
HAL Id: hal-04085303
https://hal.science/hal-04085303

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semiring Labelled Decision Diagrams, Revisited:
Canonicity and Spatial Efficiency Issues

Hélène Fargier, Pierre Marquis, Nicolas Schmidt

To cite this version:
Hélène Fargier, Pierre Marquis, Nicolas Schmidt. Semiring Labelled Decision Diagrams, Revisited:
Canonicity and Spatial Efficiency Issues. 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), International Joint Conferences on Artificial Intelligence (IJCAI), Aug 2013, Pékin,
China. pp.884-890. �hal-04085303�

https://hal.science/hal-04085303
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12763

To cite this version : Fargier, Hélène and Marquis, Pierre and
Schmidt, Nicolas Semiring Labelled Decision Diagrams, Revisited:
Canonicity and Spatial Efficiency Issues. (2013) In: International Joint
Conference on Artificial Intelligence - IJCAI 2013, 3 August 2013 - 9
August 2013 (Beijing, China).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12763/
http://oatao.univ-toulouse.fr/12763/
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Semiring Labelled Decision Diagrams, Revisited:
Canonicity and Spatial Efficiency Issues∗

Hélène Fargier1, Pierre Marquis2, Nicolas Schmidt1,2

1IRIT-CNRS, Université de Toulouse, France
2CRIL-CNRS, Université d’Artois, Lens, France

fargier@irit.fr {marquis,schmidt}@cril.fr

Abstract

Existing languages in the valued decision diagrams
(VDDs) family, including ADD, AADD, and those
of the SLDD family, prove to be valuable target lan-
guages for compiling multivariate functions. How-
ever, their efficiency is directly related to the size
of the compiled formulae. In practice, the exis-
tence of canonical forms may have a major impact
on the size of the compiled VDDs. While efficient
normalization procedures have been pointed out for
ADD and AADD the canonicity issue for SLDD for-
mulae has not been addressed so far. In this pa-
per, the SLDD family is revisited. We modify the
algebraic requirements imposed on the valuation
structure so as to ensure tractable conditioning, op-
timization and normalization for some languages of
the revisited SLDD family. We show that AADD is
captured by this family. Finally, we compare the
spatial efficiency of some languages of this family,
from both the theoretical side and the practical side.

1 Introduction

In configuration problems of combinatorial objects (like
cars), there are two key tasks for which short, guaranteed
response times are expected: conditioning (propagating the
end-user’s choices: version, engine, various options ...) and
optimization (maintaining the minimum cost of a feasible car
satisfying the user’s requirements). When the set of feasible
objects and the corresponding cost functions are represented
as valued CSPs (VCSPs for short see [Schiex et al., 1995]),
the optimization task is NP-hard in the general case, so short
response times cannot be ensured.

Valued decision diagrams (VDDs) from the families ADD
[Bahar et al., 1993], EVBDD [Lai and Sastry, 1992; Lai et al.,
1996; Amilhastre et al., 2002] and their generalization SLDD
[Wilson, 2005], and AADD [Tafertshofer and Pedram, 1997;
Sanner and McAllester, 2005] do not have such a drawback
and appear as interesting representation languages for com-
piling mappings associating valuations with assignments of
discrete variables (including utility functions and probability

∗This work is partially supported by the project BR4CP ANR-
11-BS02-008 of the French National Agency for Research.

distributions). Indeed, those languages offer tractable con-
ditioning and tractable optimization (under some conditions
in the SLDD case). However, the efficiency of these opera-
tions is directly related to the size of the compiled formulae.
Following [Darwiche and Marquis, 2002], the choice of the
target representation language for the compiled forms must
be guided by its succinctness. From the practical side, nor-
malization (and all the more canonicity) are also important:
subformulae in normalized form can be more efficiently rec-
ognized and the canonicity of the compiled formulae facili-
tates the search for compiled forms of optimal size (see the
discussion about it in [Darwiche, 2011]). Indeed, the ability
to ensure a unique form for subformulae prevents them from
being represented twice or more.

In this paper, the SLDD family [Wilson, 2005] is revisited,
focusing on the canonicity and the spatial efficiency issues.
We extend the SLDD setting by relaxing some algebraic re-
quirements on the valuation structure. This extension allows
us to capture the AADD language as an element of e-SLDD,
the revisited SLDD family. We point out a normalization pro-
cedure which extends the AADD ’s one to some representa-
tion languages of e-SLDD. We also provide a number of
succinctness results relating some elements of e-SLDD with
ADD and AADD. We finally report some experimental results
where we compiled some instances of an industrial configu-
ration problem into each of those languages, thus comparing
their spatial efficiency from the practical side.

The rest of the paper is organized as follows. Section
2 gives some formal preliminaries on valued decision dia-
grams. Section 3 presents the e-SLDD family and describes
our normalization procedure. In Section 4, succinctness re-
sults concerning ADD, some elements of the e-SLDD fam-
ily, and AADD are pointed out. Section 5 gives and discusses
our empirical results about the spatial efficiency of those lan-
guages. Finally, Section 6 concludes the paper.

2 Valued Decision Diagrams

Given a finite set X = {x1, . . . , xn} of variables where each
variable x ∈ X ranges over a finite domain Dx, we are inter-
ested in representing mappings associating an element from
a valuation set E with assignments ~x = {(xi, di) | di ∈

Dxi
, i = 1, . . . , n} (~X will denote the set of all assignments

over X). E is the carrier of a valuation structure E , which

can be more or less sophisticated from an algebraic point of
view. A representation language given X w.r.t. a valuation
structure E is mainly a set of data structures. The targeted
mapping is called the semantics of the data structure and the
data structure is a representation of the mapping:

Definition 1 (representation language) (inspired from
[Gogic et al., 1995]) Given a valuation structure E , a
representation language L over X w.r.t. E is a 4-tuple
〈CL,VarL, IL, sL〉 where CL is a set of data structures
α (also referred to as CL formulae), VarL : CL → 2X

is a scope function associating with each CL formula the
subset of X it depends on, IL is an interpretation function
associating with each CL formula α a mapping IL(α) from
the set of all assignments of VarL(α) to E, and sL is a size
function from CL to N providing the size of any CL formula.

Different formulae can share the same semantics:

Definition 2 (equivalent formulae) Let L1 (resp. L2) be a
representation language over X w.r.t. E1 (resp. E2) where
E1 = E2. α ∈ L1 is equivalent to β ∈ L2 iff VarL1

(α) =
VarL2

(β) and IL1
(α) = IL2

(β).

In this paper, we are specifically interested in data struc-
tures of the form of valued decision diagrams:

Definition 3 (valued decision diagram) A valued decision
diagram (VDD) over X w.r.t. E is a finite DAG α with a
single root, s.t. every internal node N is labelled with a
variable x ∈ X and if Dx = {d1, . . . , dk}, then N has k
outgoing arcs a1, . . . , ak, so that the arc ai of α is valued by
v(ai) = di. We note out(N) (resp. in(N)) the arcs out-
going from (resp. incoming to N). Nodes and arcs can also
be labelled by elements of E: if N (resp. ai) is node (resp.
an arc) of α, then φ(N) (resp. φ(ai)) denotes the label of
N (resp. ai). Finally, each VDD α is a read-once formula,
i.e., for each path from the root of α to a sink, every variable
x ∈ X occurs at most once as a node label.

When ordered VDDs are considered, a total ordering over
X is chosen and for each path from the root of α to a sink,
the associated sequence of internal node labels is required to
be compatible w.r.t. this variable ordering.

The key problems we focus on are the conditioning prob-
lem (given a CL formula α over X w.r.t. E and an assignment

~y ∈ ~Y where Y ⊆ X , compute a CL formula representing
the restriction of IL(α) by ~y) and the optimization problem
(given a CL formula α over X w.r.t. E , find an assignment
~x∗ ∈ ~X such that IL(α)(~x∗) is not dominated w.r.t. some
relation � over E – typically, � is a total order). Condi-
tioning is an easy operation on a VDD α. Mainly, for each
(y, di) ∈ ~y, just by-pass in α every node N labeled by y by
linking directly each of its parents to the child Ni of N such
that v((N, Ni)) = di (N and all its outgoing arcs are thus
removed). However, optimization is often more demanding,
depending on the family of VDDs under consideration.
ADD, SLDD, and AADD are representation languages com-

posed of valued decision diagrams. The scope functions
VarADD, VarSLDD, and VarAADD are the same ones and
they return the set of variables Var(α) from X where each
x ∈ Var(α) labels at least one node in α. The size functions

sADD, sSLDD, and sAADD are closely related: the size of a
(labelled) decision graph α is the size of the graph (number
of nodes plus number of arcs) plus the sizes of the labels in
it. The main difference between ADD, SLDD, and AADD lies
in the way the decision diagrams are labelled and interpreted.

For ADD, no specific assumption has to be made on the
valuation structure E , even if E = R is often considered:

Definition 4 (ADD) ADD is the 4-tuple 〈CADD, VarADD,
IADD, sADD〉 where CADD is the set of ordered VDDs α over
X such that sinks S are labelled by elements of E, and the
arcs are not labelled; IADD is defined inductively by: for ev-
ery assignment ~x over X ,

• if α is a sink node S, labelled by φ(S) = e, then
IADD(α)(~x) = e,

• else the root N of α is labelled by x ∈ X; let d ∈ Dx

such that (x, d) ∈ ~x, a = (N, M) the arc such that
v(a) = d, and β the ADD formula rooted at node M in
α; we have IADD(α)(~x) = IADD(β)(~x).

Optimization is easy on an ADD formula: every path from
the root of α to a sink labelled by a non-dominated valuation
among those labeling the sinks of α can be read as a (usually
partial) variable assignment which can be extended to a (full)
optimal assignment.

In the SLDD framework [Wilson, 2005], the valuation
structure E must take the form of a commutative semiring
〈E,⊕,⊗, 0s, 1s〉: ⊕ and ⊗ are associative and commutative
mappings from E × E to E, with identity elements (respec-
tively) 0s and 1s, ⊗ left and right distributes over ⊕, and 0s

is an annihilator for ⊗ (∀a ∈ E, a ⊗ 0s = 0s ⊗ a = 0s).

Definition 5 (SLDD) Let E = 〈E, ⊕, ⊗, 0s, 1s〉 be a com-
mutative semiring. SLDD is the 4-tuple 〈CSLDD, VarSLDD,
ISLDD, sSLDD〉 where CSLDD is the set of VDDs α over X
with a unique sink S, satisfying φ(S) = 1s, and such that
the arcs are labelled by elements of E, and ISLDD is defined
inductively by: for every assignment ~x over X ,

• if α is the sink node S, then ISLDD(α)(~x) = 1s,

• else the root N of α is labelled by x ∈ X; let d ∈ Dx

such that (x, d) ∈ ~x, a = (N, M) the arc such that
v(a) = d, and β the SLDD formula rooted at node M in
α; we have ISLDD(α)(~x) = φ(a) ⊗ ISLDD(β)(~x).

SLDD languages are not specifically suited to optimization
w.r.t. any relation �. Specifically, [Wilson, 2005] considers
the following addition-is-max-or-min assumption about ⊕:

∀a, b ∈ E, a ⊕ b ∈ {a, b}.

