
HAL Id: hal-04085296
https://hal.science/hal-04085296

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Knowledge Compilation Map for
Heterogeneous Representation Language

Hélène Fargier, Pierre Marquis, Alexandre Niveau

To cite this version:
Hélène Fargier, Pierre Marquis, Alexandre Niveau. Towards a Knowledge Compilation Map for Het-
erogeneous Representation Language. 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), International Joint Conferences on Artificial Intelligence (IJCAI), Aug 2013, Beijing,
China. pp.877-883. �hal-04085296�

https://hal.science/hal-04085296
https://hal.archives-ouvertes.fr


 

Open Archive TOULOUSE Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible. 

This  is  an author-deposited version published in  :  http://oatao.univ-toulouse.fr/
Eprints ID : 12764

To cite this version : Fargier, Hélène and Marquis, Pierre and Niveau, 
Alexandre Towards a Knowledge Compilation Map for Heterogeneous
Representation Language. (2013) In: International Joint Conference on 
Artificial Intelligence - IJCAI 2013, 3 August 2013 - 9 August 2013 
(Beijing, China). 

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12764/
http://oatao.univ-toulouse.fr/12764/
mailto:staff-oatao@listes-diff.inp-toulouse.fr


Towards a Knowledge Compilation Map
for Heterogeneous Representation Languages∗

Hélène Fargier

IRIT–CNRS, Univ. Paul Sabatier

Toulouse, France

fargier@irit.fr

Pierre Marquis and Alexandre Niveau

CRIL–CNRS, Univ. Artois

Lens, France

{marquis,niveau}@cril.fr

Abstract

The knowledge compilation map introduced by
Darwiche and Marquis takes advantage of a num-
ber of concepts (mainly queries, transformations,
expressiveness, and succinctness) to compare the
relative adequacy of representation languages to
some AI problems. However, the framework is lim-
ited to the comparison of languages that are inter-
preted in a homogeneous way (formulæ are inter-
preted as Boolean functions). This prevents one
from comparing, on a formal basis, languages that
are close in essence, such as OBDD, MDD, and
ADD. To fill the gap, we present a generalized
framework into which comparing formally hetero-
geneous representation languages becomes feasi-
ble. In particular, we explain how the key notions
of queries and transformations, expressiveness, and
succinctness can be lifted to the generalized setting.

1 Introduction

There exist myriads of representation languages, with differ-
ent capabilities; each one fits some applications, but is not
suitable for others—there can be no best language. Choos-
ing a good language for a given application is thus a funda-
mental problem in AI. Levesque and Brachman [1985] have
shown that this problem boils down to a compromise between
(computational) efficiency and expressiveness; for languages
of equal expressiveness, efficiency must be balanced against
succinctness [Gogic et al., 1995]. The knowledge compila-
tion map [Darwiche and Marquis, 2002] relies on these as-
pects to compare languages representing Boolean functions.

However, there are few works about the comparison of
“heterogeneous” representation languages, based on different
interpretation domains. It is well-known that ordered multi-
valued decision diagrams (OMDDs) [Srinivasan et al., 1990]

can be transformed in polynomial time into ordered binary
decision diagrams (OBDDs) [Bryant, 1986], using for exam-
ple a log encoding (see Figure 1); these languages are con-
sidered somewhat equivalent. Yet, because of the specificity

∗This work is partially supported by the project BR4CP ANR-
11-BS02-008 of the French National Agency for Research.

of existing frameworks, this “equivalence” cannot be for-
mally stated, and its use in proofs requires much prudence—
we would like to use it as an elementary brick to infer re-
sults in an automated fashion. It can be noted that when
the notion of a “representation language” is used in a broad
sense, e.g., in surveys of the knowledge representation or ar-
tificial intelligence domains [Brachman and Levesque, 2004;
van Harmelen et al., 2008; Russell and Norvig, 2010], it is
only described informally; and whenever there is a need for a
formal definition, its scope is restricted to the case in point.

In this paper, we propose a generalized formal framework
for representation languages, including a definition of equiv-
alence suitable for heterogeneous languages, with the long-
term purpose of casting them in a single knowledge compila-
tion map. We prove that several properties usually expected
in specific maps still hold in our general view, modulo certain
modifications. We begin with a formal definition of a “repre-
sentation language” and of important related notions, such as
completeness and sublanguage, in Section 2. Then, we show
how the usual concepts used for language comparison in the
knowledge compilation map can be generalized to heteroge-
neous languages: Section 3 deals with notions related to rep-
resentation efficiency (expressiveness, succinctness, polyno-
mial translation), and Section 4 with notions related to com-
putational power (notably queries and transformations). Sec-
tion 5 concludes the paper, and illustrates a practical use of
our framework on a case study (that of MDDs and BDDs).
All proofs are gathered in Appendix A.

