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Context

• Visual place recognition (VPR) for self-driving vehicles [START_REF] Espada | From Neurorobotic Localization to Autonomous Vehicles[END_REF].

• Large-scale environment and computational cost.

• Neurocybernetics approach.

Contributions

• TSC, a new model of sparse coding for encoding visual information.

• SMP, a neurocybernetic model of visual localization model using TSC.

TSC: Topologic Sparse Coding

General overview of the TSC model • New method of sparse coding aims to compress visual information, inspired by the visual cortex [START_REF] Olshausen | Sparse coding of sensory inputs[END_REF]. • Build a topological sparse dictionary: a sparse dictionary arranged on a 2D grid. • Allows sparse code to be more consistent: contrarily to classic sparse coding methods, two close images have much similar codes. Simplified operation • Learns a sparse representation called a "dictionary" composed of M × N elements called "atoms". • Alternation between two processes to learn a dictionary, given a sparsity and topology constraint: ▶ An encoding stage where the current image is reconstructed with a limited number of atoms. ▶ An update stage where the dictionary is modified to improve it reconstruction performance, depending of the encoding result. • Based on the Sparse Hebbian Learning algorithm.

SMP: application to visual localization

• Modification of LPMP, a bio-inspired model of VPR [START_REF] Gaussier | Perac: A neural architecture to control artificial animals[END_REF], to integrate TSC .

• TSC replaces the log-polar block to compress landmarks representation.

Experiments

Dataset: Three routes with three distinct trajectories extracted from the OxfordCar dataset (total dataset distance: 4.2 km). Evaluation methodology: Ability of models to recognize already visited places.

• Three distances of sampling on the learning dataset : 2m, 5m and 10m.

• Evaluation in cross-validation (for each routes).

• Comparison with state-of-the-art VPR models: Netvlad and CoHog. Metrics: AUC (area under the curve) and recall at 100% of precision/recall curves; average processing frequency of an image. 

Conclusion

• TSC improves computation cost and localization accuracy of LPMP.

• Allows a trade-off between localization and time performance.

• Performs better than two state-of-the-art reference models.

  Results: configuration/performance AUC by configuration • Mean AUC increases with the size of TSC. • SMP-30 has an average AUC equivalent to NetVlad. • SMP-30 has a slightly better average AUC than CoHog, with a difference of 5%. • Best performances with SMP-30. Mean frequency (Hz) • Mean computation frequency decreases with the size of TSC. • At equivalent AUC, SMP-30 allows to achieve a gain of ×60 with NetVlad-1-CPU and a gain of ×3 with NetVlad-4-CPU. • At equivalent AUC, SMP-18 allows to achieve a gain of ×2 with CoHog. Results: state of the art comparison Mean AUC and recall at 100% precision with SMP-30 • SMP-30 has better localization performance than the CoHog model in almost all cases. • SMP-30 has competitive localization performance with the NetVlad model.