Under this assumption, ⊕ is idempotent and the relation E

defined by a E b iff a⊕b = a is total. [Wilson, 2005] shows
that, when � coincides with E, computing the valuation
of ISLDD(α) maximal w.r.t. � amounts to performing ⊕-
variable elimination; this can be achieved in polynomial time
under the linear-time computability assumption for ⊗ and ⊕.

Sanner and Mc Allester’s AADD framework [2005] focuses
on the valuation set E = R

+ but enables decision graphs into
which the arcs are labelled with pairs of values from R

+ and
considers two operators, namely + and ×:

Definition 6 (AADD) AADD is the 4-tuple 〈CAADD,
VarAADD, IAADD sAADD〉 where CAADD is the set of
ordered VDDs α over X with a unique sink S, satisfying
φ(S) = 1, and such that the arcs are labelled by pairs 〈q, f〉
in R

+ × R
+; IAADD is defined inductively by: for every

assignment ~x over X ,

• if α is the sink node S, then IAADD(α)(~x) = 1,

• else the root N of α is labelled by x ∈ X; let d ∈ Dx

such that (x, d) ∈ ~x, a = (N, M) the arc such that
v(a) = d and φ(a) = 〈q, f〉, and β the AADD formula
rooted at node M in α; we have

IAADD(α)(~x) = q + (f × IAADD(β)(~x)).

For the normalization purpose, each α is equipped with
a pair 〈q0, f0〉 from R

+ × R
+ (the ”offset”, labeling the

root of α); the interpretation function of the resulting ”aug-
mented” AADD is given by, for every assignment ~x over X ,

I
〈q0,f0〉

AADD (α)(~x) = q0 + (f0 × IAADD(α)(~x)).

Conditioning and optimization are also tractable on AADD
formulae (see [Sanner and McAllester, 2005]).

3 Revisiting the SLDD Framework

In the following, we extend the SLDD framework in two di-
rections: we relax the algebraic requirements imposed on the
valuation structure and we point out a normalization proce-
dure which extends the AADD ’s one to some representation
languages of e-SLDD, the extended SLDD family.

A first useful observation is that, in the SLDD framework,
⊕ is not used for defining the SLDD language. Actually,
different ⊕ may be considered over the same formula (e.g.,
when SLDD is used to compile a Bayesian net, ⊕ = + can be
used for marginalization purposes and ⊕ = max can be con-
sidered when a most probable explanation is looked for). This
explains why the requirements imposed on ⊕ in the SLDD

setting can be relaxed. Let us recall that a monoid is a triple
〈E,⊗, 1s〉 where E is a set endowed with an associative bi-
nary operator ⊗ with identity element 1s:

Definition 7 (e-SLDD) For any monoid E = 〈E, ⊗,
1s〉, e-SLDD is the 4-tuple 〈Ce-SLDD, Vare-SLDD,
Ie-SLDD⊗

, se-SLDD〉, defined as the SLDD one, except

that, for the normalization purpose, each e-SLDD formula
α is associated with a value q0 ∈ E (the ”offset” of the
data structure, labeling its root); the interpretation function
I

q0

e-SLDD of the extended SLDD setting is given by, for every

assignment ~x over X ,

I
q0

e-SLDD(α)(~x) = q0 ⊗ Ie-SLDD(α)(~x).

Several choices for ⊗ remain usually possible when E is
fixed; we sometimes make the notation of the language more
precise (but not too heavy) and write e-SLDD⊗ instead of
e-SLDD.

Obviously, the e-SLDD framework captures the SLDD

one: when 〈E, ⊕, ⊗, 0s, 1s〉 is a commutative semiring, then
〈E, ⊗, 1s〉 is a monoid, and every SLDD formula can be in-
terpreted as an e-SLDD one (choose q0 = 1s). Interestingly,
the e-SLDD framework also captures the AADD language:

Proposition 1 Let E = R
+ × R

+, 1s = 〈0, 1〉 and ⊗ = ⋆
be defined by ∀b, b′, c, c′ ∈ E, 〈b, c〉 ⋆ 〈b′, c′〉 = 〈b + c × b′,
c × c′〉. E = 〈E, ⊗, 1s〉 is a monoid.

The correspondence between AADD and e-SLDD⋆ is made
precise by the following proposition:

Proposition 2 Let α be an AADD formula, also viewed as an

e-SLDD⋆ formula. We have: ∀~x ∈ ~X , if IAADD(α)(~x) = a
and Ie-SLDD⋆

(α)(~x) = 〈b, c〉, then a = b + c.

Observe that ⋆ is not commutative: the relaxation of the
commutativity assumption is necessary to capture the AADD
framework within the e-SLDD family.

Let us now switch to the normalization/canonicity issues
for e-SLDD. When compiling a formula, normalization (and
all the more canonicity) are important for computational rea-
sons: in practice, subformulae in reduced, normalized form
which have been already encountered and cached can be more
efficiently recognized. Besides, when the canonicity prop-
erty is ensured, the recognition issue boils down to a sim-
ple equality test. Thus, canonicity is more demanding and is
achieved for ordered VDDs, only: reduced ADD formulae and
normalized and reduced AADD formulae (which are ordered
VDDs) offer the canonicity property. Contrastingly, though
some simplification rules have been considered in [Wilson,
2005], no normalization procedure and canonicity conditions
for SLDD have been pointed out so far.

The idea at work for normalizing AADD formulae is to
propagate from the sink to the root of the diagram the min-
imum valuations of the outgoing arcs. In our more general
framework, minimality is characterized by an idempotent,
commutative and associative operator ⊕, which induces the
binary relation D over E given by:

∀a, b ∈ E, a D b iff a⊕b = b.

The fact that is ⊕ is associative (resp. commutative, idem-
potent) implies that the induced relation D is transitive (resp.
antisymmetric, reflexive), hence an order over E.

Definition 8 (⊕-normalisation, ⊕-reduction) An e-SLDD

formula α is ⊕-normalized iff for any node N of α,
⊕a∈out(N)φ(a) = 1s (by convention, we define ⊕a∈∅φ(a) =
1s). An e-SLDD formula α is ⊕-reduced iff it is ⊕-
normalized, and reduced, i.e., it does not contain any (dis-
tinct) isomorphic nodes1 and any redundant nodes.2

To allow to propagate valuations in VCSPs, where D is a
total order, ⊗ is commutative and ⊗ is monotonic w.r.t. D

(i.e., ⊗ is distributive over ⊕), [Cooper and Schiex, 2004]

assume a ”fairness” property of ⊗ w.r.t. ⊕: for any valuations
a, b ∈ E such that a⊕b = b, there exists a unique valuation
which is the maximal element w.r.t. D among the c ∈ E
satisfying b ⊗ c = c ⊗ b = a.

Here, we relax these conditions so as to be able to en-
compass the case of the (possibly partial) relation D induced

1N and M are isomorphic when they are labelled by the same
variable and there exists a bijection f from out(N) to out(M) such
that ∀a ∈ out(N), a and f(a) have the same end node and φ(a) =
φ(f(a)).

2N is redundant when all outgoing arcs a are labelled by the
same value φ(a) and reach the same end node.

by ⊕. Let us state that ⊗ is left-distributive over ⊕ iff
∀a, b, c ∈ E, c⊗ (a⊕b) = (c⊗ a)⊕(c⊗ b), and ⊗ is left-fair
w.r.t. ⊕ iff ∀a, b ∈ E, if a⊕b = b, then there exists a unique
valuation of E, noted a⊗−1 b, which is the maximal element
w.r.t. D among the c ∈ E satisfying b ⊗ c = a.

Definition 9 (extended SLDD condition) A valuation struc-
ture E = 〈E,⊕,⊗, 1s〉 satisfies the extended SLDD condition
iff 〈E, ⊗, 1s〉 is a monoid, ⊕ is a mapping from E ×E to E,
which is associative, commutative, and idempotent, ⊗ is left-
distributive over ⊕ and left-fair w.r.t. ⊕.

The extended SLDD condition is close to the commutative
semiring assumption for SLDD. However, it requires neither
the commutativity of ⊗, nor an annihilator for ⊗, and left-
distributivity of ⊗ over ⊕ is less demanding than (full) dis-
tributivity; on the other hand, the left-fairness condition of
⊗ w.r.t. ⊕ is imposed. The idempotence of ⊕ is also less
demanding than the ”addition-is-max-or-min” condition.

The valuation considered in the AADD framework satisfies
the extended SLDD condition:

Proposition 3 The valuation structure E = 〈R+×R
+, ⊕, ⋆,

〈0, 1〉〉 where ⊕ = min⋆ is defined by ∀b, b′, c, c′ ∈ E: 〈b, b′〉
min⋆ 〈c, c′〉 = 〈min(b, c), max (b + b′, c + c′) −min(b, c)〉,
satisfies the extended SLDD condition.

In the AADD case, E = R
+ × R

+ is not totally ordered by
D (for instance, none of 〈0, 2〉D〈1, 2〉 and 〈1, 2〉D〈0, 2〉 hold
since 〈0, 2〉min⋆〈1, 2〉 = 〈1, 2〉min⋆〈0, 2〉 = 〈0, 3〉). When
〈a, a′〉 D 〈b, b′〉 holds, we have:

• 〈a, a′〉 ⋆−1 〈b, b′〉 = 〈1, 0〉 if b′ = 0,

• 〈a, a′〉 ⋆−1 〈b, b′〉 = 〈a−b
b′

, a′

b′
〉 if b′ > 0.

e-SLDD⋆ denotes the corresponding e-SLDD language.
Weighted finite automata and edge-valued binary decision

diagrams are captured by using E = 〈R+,min,+, 0〉. The
following pairs, consisting of a valuation structure – a repre-
sentation language, can actually be considered:

• E = 〈R+,min,+, 0〉 – e-SLDD+.

• E = 〈R+,max ,×, 1〉 – e-SLDD×.

• E = 〈R+ ∪ {+∞},max ,min,+∞〉 – e-SLDDmin .

• E = 〈R+,min,max , 0〉 – e-SLDDmax .

Proposition 4 The valuation structures E = 〈R+, min, +,
0〉, E = 〈R+, max , ×, 1〉, E = 〈R+ ∪ {+∞}, max ,
min,+∞〉 and E = 〈R+, min, max , 0〉 satisfy the extended
SLDD condition.

We are now ready to extend the AADD normalization pro-
cedure to the e-SLDD language, under the extended SLDD

condition. Algorithm 1 is the normalization procedure. This
procedure proceeds backwards (i.e., from the sink to the root).
Figure 1 gives an e-SLDD⋆ formula and the corresponding
min⋆-reduced formula.

Proposition 5 Assume that E = 〈E, ⊕, ⊗, 1s〉 satisfies
the extended SLDD condition. If ⊕ satisfies the addition-is-
max-or-min property then, for any e-SLDD formula α, a ⊕-
reduced e-SLDD formula equivalent to α can be computed
in polynomial time provided that ⊗, ⊗−1 and ⊕ can be com-
puted in linear time.

