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Influence of the post-selection on the HOM visibility

It is well known that dephasing degrades the visibility of two-photon interference when the time dif-

ference between coincidences is larger than the dephasing time [33-35]. Time postselection of photon

detection events, allowed by suitable detector resolution, can thus increase the Hong-Ou-Mandel (HOM)

visibility and has been used to boost the fidelity of quantum protocols based on HOM interference – at

the price of a lower count rate [3,4]. In this section, we calculate the evolution of the HOM visibility upon

modification of the post-selection time window based on numerical integration of the master equation.

Our system is modeled by a two-level system with computational states |g〉 and |e〉, and is described

in the rotating frame, in the absence of coherent laser drive. As a consequence, the time evolution

is purely dissipative, governed by the Lindblad master equation ρ̇ =
∑

ci
ciρc

†
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2

{
c†i ci, ρ

}
, with ci

the relevant collapse operators. The dissipation terms are spontaneous emission at rate Γsp and pure

dephasing at rate γ∗. The corresponding collapse operators read, respectively,
√

Γspσ
− and

√
γ∗/2σz

(in the convention where γ∗ = 1/T ∗2 [32]), where σz = |e〉〈e| − |g〉〈g|, and σ− = |g〉〈e|. The effect of

the non-resonant laser pulse is accounted for by taking |e〉 as the initial state. In the far field, the field

operators are locked to the source operators [36], such that a(t) ∝ σ− (t− r/c), with a(t) the photon

annihilation operator. The field observables are therefore expressed in terms of source operators in the

following.

The HOM visibility can be expressed as a function of the first- and second-order coherence of the light

field [37]:

g
(2)
HOM(0) =

1

2
g
(2)
HBT(0) +

1

2

(
1− 1

N2

∫ ∫
dtdt′

∣∣∣G(1)(t, t′)
∣∣∣2)

with G(1)(t, t′) = 〈σ+(t)σ−(t′)〉, N a normalization factor N =
∫

dt〈σ+(t)σ−(t)〉 =
∫

dt〈σee(t)〉 and

g
(2)
HBT(0) = 0 for an ideal single-photon source.

G(1)(t, t′) is numerically calculated based on the quantum regression theorem using the Qutip tool-

box [38,39]. To account for the temporal post-selection, the integrals run over t, t′ ∈ [0,∆t], where ∆t is

the post-selection window size. g
(2)
HOM(0) is calculated as a function of ∆t for various values of γ∗.

Figure 1 shows the result of the calculation for six values of γ∗. It can be seen that the visibility

VHOM = 1 − 2g
(2)
HOM(0) decays with increasing ∆t. The decay time depends on the dephasing, and is

plotted as a function of γ∗ in main text figure 3b. The visibility for ∆t ≈ 0 is always high since the

photons are always indistinguishable at short delays [33], and decays faster for larger dephasing rates.

The long-time asymptote, corresponding to integration of all detection events, coincides with the bare

(non-postselected) indistinguishability T2/2T1 = Γsp/(Γsp + 2γ∗) [30].
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FIG. 1: VHOM as a function of ∆t for different values of γ∗.

Influence of the Purcell factor on the HOM visibility

As mentioned in the previous section, the integrated HOM visibility (without any post-selection) for

an ideal emitter is VHOM = T2/2T1 [30] – the ideal case T2 = 2T1 providing VHOM = 1. In a cavity,

the Purcell effect modifies the lifetime according to T ′1 = T1/Fp, where Fp is the Purcell factor. Given

our estimation of T ∗2 = 2.4 ns, an indistinguishability of 0.80 (resp 0.90) corresponds to Fp = 7 (resp.

Fp = 15).

[3] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J.
Twitchen, L. Childress, and R. Hanson, Heralded entanglement between solid-state qubits separated by three
metres, Nature 497, 86 (2013).
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