercube Sampling). Finally we open the well and launch a simulation
with g, and dt as parameters. The opening and closure step are repeated as
many times as needed (see figure 9). The reservoir state is saved at every well
opening or closure.

We generate data with N = 9 (i.e 5 well openings and 4 closures) and 3600

13
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Figure 9: Test case 2 workflow with multiple well openings and closures. A step
of time with a null well flow is realised between each closure and opening.

parameter combinations for each step. The parameters are sampled using a
Latin Hypercube Sampling strategy within the following ranges: S0 € [0, 0.6] ,
gy € [-1e75, —1e73Im?/s and dt € [1,10] years in seconds.

We perform simulations where the well injected flow g, is not null as input data
for the neural network training. For N = 9, we have 5 wells openings (i.e g; > 0)
and 3600 parameter combinations for each one. Therefore, there is a total of
18000 samples. When splitting the samples in train and test sets, data coming
from a same scenario are sent together in a set (i.e 5 per 5 for N =9).

Figure 10: Example of reservoir Pressure (left) and Saturation (right) obtained
after a time-step with ¢, = —9.8e"*m?/s and dt = 3.1e*®s. The simulation
required 12 Newton iterations to converge.

Numerical performances using standard method

For each combination of parameters, we plot on the figure 11 the number of
Newton iteration needed to converge

14
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Figure 11: Test case 2 distribution of Newton iterations considering well event
parameters g, the well injection flow and dt the time-step.

Neural Network training

We use the Neural Network architecture presented in figure 2 with Nc = 64
channels in the Fourier layers. As the case is more complex than the test case 1,
the neural network is harder. To alleviate this complexity, the implicit pressure
is added to the input features . We therefore use {Pinp,qq,dt, S} as input
features (i.e Ni = 4). The input parameter dt is a scalar, therefore, we reshape
it in a constant map of shape (95, 60). Moreover, g, is also a scalar. We reshape
it in a (95,60) map which values are zeroes everywhere except at the well location
where it takes g4 as value. S™ and Pj,,;, can be used straightforward.

We split the data in a train and test set with a 80/20 splitting ratio. We train
the model on a NVIDIA V100 GPU during 132 hours using Adam optimizer,
a batch size of 128, a momentum of 0.9, a weight decay of 1.e~* and keep the
model parameters corresponding to the lowest test loss value. We start with a
learning rate of 1.e™%, at iteration number 1000, we decrease it to 5.e7°, then
1.e7% at iteration number 1600 and finally we set the learning rate to 5.e~7 at
iteration number 3600 and until the end.

We show the L2 loss evolution in the figure 12. The lowest test loss value is
1.16e~! reached at epoch 7295. The corresponding train loss value is 1.1171.

15
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Figure 12: L2 loss evolution through epochs for the test case 2. The lowest test
loss value is 1.167! reached at epoch 7295. The corresponding train loss value
is 1.11e~!. We start with a learning rate of 1.e™%, at iteration number 1000, we
change it to 5.7, then 1.e™° at iteration number 1600 and finally we set the
learning rate to 5.e~7 at iteration number 3600 and until the end.

6 Results and discussion

6.1 Results

We launch simulations following the methodology and compare the number of
Newton iterations with the reference case.

6.1.1 Test case 1

We launch simulations with the same parameters combinations of test case 1,
X§H = (Pimp, S™) and X050 = (Pinp, Sprea) s initial guesses. Py, is calcu-
lated using the Implicit Pressure Solver and S, .q using the model obtained in

the previous section. The results are presented in figure 13.

We observe that the hybrid methodology enables an initialization of Newton’s
method directly in the domain of quadratic convergence, leading to a maximum
number of Newton iterations of 5 for the training set and 4 for the test set.
Using the hybrid formulation, the average speed up is 54% , i.e 54% less Newton
iterations than the standard methodology for the training set and by 53% for
the test set.

16
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Figure 13: Test case 1 scatter plot of the number of Newton iterations needed
to converge using standard methodology versus using hybrid methodology on
the train set (left figure) and on the test set (right figure). The color bar shows
the distribution of Newton iterations using standard and Hybrid methodologies
for the train and test set respectively.

6.1.2 Test case 2

We launch simulations with the same parameters combinations of test case 2,
Xg“ = (Pimp, S™) and X;’j@}l = (Pimp, Spred) as initial guesses. Py, is calcu-
lated using the Implicit Pressure Solver and Sp,.q using the model obtained in

the previous section.

Considering every simulations and using the hybrid methodology, we speed up
by 39% , i.e 39% less Newton iterations than the standard methodology the
computations for the training set and by 38.7% for the test set.

6.2 Discussion

Considering a wide range of injection scenarios, we show that it is possible to
learn the impact of a well event on a reservoir. We speed up by 53% the handling
of well events for the test case 1 and by 38% for the test case 2. However, there
are some limiting issues that needs to be considered.

Constant discretization

We use a specific discretization (SHPCO2 S mesh) for the data generation and
we predict on the same discretization. This implies that the model would not
work for different meshes. A new model has to be generated. However, the idea
of a model invariant to discretization is being more and more developed through
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Figure 14: Test case 2 scatter plot of the number of Newton iterations needed
to converge using standard methodology versus using hybrid methodology on
the train set (left figure) and on the test set (right figure). The color bar shows
the distribution of Newton iterations using standard and Hybrid methodologies
for the train and test set respectively.

Neural Operators [7]. A model could be trained using data from different dis-
cretizations and predict the solution on multiple discretizations.

Constant well position

The methodology is applied on a constant grid with a constant well position.
While the pressure variations are global during a well event, the saturation vari-
ations are local. Therefore, if we change the well position, the model prediction
will not be accurate. To alleviate this issue, a local approach could be used, i.e
create a model that predicts the saturation only around a well.

7 Conclusion

We proposed in this article a methodology to alleviate the impact of well events
during the numerical simulation of C'Os storage in the subsurface. We comple-
ment the standard numerical algorithm by predicting an initialization of New-
ton’s method directly in the domain of convergence using a supervised learning
approach based on recently developed Fourier Neural Operators. Our results
show a significant decrease in the number of Newton iterations required for
convergence, while ensuring the convergence to the correct solution.
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