Algorithm 1: normalize(α)

input : an e-SLDD⊗ formula α, with offset q0

output: an e-SLDD⊗ formula which is ⊕-normalized
and equivalent to α

1 for each node N of α in inverse topological ordering do
2 qmin := ⊕a∈out(N)φ(a)
3 for each a ∈ out(N) do
4 if φ(a) == qmin then

φ(a) := 1s

else

φ(a) := φ(a) ⊗−1 qmin

5 for each a ∈ in(N) do
φ(a) := φ(a) ⊗ qmin

6 q0 := q0 ⊗ qmin

7 return α

x〈2, 1〉

y

z

〈0, 1〉

〈1, 4〉

〈2, 3〉

〈3, 2〉

〈1, 2〉
〈3, 5〉

〈1, 1〉

x〈7, 54〉

y

z

〈0, 1〉

〈0, 14
27 〉

〈0, 1〉

〈 2
9 , 7

9 〉

〈0, 1
9 〉〈 2

7 , 5
7 〉

〈0, 1
7 〉

Figure 1: An e-SLDD⋆ formula (left) and the correspond-
ing min⋆-reduced e-SLDD⋆ formula (right). x, y and z are
Boolean variables. A (resp. plain) edge corresponds to the
assignment of the variable labeling its source to 0 (resp. 1).

Clearly, the linear-time computability assumptions are sat-
isfied by the operators ⊗, ⊗−1, and ⊕ associated with
e-SLDD+, e-SLDD×, e-SLDDmin , e-SLDDmax . Thus,
the formulae from all these languages can be ⊕-reduced in
polynomial time.

Interestingly, addition-is-max-or-min is not a necessary
condition for ensuring a normalized form; left-cancellativity
of ⊗ (∀a, b, c ∈ E, if c⊗a = c⊗ b and c is not an annihilator
for ⊗, then a = b) is also enough:

Proposition 6 Assume that E = 〈E, ⊕, ⊗, 1s〉 satisfies
the extended SLDD condition. If ⊗ is left-cancellative, then
for any e-SLDD formula α, a ⊕-reduced e-SLDD formula
equivalent to α it can be computed in polynomial time pro-
vided that ⊗, ⊗−1 and ⊕ can be computed in linear time.

Furthermore, when ⊗ is left-cancellative, the canonicity
property is ensured for ordered e-SLDD formulae (even if
D is not total):

Proposition 7 Assume that E = 〈E, ⊕, ⊗, 1s〉 satisfies the
extended SLDD condition. If ⊗ is left-cancellative, then two
ordered e-SLDD formulae are equivalent iff they have the
same ⊕-reduced form.

Especially, since +, × and ⋆ are left-cancellative, the or-
dered e-SLDD+ (resp. e-SLDD×, e-SLDD⋆) formulae of-
fer the canonicity property.

Let us finally switch to conditioning and optimization.
First, conditioning does not preserve the ⊕-reduction of a for-
mula in the general case, but this is computationally harmless
since the ⊕-reduction of a conditioned formula can be done in
polynomial time. As to optimization, when D is total, any ⊕-
reduced e-SLDD formula α contains a path the arcs of which
are labelled by 1s. The (usually partial) variable assignment

along this path can be extended to a full minimal solution ~x∗

w.r.t. D, and the offset of α is equal to Ie-SLDD(α)(~x∗).
However, in the general case, the ordering � is not equal to
D, so the normalization procedure does not help for determin-

ing a minimal solution ~x∗ w.r.t. � (or equivalently, a maximal
solution w.r.t. the inverse ordering �). Nevertheless, a sim-
ple left-monotonicity condition over the valuation structure is

enough for ensuring that a minimal solution ~x∗ w.r.t. � can
be computed in time polynomial in the size of the e-SLDD
formula, using dynamic programming. The result of [Wilson,
2005] indeed can be extended as follows:

Proposition 8 For any monoid E = 〈E, ⊗, 1s〉 such that E
is totally pre-ordered by �, if ⊗ is left-monotonic w.r.t. � (for
any a, b, c ∈ E, if a � b then c ⊗ a � c ⊗ b), then for any

e-SLDD formula α, a solution ~x∗ minimal w.r.t. � can be
computed in time polynomial in the size of α.

4 Succinctness of VDDs: Theoretical Results

Let L1 (resp. L2) be a representation language over X w.r.t.
E1 (resp. E2). The notion of succinctness and of translations
usually considered over propositional languages (see [Dar-
wiche and Marquis, 2002]) can be extended as follows:

Definition 10 (succinctness) L1 is at least as succinct as L2,
denoted L1 ≤s L2, iff there exists a polynomial p such that
for every α ∈ CL2

, there exists β ∈ CL1
which is equivalent

to α and such that sL1
(β) ≤ p(sL2

(α)).

Definition 11 (linear / polynomial translation) L2 is lin-
early (resp. polynomially) translatable into L1, denoted L1

≤l L2 (resp. L1 ≤p L2), iff there exists a linear-time (resp.
polynomial-time) algorithm f from CL2

to CL1
such that for

every α ∈ CL2
, α is equivalent to f(α).

<s (resp. <p, <l) denotes the asymmetric part of ≤s (resp.
≤p, ≤l), and ∼s (resp. ∼p, ∼l) denotes the symmetric part
of ≤s (resp. ≤p, ≤l). By construction, ∼s, ∼p, ∼l are equiv-
alence relations.

We have obtained the following result showing that every
ADD is linearly translatable into any e-SLDD (sharing the
same valuation set E):

Proposition 9 e-SLDD ≤l ADD.

As to the valuation set E = R
+, we get:

Proposition 10

• ADD ∼p e-SLDDmax .

• e-SLDD× 6≤s e-SLDD+ and e-SLDD+ 6≤s e-SLDD×.

• AADD <s e-SLDD+ <s ADD.

• AADD <s e-SLDD× <s ADD.

Similarly, for E = R
+∪{+∞}, ADD∼p e-SLDDmin holds.

5 Succinctness of VDDs: Empirical Results

While succinctness is a way to compare representation lan-
guages w.r.t. the concept of spatial efficiency, it does not
capture all aspects of this concept, for two reasons (at least).
On the one hand, succinctness focuses on the worst case,
only. On the other hand, it is of qualitative (ordinal) na-
ture: succinctness indicates when an exponential separation
can be achieved between two languages but does not enable
to draw any quantitative conclusion on the sizes of the com-
piled forms. This is why it is also important to complete suc-
cinctness results with some size measurements.

To this aim, we made some experiments. We designed a
bottom-up ordered e-SLDD compiler. This compiler takes
as input VCSP instances in the XML format described in
[Roussel and Lecoutre, 2009] or Bayesian networks conform-
ing to the XML format given in [Cozman, 2002]. When
VCSP instances are considered, the compiler generates a
data structure equivalent to each valued constraint of the
instance, under the form of a reduced e-SLDD+ formula,
and incrementally combines them w.r.t. + using a simpli-
fied version of the apply(+) procedure described in [San-
ner and McAllester, 2005]. Similarly, when Bayesian net-
work instances are considered, the conditional probability
tables are first compiled into reduced e-SLDD× formulae,
which are then combined using ×. At each combination step,
the current e-SLDD formula is reduced. We developed a
toolbox which also contains procedures for transforming any
e-SLDD+ (resp. e-SLDD×) formula into an equivalent ADD
formula, and any ADD formula into an equivalent e-SLDD+

(resp. e-SLDD×, AADD) formula; the transformation pro-
cedure from e-SLDD+ (resp. e-SLDD×) formulae to ADD

formulae roughly consists in pushing the labels from the root
to the last arcs of the diagram. The transformation procedures
from ADD formulae to e-SLDD+, e-SLDD× and AADD for-
mulae are basically normalization procedures.

We considered two families of benchmarks. The VCSP in-
stances we used concern car configurations problems;3 these
instances contain hard constraints and soft constraints, with
valuations representing prices, to be aggregated additively.
They have the following characteristic features:

• Small: #variables=139; max. domain size=16; #con-
straints=176 (including 29 soft constraints)

• Medium: #variables=148; max. domain size=20; #con-
straints=268 (including 94 soft constraints)

• Big: #variables=268; max. domain size=324; #con-
straints=2157 (including 1825 soft constraints)

We also compiled only the soft constraints of the
benchmarks, leading to three other instances, referred to
as {Small, Medium, Big} Price only. As to
Bayesian networks, which are of multiplicative nature (joint

3These instances have been built in collaboration with the french
car manufacturer Renault; they are described in more depth in [Aste-
sana et al., 2013].

Table 1: Compilation of VCSPs into e-SLDD+, and transformations into ADD, e-SLDD× and AADD.

e-SLDD+ ADD e-SLDD× AADD

Instance nodes (edges) time (s) nodes (edges) nodes (edges) nodes (edges)

Small Price only 36 (108) < 1 4364 (7439) 3291 (7439) 36 (108)
Medium Price only 169 (499) < 1 37807 (99280) 33595 (99280) 168 (495)
Big Price only 3317 (9687) 18 m-o - 3317 (9687)
Small 2344 (5584) 1 299960 (637319) 14686 (33639) 2344 (5584)
Medium 6234 (17062) 6 752466 (2071474) 129803 (314648) 6234 (17062)
Big 198001 (925472) 79043 m-o - 198001 (925472)

Table 2: Compilation of Bayesian networks into e-SLDD×, and transformations into ADD, e-SLDD+ and AADD.

e-SLDD× ADD e-SLDD+ AADD

Instance nodes (edges) time (s) nodes (edges) nodes (edges) nodes (edges)

Cancer 13 (25) < 1 38 (45) 23 (45) 11 (21)
Asia 23 (45) < 1 415 (431) 216 (431) 23 (45)
Car-starts 41 (83) < 1 42741 (64029) 19632 (39265) 38 (77)
Alarm 1301 (3993) < 1 m-o - 1301 (3993)
Hailfinder25 32718 (108083) 8 m-o - 32713 (108063)

probabilities are products of conditional probabilities), we
used some standard benchmarks [Cozman, 2002].

Each configuration (resp. Bayesian net) instance has been
compiled into an e-SLDD+ formula (resp. an e-SLDD×

formula), and then transformed into an ADD formula, an
e-SLDD× formula (resp. an e-SLDD+ formula), and an
AADD formula – the time needed for the compilation and the
sizes on the compiled formulae are reported in Table 1 (resp.
Table 2). In order to determine a variable ordering, we used
the Maximum Cardinality Search heuristic [Tarjan and Yan-
nakakis, 1984] in reverse order, as proposed in [Amilhastre,
1999] for the compilation of (classical) CSPs. This heuris-
tic is easy to compute and efficient; experiments reported in
[Amilhastre, 1999] show that it typically outperforms several
standard CSP variable ordering heuristics.

We ran all our experiments on a computer running at
800MHz with 256Mb of memory. ”m-o” means that the
available memory has been exhausted, and that the program
aborted for this reason.

