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Context
• Visual place recognition (VPR) for self-driving vehicles [1].

• Large-scale environment and computational cost.

• Neurocybernetics approach.

Contributions
• TSC, a new model of sparse coding for encoding visual information.

• SMP, a neurocybernetic model of visual localization model using TSC.

TSC: Topologic Sparse Coding

General overview of the TSC model

• New method of sparse coding aims to compress
visual information, inspired by the visual cortex [3].

• Build a topological sparse dictionary: a sparse
dictionary arranged on a 2D grid.

• Allows sparse code to be more consistent:
contrarily to classic sparse coding methods, two
close images have much similar codes.

Simplified operation

• Learns a sparse representation called a ”dictionary”
composed of M × N elements called ”atoms”.

• Alternation between two processes to learn a
dictionary, given a sparsity and topology
constraint:

▶ An encoding stage where the current image is
reconstructed with a limited number of atoms.

▶ An update stage where the dictionary is
modified to improve it reconstruction
performance, depending of the encoding result.

• Based on the Sparse Hebbian Learning algorithm.

SMP: application to visual localization
• Modification of LPMP, a bio-inspired model of VPR [2], to integrate TSC .

• TSC replaces the log-polar block to compress landmarks representation.

Experiments

Dataset: Three routes with three distinct trajectories extracted from the
OxfordCar dataset (total dataset distance: 4.2 km).
Evaluation methodology: Ability of models to recognize already visited places.

• Three distances of sampling on the learning dataset : 2m, 5m and 10m.

• Evaluation in cross-validation (for each routes).

• Comparison with state-of-the-art VPR models: Netvlad and CoHog.

Metrics: AUC (area under the curve) and recall at 100% of precision/recall
curves; average processing frequency of an image.

Results: configuration/performance

AUC by configuration

• Mean AUC increases with
the size of TSC.

• SMP-30 has an average
AUC equivalent to
NetVlad.

• SMP-30 has a slightly
better average AUC than
CoHog, with a difference
of 5%.

• Best performances with
SMP-30.

Mean frequency (Hz)

• Mean computation
frequency decreases with
the size of TSC.

• At equivalent AUC,
SMP-30 allows to achieve
a gain of ×60 with
NetVlad-1-CPU and a gain
of ×3 with
NetVlad-4-CPU.

• At equivalent AUC,
SMP-18 allows to achieve
a gain of ×2 with CoHog.

Results: state of the art comparison
Mean AUC and recall at 100% precision with SMP-30

• SMP-30 has better localization performance than the CoHog model in almost
all cases.

• SMP-30 has competitive localization performance with the NetVlad model.

Conclusion
• TSC improves computation cost and localization accuracy of LPMP.

• Allows a trade-off between localization and time performance.

• Performs better than two state-of-the-art reference models.

References
[1] Y. Espada, N. Cuperlier, G. Bresson, and O. Romain. From Neurorobotic Localization to

Autonomous Vehicles. Unmanned Systems, 07(03):183–194, July 2019.

[2] P. Gaussier and S. Zrehen. Perac: A neural architecture to control artificial animals. Robotics
and Autonomous Systems, 16(2–4):291–320, Dec 1995.

[3] B. Olshausen and D. Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology,
14(4):481–487, Aug 2004.