Our experiments confirm some of the theory-oriented suc-
cinctness results, especially the fact that the succinctness of
e-SLDD+ and of e-SLDD× are incomparable but each of
them is strictly more succinct than ADD. Unsurprisingly,
when the values of the soft constraints are to be aggre-
gated additively as this is the case for configuration instances
(resp. multiplicatively, as this is the case for Bayesian nets),
e-SLDD+ (resp. e-SLDD×) performs better than e-SLDD×

(resp. e-SLDD+). AADD does not prove to be better than
e-SLDD+ in the additive case, or better than e-SLDD× in
the multiplicative case.4 Thus, targeting the AADD language

4On the Bayesian net instances, the resulting ADD and AADD for-
mulae are larger than the ones obtained by [Sanner and McAllester,
2005]. This is due to the way numeric labels are merged (remember
that reals are approximated by finite-precision floating-point num-
bers on a computer). Indeed, in our implementation, e1 and e2 are

does not lead to much better compiled formulae from the spa-
tial efficiency point of view, when the mapping to be repre-
sented is additive or multiplicative in essence, but not both.

6 Conclusion

In this paper, we have extended the SLDD family to the
e-SLDD family, thanks to a relaxation of some requirements
on the valuation structure, which is harmless for the condi-
tioning and optimization purposes. The e-SLDD family is
general enough to capture AADD as a specific element. We
have pointed out a normalization procedure and a canonic-
ity condition for formulae from some e-SLDD languages,
including e-SLDD+ and e-SLDD×. We have also com-
pared the spatial efficiency of some elements of the e-SLDD
family, i.e., e-SLDD+ and e-SLDD×, with ADD and AADD
from both the theoretical side and the practical side. Though
e-SLDD+ (resp. e-SLDD×) is less succinct than AADD

from a theoretical point of view, it proves space-efficient
enough for enabling the compilation of cost-based configu-
ration problems (resp. Bayesian networks).

Interestingly, one of the conditions pointed out in the
e-SLDD setting for tractable normalization (and reduction)
does not impose the valuation set E to be totally ordered.
Clearly, this paves the way for the compilation of multi-
criteria objective functions as e-SLDD representations. In-
vestigating this issue is a major perspective for future works.
Another important issue for further research is to draw the
full knowledge compilation map for VDD languages, which
will require to identify the tractable queries and transforma-
tions of interest, depending on the algebraic properties of the
valuation structure.

considered identical whenever e1 − e2 < 10−9.e1 (where e1 ≥ e2).
Since e1, e2 ≤ 1 (they represent probabilities) the standard merging
condition e1 − e2 < 10−9 considered in [Sanner and McAllester,
2005] is subsumed by ours. This explains the size discrepancy.

References

[Amilhastre et al., 2002] Jérôme Amilhastre, Hélène
Fargier, and Pierre Marquis. Consistency restora-
tion and explanations in dynamic CSPs application to
configuration. Artif. Intell., 135(1-2):199–234, 2002.

[Amilhastre, 1999] Jérôme Amilhastre. Représentation par
automate d’ensemble de solutions de problèmes de satis-
faction de contraintes. PhD thesis, Université de Montpel-
lier II, 1999.

[Astesana et al., 2013] Jean-Marc Astesana, Laurent
Cosserat, and Hélène Fargier. Business recommenda-
tion for configurable products (BR4CP) project: the
case study. http://www.irit.fr/˜Helene.

Fargier/BR4CPBenchs.html, March 2013.

[Bahar et al., 1993] R. Iris Bahar, Erica A. Frohm,
Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo, and Fabio Somenzi. Algebraic decision
diagrams and their applications. In Proc. of ICCAD’93,
pages 188–191, 1993.

[Cooper and Schiex, 2004] Martin C. Cooper and Thomas
Schiex. Arc consistency for soft constraints. Artif. Intell.,
154(1-2):199–227, 2004.

[Cozman, 2002] Fabio Gagliardi Cozman. JavaBayes
Version 0.347, Bayesian Networks in Java, User
Manual. Technical report, dec 2002. Benchmarks
at http://sites.poli.usp.br/pmr/ltd/

Software/javabayes/Home/node3.html.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. J. Artif. Intell.
Res. (JAIR), 17:229–264, 2002.

[Darwiche, 2011] A. Darwiche. SDD: A new canonical rep-
resentation of propositional knowledge bases. In Proc. of
IJCAI’11, pages 819–826, 2011.

[Gogic et al., 1995] G. Gogic, H.A. Kautz, Ch.H. Papadim-
itriou, and B. Selman. The comparative linguistics of
knowledge representation. In Proc. of IJCAI’95, pages
862–869, 1995.

[Lai and Sastry, 1992] Yung-Te Lai and Sarma Sastry. Edge-
valued binary decision diagrams for multi-level hierarchi-
cal verification. In Proc. of DAC’92, pages 608–613, 1992.

[Lai et al., 1996] Yung-Te Lai, Massoud Pedram, and Sarma
B. K. Vrudhula. Formal verification using edge-valued
binary decision diagrams. IEEE Trans. on Computers,
45(2):247–255, 1996.

[Roussel and Lecoutre, 2009] Olivier Roussel and
Christophe Lecoutre. XML Representation of Con-
straint Networks: Format XCSP 2.1. Technical report,
CoRR abs/0902.2362, feb 2009.

[Sanner and McAllester, 2005] Scott Sanner and David A.
McAllester. Affine algebraic decision diagrams (AADDs)
and their application to structured probabilistic inference.
In Proc. of IJCAI’05, pages 1384–1390, 2005.

[Schiex et al., 1995] Thomas Schiex, Hélène Fargier, and
Gérard Verfaillie. Valued constraint satisfaction problems:

Hard and easy problems. In Proc. of IJCAI’95, pages 631–
639, 1995.

[Tafertshofer and Pedram, 1997] Paul Tafertshofer and Mas-
soud Pedram. Factored edge-valued binary decision dia-
grams. Formal Methods in System Design, 10(2/3):243–
270, 1997.

[Tarjan and Yannakakis, 1984] Robert E. Tarjan and Mihalis
Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selec-
tively reduce acyclic hypergraphs. SIAM J. Comput.,
13(3):566–579, July 1984.

[Wilson, 2005] Nic Wilson. Decision diagrams for the com-
putation of semiring valuations. In Proc. of IJCAI’05,
pages 331–336, 2005.

Appendix

Proof:[Proposition 1]

• ⋆ is a mapping from R
+ × R

+ to R
+ because + and ×

are: when b, b′, c, c′ ∈ R
+, both (b+b′×c) and (b′×c′)

belong to R
+.

• Neutral element:
〈b, b′〉 ⋆ 〈0, 1〉 = 〈b + b′ × 0, b′ × 1〉 = 〈b, b′〉
〈0, 1〉 ⋆ 〈b, b′〉 = 〈0 + 1 × b, 1 × b′〉 = 〈b, b′〉.

• Associativity:
(〈a, a′〉 ⋆ 〈b, b′〉) ⋆ 〈c, c′〉

= 〈a + a′ × b, a′ × b′〉 ⋆ 〈c, c′〉
= 〈(a + a′ × b) + (a′ × b′) × c, (a′ × b′) × c′〉
= 〈a + a′ × b + a′ × b′ × c, a′ × b′ × c′〉

〈a, a′〉 ⋆ (〈b, b′〉 ⋆ 〈c, c′〉)
= 〈a, a′〉 ⋆ 〈b + b′ × c, b′ × c′〉
= 〈a + a′ × (b + b′ × c), a′ × (b′ × c′)〉
= 〈a + a′ × b + a′ × b′ × c, a′ × b′ × c′〉

Proof:[Proposition 2] The proof is by induction on the height
h(α) of α, i.e., the length of a longest path from the root of α
to its sink node.

• Base case: h(α) = 0. In this case, α reduces to the

sink node, so we have ∀~x ∈ ~X , IAADD(α)(~x) = 1
and Ie-SLDD⋆

(α)(~x) = 〈0, 1〉, and the equality triv-
ially holds.

• Inductive step: h(α) > 0. Suppose that the property
is satisfied for every AADD formula of height ≥ k and
consider an AADD formula α over X s.t. h(α) = k + 1.

Let ~x ∈ ~X . Suppose w.l.o.g. that the root N of α is
labeled with x ∈ X; let dx ∈ Dx s.t. (x, dx) ∈ ~x, and
let a = (N, M) be the arc of α s.t. v(a) = dx and
φ(a) = 〈q, f〉; finally, let β be the AADD formula rooted
at M in α.

By definition, we have:
IAADD(α)(~x) = q+ f × IAADD(β)(~x) and
Ie-SLDD⋆

(α)(~x) = 〈q, f〉 ⋆ Ie-SLDD⋆
(β)(~x).

By induction hypothesis, if IAADD(β)(~x) = a and
Ie-SLDD⋆

(β)(~x) = 〈b, c〉, then a = b + c.

As a consequence, IAADD(α)(~x) = q+f×a = q+(f×
b) + (f × c), and Ie-SLDD⋆

(α)(~x) = 〈q, f〉 ⋆ 〈b, c〉 =
〈q + f × b, f × c〉, showing that the equality is satisfied.

Proof:[Proposition 3]

• 〈E = R
+ × R

+, ⋆, 〈0, 1〉〉 is a monoid (Proposition 1);

• ⊕ = min⋆ is a mapping from E ×E to E because min

and + are mappings from R
+ × R

+ to R
+;

• Associativity of min⋆:
〈a, a′〉min⋆(〈b, b

′〉min⋆〈c, c
′〉)

= 〈a, a′〉min⋆〈min(b, c),max (b + b′, c + c′) −
min(b, c)〉

= 〈min(a,min(b, c)),max (a + a′,max (b + b′, c +
c′) − min(a,min(b, c))〉

= 〈min(a, b, c),max (a + a′, b + b′, c + c′) −
min(a, b, c)〉
(〈a, a′〉min⋆〈b, b

′〉)min⋆〈c, c
′〉)

= 〈min(a, b),max (a + a′, b + b′) −
min(a, b)〉min⋆〈c, c

′〉)
= 〈min(min(a, b), c),max (max (a + a′, b + b′), c +

c′) − min(min(a, b), c)〉
= 〈min(a, b, c),max (a + a′, b + b′, c + c′) −

min(a, b, c)〉

• Commutativity of min⋆:
〈a, a′〉 min⋆〈b, b

′〉
= 〈min(a, b),max (a + a′, b + b′) − min(a, b)〉
= 〈min(b, a),max (b + b′, a + a′) − min(b, a)〉
= 〈b, b′〉min⋆〈a, a′〉

• Idempotence of min⋆:
〈a, a′〉 min⋆〈a, a′〉

= 〈min(a, a),max (a + a′, a + a′) − min(a, a)〉
= 〈a, a + a′ − a〉 = 〈a, a′〉

• Left-distributivity of ⋆ over min⋆:
(〈a, a′〉 ⋆ 〈b, b′〉)min⋆(〈a, a′〉 ⋆ 〈c, c′〉)

= 〈a + a′ × b, a′ × b′〉min⋆〈a + a′ × c, a′ × c′〉
= 〈min(a + a′ × b, a + a′ × c),

max (a + a′ × b + a′ × b′, a + a′ × c + a′ × c′)
− min(a + a′ × b, a + a′ × c)〉

= 〈a+ a′ ×min(b, c), a+ a′ ×max (b+ b′, c+ c′)−
(a + a′ × min(b, c))〉

= 〈a + a′ × min(b, c), a′ × max (b + b′, c + c′) −
a′ × min(b, c))〉

= 〈a + a′ × min(b, c), a′ × (max (b + b′, c + c′) −
min(b, c))〉

= 〈a, a′〉⋆〈min(b, c),max (b+b′, c+c′)−min(b, c)〉
= 〈a, a′〉 ⋆ (〈b, b′〉min⋆〈c, c

′〉)

• Left-fairness of ⋆ w.r.t. min⋆: suppose that
〈a, a′〉 6= 〈b, b′〉 and 〈a, a′〉 D 〈b, b′〉 i.e.,
〈a, a′〉min⋆〈b, b

′〉 = 〈b, b′〉 or equivalently
min(a, b) = b and max (a+a′, b+b′)−min(a, b) = b′.
Let:

〈a, a′〉 ⋆−1 〈b, b′〉 = 〈1, 0〉 if b′ = 0.

〈a, a′〉 ⋆−1 〈b, b′〉 = 〈a−b
b′

, a′

b′
〉 if b′ > 0

– If b′ = 0, then from 〈a, a′〉D 〈b, b′〉, we deduce that
min(a, b) = b and max (a+a′, b)−min(a, b) = 0,
which shows that max (a + a′, b) = b. Thus we
have both a ≥ b and b ≥ a + a′ with a′ ≥ 0, which
implies that a′ = 0 and a = b. So 〈b, b′〉 ⋆ 〈1, 0〉 =
〈b + b′ × 1, 0〉 = 〈b + b′, 0〉 = 〈b, 0〉 = 〈a, a′〉.
Suppose that there exists 〈c, c′〉 6= 〈1, 0〉 such that
〈b, b′〉 ⋆ 〈c, c′〉 = 〈a, a′〉. Then it is enough to show
that it cannot be the case that 〈c, c′〉 D 〈1, 0〉 un-
less 〈c, c′〉 = 〈1, 0〉. Towards a contradiction, as-
sume that 〈c, c′〉min⋆〈1, 0〉= 〈1, 0〉. Then we must
have 〈min(c, 1),max (c + c′, 1 + 0) − min(c, 1)〉
= 〈1, 0〉, which implies that min(c, 1) = 1 and
max (c + c′, 1) = min(c, 1), hence c = 1 and
c′ = 0.

– If b′ > 0, then we must prove that 〈a−b
b′

, a′

b′
〉 is such

that 〈b, b′〉⋆〈a−b
b′

, a′

b′
〉 = 〈a, a′〉, which is easy since

〈b, b′〉⋆〈a−b
b′

, a′

b′
〉= 〈b+b′× a−b

b′
, b′× a′

b′
〉= 〈a, a′〉.

Then it is enough to show that if 〈c, c′〉 is such that

〈b, b′〉 ⋆ 〈c, c′〉 = 〈a, a′〉, then 〈c, c′〉 = 〈a−b
b′

, a′

b′
〉.

The point is that if 〈b, b′〉⋆ 〈c, c′〉 = 〈a, a′〉, then we
have b + b′ × c = a and b′ × c′ = a′. Accordingly,

we have c = a−b
b′

and c′ = a′

b′
, which concludes the

proof.

⋆ is thus left-fair with respect to min⋆.

Proof:[Proposition 4]

• E = 〈R+,min,+, 0〉 because E = 〈R+,+, 0〉 is a
monoid, min is a mapping from R

+ × R
+ to R

+ that
is associative, commutative, and idempotent, + is left-
distributive over min (a+min(b, c) = min(a+b, a+c))
and + is left-fair with respect to min: if a ≥ b, then
there exists a unique c = a−b ∈ R

+ such that b+c = a.

• E = 〈R+,max ,×, 1〉 because E = 〈R+,×, 1〉 is a
monoid, max is a mapping from R

+ × R
+ to R

+ that
is associative, commutative, and idempotent, × is left-
distributive over max (a×max (b, c) = max (a× b, a×
c)) and × is left-fair with respect to max ; indeed, let
a, b ∈ R

+ such that a 6= b and max (a, b) = b, i.e.,
b ≥ a. We must have b 6= 0 since otherwise we would
also have a = 0, contradicting a 6= b. So there exists a
unique c = a

b
such that b × c = a.

• E = 〈R+∪{+∞},max ,min,+∞〉 because E = 〈R+∪
+∞,min,+∞〉 is a monoid max is a mapping from
(R+ ∪ {+∞})× (R+ ∪ {+∞}) to R

+ ∪ {+∞} that is
associative, commutative, and idempotent, min is left-
distributive over max and min is left-fair with respect
to max with min

−1 = min .

• E = 〈R+,min,max , 0〉 because E = 〈R+,max , 0〉 is a
monoid, min is a mapping from R

+ × R
+ to R

+ that is

associative, commutative, and idempotent, max is left-
distributive over min and max is left-fair with respect
to min , with max

−1 = max .

Proof:[Proposition 5] Let α be an e-SLDD formula over
X = {x1, . . . , xn}. We are going to prove that normalize(α)
is an ⊕-normalized e-SLDD formula equivalent to α.

The proof is by induction on the height h(α) of α.

• Base case: h(α) = 0. In this case α is equal to the sink
node 1s labelled with a given offset. Obviously, we have
normalize(α) = α, which is already ⊕-normalized (and
represent the constant function equal to its offset).

• Inductive step: h(α) > 0. Let x1 be the variable labeling
the root N0 of α. Let Dx1

= {d1, . . . , dm}. By induc-
tion hypothesis, the property holds for every e-SLDD

formula αdj
(j ∈ 1, . . . ,m), which is the e-SLDD for-

mula rooted at Mj , where Mj is the child of N0 such
that v((N0, Mj)) = dj . Let us denote by q0 the offset of

α and for each j ∈ 1, . . . ,m, let φ(aj be the label of the
arc aj = (N0, Mj).

We are going to prove first that normalize(α) is equiv-
alent to α. By induction hypothesis, for each j ∈
1, . . . ,m, normalize(αdj

) is equivalent to αdj
.

At the last iteration step of the normalization procedure
(i.e., when every internal node of the formula has been
considered except its root), α is as depicted at Figure 2.

x1 q0N0

. . .

normalize(αd1
) normalize(αdm

)

φ(a1) φ(am)

Figure 2: Normalization of an e-SLDD α.

By definition of the semantics of an e-SLDD for-

mula, for every ~x ∈ ~X such that ~x = ~x′ ∪
{(x1, dj)}, we have that Ie-SLDD(α)(~x) = q0 ⊗

(φ(aj) ⊗ Ie-SLDD(αdj
)(~x′)). By induction hy-

pothesis, this is also equal to q0 ⊗ (φ(aj) ⊗

Ie-SLDD(normalize(αdj
))(~x′)).

Let qmin =
⊕m

j=1 φ(aj). The last iteration step of the

normalization procedure replaces in α each φ(aj) (j ∈

1, . . . ,m) by φ(aj) := φ(aj) ⊗
−1 qmin when φ(aj) 6=

qmin and by φ(aj) := 1s in the remaining case; finally,

q0 is replaced by q0 := q0 ⊗
⊕m

j=1 φ(aj).

Since we have

Ie-SLDD(normalize(α))(~x) =

q0 ⊗ (φ(aj) ⊗ Ie-SLDD(normalize(αdj
))(~x′)),

and since ⊗ is associative, it is enough to show that for

any j ∈ 1, . . . ,m, q0 ⊗ φ(aj) = q0 ⊗ φ(aj) to conclude
that normalize(α) is equivalent to α.

Two cases must be considered:

– φ(aj) = qmin . We have q0⊗φ(aj) = (q0⊗qmin)⊗

1s = q0 ⊗ qmin = q0 ⊗ φ(aj).

– φ(aj) 6= qmin . We have q0 ⊗ φ(aj) =

(q0 ⊗
⊕m

j=1 φ(aj)) ⊗ (φ(aj) ⊗
−1

⊕m
j=1 φ(aj)).

φ(aj) ⊗−1
⊕m

j=1 φ(aj) is well-defined since

φ(aj) D
⊕m

j=1 φ(aj) holds; indeed, since ⊕ is

idempotent, we have that φ(aj) ⊕
⊕m

j=1 φ(aj) =
⊕m

j=1 φ(aj). Finally, since ⊗ is associative and

since by definition of ⊗−1, we have

m⊕

j=1

φ(aj) ⊗ (φ(aj) ⊗
−1

m⊕

j=1

φ(aj)) = φ(aj),

we also obtain that

q0 ⊗ φ(aj) = q0 ⊗ φ(aj),

as expected.

We now prove that normalize(α) is ⊕-normalized.
By induction hypothesis it is enough to show that⊕m

j=1 φ(aj) = 1s. To get it, we first demonstrate a

couple of intermediate results:

– we prove that ⊗−1 is right-monotonic w.r.t. D:
∀a, b, c ∈ E, if a D b, a D c and b D c, then
a⊗−1cDb⊗−1c. Towards a contradiction, suppose
that a D b, a D c and b D c and a⊗−1 c 6 Db⊗−1 c.
When ⊕ satisfies the addition-is-max-or-min con-
dition, D is total. Hence we have b⊗−1 cDa⊗−1 c.

Since ⊗ is left-distributive over ⊕, it is also left-
monotonic w.r.t. D: if b D c then a ⊗ b D a ⊗ c;
indeed, b D c holds iff b ⊕ c = c, hence by left-
distributivity of ⊗ over ⊕, we have (a ⊗ b) ⊕ (a ⊗
c) = a⊗ (b⊕c) = a⊗c, hence a⊗bDa⊗c holds.

Now, from b⊗−1cDa⊗−1c, taking advantage of the
left-monotony of ⊗ w.r.t. D, we get that c⊗ (b⊗−1

c) D c ⊗ (a ⊗−1 c), which is equivalent to b D a
by definition of ⊗−1. Since we also have a D b,
by antisymmetry of D, we get that a = b. Since
D is reflexive, we derive that a ⊗−1 c D b ⊗−1 c,
contradiction.

– we prove that ∀a ∈ E, a ⊗−1 a D 1s. Since D is
reflexive, we have aDa. Now, by definition of ⊗−1,
a⊗−1 b is the maximal element w.r.t. D among the
c ∈ E satisfying b ⊗ c = a. Hence, a ⊗−1 a is
the maximal element w.r.t. D among the c ∈ E
satisfying a⊗ c = a. Since c = 1s satisfies a⊗ c =
a, we get that a ⊗−1 a D 1s.

– we prove that ∀a, b, c ∈ E, if a D c and b D c then
a⊕bDc. Indeed, aDc holds iff a⊕c = c and bDc
holds iff b⊕ c = c. So (a⊕ b)⊕ c = a⊕ (b⊕ c) =
a ⊕ c = c, which shows that a ⊕ b D c.

– we prove that ∀a, b ∈ E, we have a D a ⊕ b and if
a⊕ bD a, then a⊕ b = a. This comes immediately
from the fact that ⊕ is associative, commutative and
idempotent.

Let ak ∈ out(N0) and let qmin =
⊕m

j=1 φ(aj). Since

∀a, b ∈ E, we have a D a ⊕ b and since ⊕ is associative

and commutative, we have φ(ak) D qmin . Because ⊗−1

is right-monotonic w.r.t. D, we derive that φ(ak) ⊗−1

qmin D qmin ⊗−1 qmin . Now, since ∀a ∈ E, a⊗−1 a D

1s and D is transitive, we get that φ(ak) ⊗−1 qmin D

1s, hence φ(ak) D 1s. When φ(ak) = qmin , we have
φ(ak) = 1s, hence φ(ak)D1s since D is reflexive. Since
∀a, b, c ∈ E, if a D c and b D c then a ⊕ b D c and since
⊕ is associative, the fact that φ(ak) D 1s holds for each
ak ∈ out(N0) implies that

⊕m
j=1 φ(aj) D 1s.

Finally, since ⊕ satisfies the addition-is-max-or-min
condition and ⊕ is associative, there exists i ∈ 1, . . . ,m

such that qmin = φ(ai). As a consequence φ(ai) =
1s. Accordingly, since ⊕ is associative and commuta-
tive,

⊕m
j=1 φ(aj) = 1s ⊕

⊕
j=1,...,m|j 6=i φ(aj). Since⊕m

j=1 φ(aj) D 1s holds and since if a ⊕ b D a, then

a ⊕ b = a, we derive that 1s ⊕
⊕

j=1,...,m|j 6=i φ(aj) =

1s, or equivalently
⊕m

j=1 φ(aj) = 1s.

That normalize runs in polynomial time provided that
⊗, ⊗−1 and ⊕ can be computed in linear time is obvi-
ous (actually, it is enough to require that ⊗ can be com-
puted in linear time and that ⊗−1 and ⊕ can be com-
puted in polynomial time). Finally, it is also obvious
that the reduction (elimination of isomorphic nodes and
of redundant nodes) of an e-SLDD formula preserves it
semantics and can also be achieved in polynomial time.

Proof:[Proposition 6] Let α be an e-SLDD formula over
X = {x1, . . . , xn}. We are going to prove that normalize(α)
is an ⊕-normalized e-SLDD formula equivalent to α.

The proof is again by induction on the height h(α) of α.

• Base case: h(α) = 0. In this case α is equal to the sink
node 1s labelled with a given offset. Obviously, we have
normalize(α) = α, which is already ⊕-normalized (and
represent the constant function equal to its offset).

• Inductive step: h(α) > 0. We use the same notations
as in the proof of Proposition 5. Let x1 be the variable
labeling the root N0 of α. Let Dx1

= {d1, . . . , dm}.
By induction hypothesis, the property holds for every
e-SLDD formula αdj

(j ∈ 1, . . . ,m), which is the
e-SLDD formula rooted at Mj , where Mj is the child
of N0 such that v((N0, Mj)) = dj . Let us denote by q0

the offset of α and for each j ∈ 1, . . . ,m, let φ(aj be
the label of the arc aj = (N0, Mj).

We first prove that normalize(α) is equivalent to α.
By induction hypothesis, for each j ∈ 1, . . . ,m,
normalize(αdj

) is equivalent to αdj
.

By definition of the semantics of an e-SLDD for-

mula, for every ~x ∈ ~X such that ~x = ~x′ ∪

{(x1, dj)}, we have that Ie-SLDD(α)(~x) = q0 ⊗

(φ(aj) ⊗ Ie-SLDD(αdj
)(~x′)). By induction hy-

pothesis, this is also equal to q0 ⊗ (φ(aj) ⊗

Ie-SLDD(normalize(αdj
))(~x′)).

Let ak ∈ out(N0) and let qmin =
⊕m

j=1 φ(aj).

When φ(ak) = qmin , we have φ(ak) ⊗−1 qmin =
qmin ⊗−1 qmin . By definition of ⊗−1, we also have
qmin ⊗ (qmin ⊗−1 qmin) = qmin . Since 1s is neutral
for ⊗, qmin is also equal to qmin ⊗ 1s. Hence we have
qmin ⊗ (qmin ⊗−1 qmin) = qmin ⊗ 1s. When ⊗ is left-
cancellative, this implies that qmin ⊗−1 qmin = 1s.

Thus, when ⊗ is left-cancellative, the last iteration step

of the normalization procedure replaces in α each φ(aj)

(j ∈ 1, . . . ,m) by φ(aj) := φ(aj)⊗
−1

⊕m
j=1 φ(aj) and

finally q0 by q0 := q0 ⊗
⊕m

j=1 φ(aj). Since we have

Ie-SLDD(normalize(α))(~x) =

q0 ⊗ (φ(aj) ⊗ Ie-SLDD(normalize(αdj
))(~x′)),

and since ⊗ is associative, it is enough to show that for

any j ∈ 1, . . . ,m, q0 ⊗ φ(aj) = q0 ⊗ φ(aj) to conclude
that normalize(α) is equivalent to α.

By definition we have q0⊗φ(aj) = (q0⊗
⊕m

j=1 φ(aj))⊗

(φ(aj) ⊗−1
⊕m

j=1 φ(aj)). φ(aj) ⊗−1
⊕m

j=1 φ(aj)

is well-defined since φ(aj) D
⊕m

j=1 φ(aj) holds; in-

deed, since ⊕ is idempotent, we have that φ(aj) ⊕⊕m
j=1 φ(aj) =

⊕m
j=1 φ(aj). Finally, since ⊗ is asso-

ciative and since by definition of ⊗−1, we have

m⊕

j=1

φ(aj) ⊗ (φ(aj) ⊗
−1

m⊕

j=1

φ(aj)) = φ(aj),

we finally obtain that

q0 ⊗ φ(aj) = q0 ⊗ φ(aj),

as expected.

We now prove that normalize(α) is ⊕-normalized.
By induction hypothesis it is enough to show that⊕m

j=1 φ(aj) = 1s.

– we first prove that ⊗−1 is right-distributive over ⊕:
∀a, b, c ∈ E, (a⊕b)⊗−1 c = (a⊗−1 c)⊕(b⊗−1 c).
Observe that a ⊕ b D c precisely when a D c and
b D c. On the one hand, by definition of D, a D c
holds iff a ⊕ c = c and b D c holds iff b ⊕ c = c.
Furthermore, if a⊕ c = c, then (a⊕ c)⊕ b = c⊕ b.
Since ⊕ is associative and commutative, we have
(a⊕c)⊕b = (a⊕b)⊕c and c⊕b = b⊕c, so we get
(a⊕b)⊕c = c, showing that a⊕bDc. Conversely,
if a⊕bDc holds, then (a⊕b)⊕c = c. Hence a⊕c =
a⊕((a⊕b)⊕c) = a⊕a⊕b⊕c since ⊕ is associative,
= a⊕b⊕c (since ⊕ is idempotent), = c. This shows
that a D c (showing that b D c is similar, replacing
a by b and b by a). Now, by definition of ⊗−1,
when a ⊗−1 c and b ⊗−1 c are well-defined, we

have c ⊗ (a ⊗−1 c) = a and c ⊗ (b ⊗−1 c) = b.
Hence a⊕ b = (c⊗ (a⊗−1 c))⊕ (c⊗ (b⊗−1 c)).
Since ⊗ is left-distributive over ⊕, we also have
a ⊕ b = c ⊗ ((a ⊗−1 c) ⊕ (b ⊗−1 c)). Besides,
by definition of ⊗−1, when (a ⊕ b) ⊗−1 c is well-
defined, we have c⊗ ((a⊕ b)⊗−1 c) = a⊕ b. Thus
we get c ⊗ ((a ⊗−1 c) ⊕ (b ⊗−1 c)) = c ⊗ ((a ⊕
b) ⊗−1 c). Since ⊗ is left-cancellative, we get that
(a ⊗−1 c) ⊕ (b ⊗−1 c) = ((a ⊕ b) ⊗−1 c).

– we also prove that ∀a ∈ E, a ⊗−1 a = 1s. Since
⊕ is idempotent, we have a ⊕ a = a, hence D is
reflexive: a D a. Then, by definition of ⊗−1, we
have a ⊗ (a ⊗−1 a) = a. Since 1s is neutral for ⊗,
we also have a = a ⊗ 1s. Hence, a ⊗ (a ⊗−1 a) =
a ⊗ 1s. Since ⊗ is left-cancellative, we get that
a ⊗−1 a = 1s.

On this ground, the result follows easily:
⊕m

j=1 φ(aj) =
⊕m

j=1(φ(aj) ⊗
−1

⊕m
i=1 φ(ai)) = (

⊕m
j=1 φ(aj)) ⊗

−1

(
⊕m

i=1 φ(ai)) since ⊕ is associative and ⊗−1 is right-

distributive over ⊕. Since
⊕m

j=1 φ(aj) =
⊕m

i=1 φ(ai),

we get that
⊕m

j=1 φ(aj) = 1s.

That normalize runs in polynomial time provided that
⊗, ⊗−1 and ⊕ can be computed in linear time is obvi-
ous (actually, it is enough to require that ⊗ can be com-
puted in linear time and that ⊗−1 and ⊕ can be com-
puted in polynomial time). Finally, it is also obvious
that the reduction (elimination of isomorphic nodes and
of redundant nodes) of an e-SLDD formula preserves it
semantics and can also be achieved in polynomial time.

Proof:[Proposition 7] For every ordered e-SLDD formula α,
let us note ⊕ − reduce(α) the e-SLDD formula obtained by
computing the ⊕-reduction of α in a bottom-up way: after the
⊕-normalization step of node N as achieved by the normalize

procedure, one achieves a reduction step which consists in
removing N if it is isomorphic to a node previously generated
or if it is redundant. Note that the suppression step does not
question the fact that the formula is ⊕-normalized since it
does not modify the arc labels. Thus, the resulting formula is
equal to the one obtained by first ⊕-normalizing α and then
reducing it.

Let α and α′ be two ordered e-SLDD formulae. Since
the ⊕-reduction of a formula preserves its semantics when ⊗
is left-cancellative (see Proposition 6), if ⊕ − reduce(α) =
⊕− reduce(α′), then they represent the same function.

Conversely, suppose that α and α′ are equivalent. Then
they depend on the same variables, say X = {x1, . . . , xn};
assume w.l.o.g. that the variable ordering under consideration
is such that x1 < x2 < . . . < xn.

Let us now prove by induction on n that α and α′ have the
same ⊕-reduced form and satisfy

⊕

~x∈ ~X

Ie-SLDD(⊕− reduce(α))(~x) =

⊕

~x∈ ~X

Ie-SLDD(⊕− reduce(α′))(~x) = 1s.

• Base case: n = 0. Since they do not depend on any
variable, α and α′ are given by a single node, namely
the sink node 1s, and they are labeled by the same off-
set since α and α′ are equivalent. Hence the ⊕-reduced
forms of α and α′ are identical. Furthermore, by con-
vention,

⊕
a∈∅ a = 1s.

• Inductive step: n > 0. Let Dx1
= {d1, . . . , dm}. By

construction, α (resp. α′) has its root N0 (resp. N ′
0)

labelled by x1, an offset q0 (resp. q′0) and m outgo-
ing arcs a1 = (N0, M1), . . . , am = (N0, Mm) (resp.
a′
1 = (N ′

0, M
′
1), . . . , a

′
m = (N ′

0, M
′
m)) such that ∀j ∈

1, . . . ,m, v(aj) = v(a′
j) = dj and the e-SLDD repre-

sentation rooted at Mj (resp. M ′
j) is αdj

(resp. α′
dj

).

Since α and α′ are equivalent, then for each j ∈
1, . . . ,m, αdj

and α′
dj

are equivalent. Since none of

them depends on x1, by induction hypothesis, αdj
and

α′
dj

have the same ⊕-reduced form: ⊕− reduce(αdj
) =

⊕ − reduce(α′
dj

). Besides, with X ′ = {x2, . . . , xm},

we have
⊕

~x′∈ ~X′ Ie-SLDD(⊕ − reduce(αdj
)(~x′) =

⊕
~x′∈ ~X′ Ie-SLDD(⊕− reduce(α′

dj
)(~x′) = 1s.

At the last iteration step of the ⊕ − reduce procedure
(i.e., when every internal node of the formula has been
considered except its root), α and α′ are as depicted at
Figures 3 and 4.

x1 q0

. . .

N0

⊕− reduce(αd1
) ⊕− reduce(αdm

)

φ(a1) φ(am)

Figure 3: ⊕-reduction of the e-SLDD α.

x1 q′0
. . .

N ′
0

⊕− reduce(αd1
) ⊕− reduce(αdm

)

φ(a′
1) φ(a′

m)

Figure 4: ⊕-reduction of the e-SLDD α′.

As explained in the proof of Proposition 6, the normal-
ization part of the last iteration step of the ⊕ − reduce

procedure amounts to replacing in α (resp. α′) each

φ(aj) (resp. φ(a′
j)) (j ∈ 1, . . . ,m) by φ(aj) :=

φ(aj) ⊗−1
⊕m

j=1 φ(aj) (resp. φ(a′
j) := φ(a′

j) ⊗−1

⊕m
j=1 φ(a′

j)) and finally q0 by q0 := q0 ⊗
⊕m

j=1 φ(aj)

(resp. q′0 by q′0 := q′0 ⊗
⊕m

j=1 φ(a′
j)).

Let us first prove that for every j ∈ 1, . . . ,m, we have
q0 ⊗ φ(aj) = q′0 ⊗ φ(a′

j). Since the ⊕-normalizations

of α and α′ preserve their semantics (see Proposition 6)

and since this is also the case of their reductions, the fact
that α and α′ are equivalent implies that ⊕− reduce(α)
and ⊕ − reduce(α′) are equivalent as well. So we have

that for each j ∈ 1, . . . ,m, for each ~x ∈ ~X such that

~x = ~x′ ∪ {(x1, dj)}, Ie-SLDD(⊕ − reduce(α))(~x) =
Ie-SLDD(⊕− reduce(α′))(~x). Hence we have

q0 ⊗ (φ(aj) ⊗ Ie-SLDD(⊕− reduce(αdj
))(~x′))

= q′0 ⊗ (φ(a′
j) ⊗ Ie-SLDD(⊕− reduce(αdj

))(~x′)).

Since this holds for each ~x′ ∈ ~X ′, we get that
⊕

~x′∈ ~X′

(q0⊗ (φ(aj)⊗ Ie-SLDD(⊕− reduce(αdj
))(~x′)))

=
⊕

~x′∈ ~X′

(q′0⊗(φ(a′
j)⊗Ie-SLDD(⊕−reduce(αdj

))(~x′))).

Since ⊗ is associative and since ⊗ is left-distributive
over ⊕, this is equivalent to q0 ⊗ φ(aj) ⊗

(
⊕

~x′∈ ~X′ Ie-SLDD(⊕ − reduce(αdj
))(~x′)) = q′0 ⊗

φ(a′
j) ⊗ (

⊕
~x′∈ ~X′ Ie-SLDD(⊕ − reduce(αdj

))(~x′)).
By induction hypothesis, we have

⊕

~x′∈ ~X′

Ie-SLDD(⊕− reduce(αdj
))(~x′) = 1s.

Since 1s is the neutral element for ⊗, we obtain q0 ⊗
φ(aj) = q′0 ⊗ φ(a′

j), as expected.

It remains to show that q0 = q′0 and that for each j ∈
1, . . . ,m, φ(aj) = φ(a′

j). Since q0⊗φ(aj) = q′0⊗φ(a′
j)

holds for every j ∈ 1, . . . ,m, we have that
⊕m

j=1(q0 ⊗

φ(aj)) =
⊕m

j=1(q
′
0⊗φ(a′

j)). Since ⊗ is left-distributive

over ⊕, this is equivalent to q0 ⊗
⊕m

j=1 φ(aj) = q′0 ⊗⊕m
j=1 φ(a′

j). Since
⊕m

j=1 φ(aj) = 1s =
⊕m

j=1 φ(a′
j),

we get that q0 ⊗ 1s = q′0 ⊗ 1s. Since 1s is neutral for ⊗,
we obtain q0 = q′0.

Since for each j ∈ 1, . . . ,m, for each ~x ∈ ~X such that

~x = ~x′ ∪ {(x1, dj)}, Ie-SLDD(⊕ − reduce(α))(~x) =
Ie-SLDD(⊕− reduce(α′))(~x), we get that for each j ∈

1, . . . ,m, for each ~x′ ∈ ~X ′,

q0 ⊗ (φ(aj) ⊗ Ie-SLDD(⊕− reduce(αdj
))(~x′))

= q0 ⊗ (φ(a′
j) ⊗ Ie-SLDD(⊕− reduce(αdj

))(~x′)).

As a consequence, for each j ∈ 1, . . . ,m, we have:
⊕

~x′∈ ~X′

(q0⊗ (φ(aj)⊗ Ie-SLDD(⊕− reduce(αdj
))(~x′)))

=
⊕

~x′∈ ~X′

(q0⊗(φ(a′
j)⊗Ie-SLDD(⊕−reduce(αdj

))(~x′))).

Since ⊗ is associative and since ⊗ is left-distributive
over ⊕, this is equivalent to

q0 ⊗ φ(aj) ⊗ (
⊕

~x′∈ ~X′

Ie-SLDD(⊕− reduce(αdj
))(~x′))

= q0⊗φ(a′
j)⊗(

⊕

~x′∈ ~X′

Ie-SLDD(⊕−reduce(αdj
))(~x′)).

Since by induction hypothesis,
⊕

~x′∈ ~X′ Ie-SLDD(⊕−

reduce(αdj
))(~x′) = 1s, and 1s is neutral for ⊗, it

comes that q0 ⊗ φ(aj) = q0 ⊗ φ(a′
j). Since ⊗ is left-

cancellative, we get the expected result: φ(aj) = φ(a′
j).

Altogether, we get that ⊕−reduce(α) = ⊕−reduce(α′).

Proof:[Proposition 8] A maximal assignment ~x∗ w.r.t. � can
be computed in polynomial time by backward induction from
the sink of α up to its root N0. The optimization algorithm
consists in computing in a bottom-up way, for every internal
node N of α, the values of two synthesized attributes val(N)
(a valuation from E) and suc(N) (one of the children nodes
of N). More precisely, val(N) is a maximal value w.r.t. �
for the e-SLDD formula rooted at N and the suc(N) values
aim at tagging a path from N to the sink, corresponding to an

assignment leading to this optimal value. Thus ~x∗ is associ-
ated with the path N0, suc(N0), suc(suc(N0)), . . . from the
root N0 of α to the sink node in such a way that every vari-
able x labeling a node M in this path is assigned to d ∈ Dx

in ~x∗ if and only if v((M, suc(M)) = d.
The algorithm is as follows.5 For the sink node N , we set

val(N) to ⊗; now for each internal node N of α considered
by increasing height (i.e., the length of a longest path from N
to the sink), we set suc(N) to one of the children of N such
that for every child M of N different from suc(N) we have

φ((N, M)) ⊗ val(M) 6≻ φ((N, suc(N))) ⊗ val(suc(N))

and we set val(N) to φ((N, suc(N))) ⊗ val(suc(N)).
We prove by induction on the height h(N) that the (partial)

assignment ~x∗
N associated with the tagged path from N to

the sink node is maximal w.r.t. �.

• Base case: h(N) = 0. N is the sink node, there is
no variable to be assigned, hence the optimality of the
corresponding empty assignment is obvious.

• Inductive step: suppose that the property holds for every
node M of α such that h(M) ≥ k and let us prove that it
still holds for any node N of α such that h(N) = k + 1.
It is enough to prove that for every M , if the path from

N0 to the sink node associated with ~x∗ contains M , then
~x∗

M is a subset of ~x∗ (Bellman’s principle of optimal-
ity). Towards a contradiction, suppose that this is not

the case. Then there exists an assignment ~x′
M , different

from ~x∗, of the variables encountered in a path from M
to the sink such that for some valuation e ∈ E (e is equal
to the ⊗-combination of the labels φ(a) of the sequence

of arcs from N0 to M corresponding to ~x∗), we have

e⊗Ie-SLDD(αM)(~x′
M) ≻ e⊗Ie-SLDD(αM)(~x∗

M),
where αM is the e-SLDD formula rooted at M .

By induction hypothesis, we also have

Ie-SLDD(αM)(~x′
M) 6≻ Ie-SLDD(αM)(~x∗

M).

5If the purpose is to compute a minimal assignment w.r.t. �, then
it is enough to replace ≻ by ≺.

Now, since � is a total pre-order over E, we have that

Ie-SLDD(αM)(~x′
M) 6≻ Ie-SLDD(αM)(~x∗

M)

is equivalent to Ie-SLDD(αM)(~x∗
M) �

Ie-SLDD(αM)(~x′
M). Then by left monotony of

⊗ w.r.t. �, we have e ⊗ Ie-SLDD(αM)(~x∗
M) �

e ⊗ Ie-SLDD(αM)(~x′
M), which contradicts e ⊗

Ie-SLDD(αM)(~x′
M) ≻ e ⊗ Ie-SLDD(αM)(~x∗

M).

Proof:[Proposition 9] Any ADD representation α over X can
be transformed into an equivalent e-SLDD representation α′

in linear time; α′ can be generated from α as follows: for any
arc a = (N, M) reaching a terminal node M of α labelled
by e ∈ E, set φ(a) to e; for any arc a = (N, M) of α where
M is not a leaf, set φ(a) to 1s; then merge all leaves of into
a single sink (non labelled). By construction, and because ⊗
is associative and 1s is neutral for ⊗, the resulting represen-

tation α′ is a e-SLDD formula such that for every ~x ∈ ~X ,
IADD(α)(~x) = Ie-SLDD(α′)(~x).

Proof:[Proposition 10]

• e-SLDD× 6≤s e-SLDD+: The point is that the mapping

f(x1, . . . , xn) = Σn
i=12

n−i × xi

from {0, 1}n to R
+ cannot be represented by an

e-SLDD× formula of size polynomial in n.

Formally, we first show that there is only one
max -reduced ordered e-SLDD× formula over X =
{x1, . . . , xn} (with x1 < x2 < . . . < xn) representing
f(x1, . . . , xn) = Σn

i=12
n−i × xi and that it has neces-

sarily at least 2n arcs reaching the sink node, labelled
by the integers from 0to2n − 1. Indeed, the image of
f clearly is the set of all integers from 0 to 2n − 1.
Hence, any ADD formula representing f is tree-shaped
and it has 2n leaves, labelled by those integers. Let us
now transform α into an e-SLDD× formula β, follow-
ing the procedure described in the proof of Proposition
9: each of the 2n valuations labelling the leaves of α
are put on their (unique) ingoing arc, and all leaves are
merged; all the other arcs a are labelled by φ(a) = 1.
Let us now apply the max -normalization procedure to
β: for any node N (resp. N ′) labelled by xn (i.e., for
any node connected directly to the sink), let ~xN (resp.
~xN ′) be the corresponding assignment of the n − 1 first
variables and φN (resp. φN ′) be the value of the im-
age of ~xN (resp. ~xN ′) by the restriction of f when
xn = 0; N has two outgoing arcs, the one correspond-
ing to the assignment of xn to 0 (say aN,0) and the one
corresponding to the assignment of xn to 1 (say, aN,1).
It holds that φ(aN,1) = φN + 1 and φ(aN,0) = φN ,
hence φ(aN,1) = φ(aN,0) + 1 (see Figure 5). The max -
normalization of N starts with the computation of qmin

equals to max (φN + 1, φN) = φN + 1. After the up-
date, φ(aN,1) is equal to 1 and φ(aN,0) is equal to c =
φN×−1(φN +1); since c is such that (φN +1)×c = φN ,

we have c = φN

φN+1 . Finally the valuation labeling the

arc from the father M of N to N is updated (it is multi-
plied by φN + 1). If N 6= N ′ then we have φN 6= φN ′ .

As a consequence, we also have φN

φN+1 6= φN′

φN′+1 . Be-

cause the initial values φ(aN,0) = φN of the 0-outgoing

arcs of the 2n−1 nodes N of β labeled by xn are pair-
wise distinct, the corresponding updated labels φ(aN,0)
are also pairwise distinct. As a consequence, their fa-
ther nodes cannot be merged, and since there are 2n−1

such nodes, the e-SLDD× formula obtained by reducing
the resulting max -normalized diagram of β still contains
exponentially many nodes.

M

xn N

1

φN + 1φN

Figure 5: max -normalization of β.

Contrastingly, f(x1, . . . , xn) = Σn
i=12

n−i × xi can be
represented by the ordered e-SLDD+ formula given at
Figure 6. This e-SLDD+ formula has n nodes labelled
by x1 to xn, plus the sink. Each internal node N la-
belled by some xi has two outgoing arcs aN,1 and aN,0

with v(aN,1) = 1, v(aN,0) = 0, φ(aN,1) = 2n−i and
φ(aN,0) = 0. A straightforward induction shows that
the interpretation of this e-SLDD+ formula is equal to
Σn

i=12
n−i × xi.

x1

x2

x3

xn

0

2n−10

2n−20

10

Figure 6: An ordered e-SLDD+ representation of
f(x1, . . . , xn) = Σn

i=12
n−i × xi.

• e-SLDD+ 6≤s e-SLDD×: The proof is quite similar to
the previous one, with

f(x1, . . . , xn) = Πn
i=1γ

2n−i×xi ,

where 0 < γ < 1. Observe that f(x1, . . . , xn) is also

equal to γΣn
i=1

2n−ixi .

Formally, we first show that there is only one
min-reduced ordered e-SLDD+ formula over X =
{x1, . . . , xn} (with x1 < x2 < . . . < xn) representing

f(x1, . . . , xn) = Πn
i=1γ

2n−i×xi and that it has necessar-
ily at least 2n arcs reaching the sink node, labelled by the
numbers of the form γi with i ∈ 0, . . . , 2n−1. Indeed,
the image of f clearly is the set {γi | i ∈ 0, . . . , 2n−1}.
Hence, any ADD formula representing f is tree-shaped
and it has 2n leaves, labelled by those numbers. Let us
now transform α into an e-SLDD+ formula β, follow-
ing the procedure described in the proof of Proposition
9: each of the 2n valuations labelling the leaves of α
are put on their (unique) ingoing arc, and all leaves are
merged; all the other arcs a are labelled by φ(a) = 0.
Let us now apply the min-normalization procedure to
β: for any node N (resp. N ′) labelled by xn (i.e., for
any node connected directly to the sink), let ~xN (resp.
~xN ′) be the corresponding assignment of the n − 1 first
variables and φN (resp. φN ′) be the value of the im-
age of ~xN (resp. ~xN ′) by the restriction of f when
xn = 0; N has two outgoing arcs, the one correspond-
ing to the assignment of xn to 0 (say aN,0) and the one
corresponding to the assignment of xn to 1 (say, aN,1).
It holds that φ(aN,1) = γ × φN and φ(aN,0) = φN ,
hence φ(aN,1) = γ × φ(aN,0) (see Figure 7). The
min-normalization of N starts with the computation of
qmin equals to min(γ × φN , φN) = γ × φN . Af-
ter the update, φ(aN,1) is equal to 0 and φ(aN,0) is

equal to c = φN +−1 (γ × φN); since c is such that
(γ×φN)+ c = φN , we have c = φN × (1−γ). Finally
the valuation labeling the arc from the father M of N to
N is updated (γ × φN is added to its current value). If
N 6= N ′ then we have φN 6= φN ′ . As a consequence,
we also have φN × (1 − γ) 6= φN ′ × (1 − γ). Be-
cause the initial values φ(aN,0) = φN of the 0-outgoing

arcs of the 2n−1 nodes N of β labeled by xn are pair-
wise distinct, the corresponding updated labels φ(aN,0)
are also pairwise distinct. As a consequence, their father
nodes cannot be merged, and since there are 2n−1 such
nodes, the e-SLDD+ formula obtained by reducing the
resulting min-normalized diagram of β still contains ex-
ponentially many nodes.

Contrastingly, f(x1, . . . , xn) = Πn
i=1γ

2n−i×xi can be
represented by the ordered e-SLDD× formula given at
Figure 8. This e-SLDD× formula has n nodes labelled
by x1 to xn, plus the sink. Each internal node N la-
belled by some xi has two outgoing arcs aN,1 and aN,0

with v(aN,1) = 1, v(aN,0) = 0, φ(aN,1) = γ2n−i

and
φ(aN,0) = 1. A straightforward induction shows that
the interpretation of this e-SLDD× formula is equal to

Πn
i=1γ

2n−i×xi .

M

xn N

0

γ.φNφN

Figure 7: min-normalization of β.

x1

x2

x3

xn

1

γ2n−1

1

γ2n−2

1

γ1

Figure 8: An ordered e-SLDD× representation of

f(x1, . . . , xn) = Πn
i=1γ

2n−i×xi .

• AADD<s e-SLDD+: since e-SLDD+ is polynomi-
ally translatable into AADD (set all the f to 1), we
have AADD≤s e-SLDD+; moreover, since e-SLDD× is
polynomially translatable into AADD (set all the q to 0),
a polynomial AADD representation of f(x1, . . . , xn) =

Πn
i=1γ

2n−i×xi exists, while this is not the case for
e-SLDD+. Hence AADD<s e-SLDD+.

• AADD<s e-SLDD×: since e-SLDD× is polynomi-
ally translatable into AADD (set all the q to 0),we
have AADD≤s e-SLDD×; moreover, since e-SLDD+ is
polynomially translatable into AADD (set all the f to 1),
a polynomial AADD representation of f(x1, . . . , xn) =
Σn

i=12
n−i × xi exists, while this is not the case for

e-SLDD×. Hence AADD<s e-SLDD×.

• e-SLDD+ <s ADD: that e-SLDD+ ≤s ADD is given
by Proposition 9; ADD 6≤s e-SLDD+ holds since
f(x1, . . . , xn) = Σn

i=12
n−i × xi has no polynomially-

sized ADD representation while it has a polynomially-
sized e-SLDD+ representation.

• e-SLDD× <s ADD: that e-SLDD× ≤s ADD is given
by Proposition 9; ADD 6≤s e-SLDD× holds since

f(x1, . . . , xn) = Πn
i=1γ

2n−i×xi has no polynomially-
sized ADD representation while it has a polynomially-
sized e-SLDD× representation.

• e-SLDDmin∼p ADD: From Proposition 9, we know
that e-SLDDmin ≤l ADD; so obviously e-SLDDmin ≤p

ADD.

Let us now show that ADD ≤p e-SLDDmin . Let α be a
e-SLDDmin representation over X . Let us explain how
to generate from α in polynomial time an ADD repre-
sentationn β representing the same mapping as the one
represented by α. The approach consists in parsing α in
a top-down way, by decreasing depth. If α is reduced to
the sink node, then β is a single-node ADD representa-
tion labeled by the offset of α. Otherwise, in the general
case, every internal node NvalM of β will be associated
with two further labels which are parts of the node iden-
tifier: a valuation val from E and a pointer to the corre-
sponding node M in α. At any step, the variable labeling
Nval

M is the same as the one labeling M . At start, the root
node of β is Nq0 N0 where q0 is the offset of α, and N0

is the root node of α. Then for every leaf node Nval
M of

β, for every arc (M,P) ∈ out(M) in α labelled with
v(a), if P is the sink node, then add an arc in β from
Nval

M to the terminal node of β labelled by the valuation
min(val , φ(a)) (this node is not associated with a node
in α); otherwise (i.e., if P is not the sink node), then

add an arc in β from Nval
M to the node N

min(val,φ(a))
P .

Whatever the case, the arc added to β is also labelled by
v(a).

Figure 9 gives an e-SLDDmin formula α and Figure 10
gives the corresponding ADD representation computed
using the procedure described above. Observe that this
ADD is not reduced in the general case (Figure 11 gives
the corresponding reduced ADD).

The generation algorithm described above rules in time
polynomial in the size of α. Especially, the ADD repre-

x1N0 q0 = 5

x2N1 x2 N2

x3N3 x3 N4

+∞

2 3

2 3

4

2

4

3 2

4

Figure 9: An e-SLDDmin representation α. The domain of
all variables x1, x2, x3 is {0, 1}. Every dotted (resp. plain)
arc a corresponds to the value v(a) = 0 (resp. v(a) = 1).

x1N5
N0

x2N2
N1

x2 N3
N2

x3N2
N3

x3 N2
N4

x3 N3
N3

2 3

Figure 10: An ADD representation equivalent to α. The do-
main of all variables is {0, 1}. Every dotted (resp. plain) arc
a corresponds to the value v(a) = 0 (resp. v(a) = 1).

x1

x2

2 3

Figure 11: A reduced ADD representation equivalent to α.
The domain of all variables is {0, 1}. Every dotted (resp.
plain) arc a corresponds to the value v(a) = 0 (resp. v(a) =
1).

sentation β which is generated from α contains no more
than n × k nodes and no more than m × k arcs, where
n is the number of nodes of α, m the number of arcs
of α and k is the cardinality of {φ(a) | a ∈ α}, i.e.,
the number of different valuations labeling the arcs of α.

By construction, for every assignment ~x ∈ ~X , we have
Ie-SLDDmin

(α)(~x) = IADD(β)(~x), which shows that
α and β represent the same mapping.

• e-SLDDmax ∼p ADD: The proof is the same as the pre-
vious one, replacing ”min” by ”max”.