2 Representation Language

2.1 Definitions

The knowledge compilation (KC) map is built upon the no-
tion of language; it was not formally defined in the original
map [Darwiche and Marquis, 2002], because it implicitly had
the classical meaning of a formal language, i.e., a set of words
over an alphabet. This “language” terminology only refers to
syntax; semantics is given by an implicit interpretation func-
tion (that of propositional formulæ). There is also a natural
hierarchy on languages, namely inclusion: a sublanguage, or
fragment, is simply a subset of a language.

In this classical setting, most features of languages are
thus implicit, including their interpretation function and their
hierarchy, but also the notion of completeness and the do-



y

x

⊤

y

[0,3.45] [5.1,8]

[0,4.6] [2,7.7]

n

m

⊤

n

⊥

0

0,3

1,3

1,2

2

2,3
0,1

n0 n0

⊤ ⊥

m0m0

m1

n1 n1

Variable domains:

• x,y ∈ [0,10];

• m,n ∈ {0,1,2,3};

• m0,m1,n0,n1 ∈ .

In the BDD, solid (resp.
dashed) edges have the
value ⊤ (resp. ⊥).

Figure 1: An ordered interval automaton (OIA), an ordered multivalued decision diagram (OMDD), and an ordered binary
decision diagram (OBDD). The OMDD is a discretization of the OIA, using partitions {[0,3.45],(3.45,5.1), [5.1,8],(8,10]}
for x and {[0,2), [2,4.6],(4.6,7.7],(7.7,10]} for y. The OBDD is obtained from the OMDD by log encoding.

mains of variables. This crucial limitation prevents one from
directly applying this framework to a more general setting.
Consider the bit sequence 10101010: interpreted as a binary-
encoded natural integer, it corresponds to 170; as the “sign-
and-magnitude” encoding of a relative integer, to −42; as a
fixed-point real number, to 10.625; etc. These languages have
the same syntax, but different interpretation functions. Our
definition of a representation language builds upon that of
Fargier and Marquis [2009], in that we use an explicit seman-
tics; but we relax their assumption that it is restricted to the
representation of Boolean functions, and consider languages
that can represent potentially anything. For that purpose, let U
be our universe of discourse, containing at least all “objects”
that our languages aim at representing, notably real and nat-
ural numbers, Boolean functions,1 etc. We also use a generic
alphabet Σ , that we suppose countably infinite; we call for-
mula a word over this alphabet, i.e., an element of Σ ∗.2 Now,
at the highest level of abstraction, a representation language
is a relation linking formulæ and objects in the universe.

Definition 2.1 (Representation language). A representation
language is an ordered pair L = 〈ΦL,IL〉, where ΦL ⊆ Σ ∗ is
a set of formulæ called the syntax of L, and IL, called the
semantics of L, is a many-to-one relation IL ⊆ Σ ∗×U that is
defined at least on all formulæ in ΦL.

The semantics of a language is a way of interpreting the
symbols in Σ ; it can be seen as a function3 from ΦL to
U, mapping any formula ϕ in the syntax of L (called an L-
representation) to its interpretation Jϕ K

L
. For example, the

language of propositional logic can be defined as PROP =
〈ΦPROP,IPROP〉, with ΦPROP the set of well-formed formulæ
(with connectives restricted to ¬, ∨, and ∧) and IPROP the
usual inductive interpretation function, associating with each
formula ϕ its corresponding Boolean function Jϕ K

PROP
∈B.

This semantics is used in lots of languages, such as CNF =

1We denote as B the set of Boolean functions of Boolean vari-
ables, and as B and B the sets of Boolean functions of variables
having respectively an integer and a real domain.

2We use the Kleene star to denote unbounded Cartesian product:
S∗ =

⋃

i∈ Si (we consider words as tuples of symbols from Σ ).
3In Def. 2.1, we use a many-to-one relation instead of a partial

function to simplify later notation. The many-to-one requirement is
not necessary (ambiguous semantics can be useful, a good example
being natural languages) but we adopt it for the sake of simplicity.

〈ΦCNF,IPROP〉 (with ΦCNF the set of formulæ in conjunctive
normal form) or HORN-C= 〈ΦHORN-C,IPROP〉, (with ΦHORN-C the
set of Horn-CNFs). Other examples include BDD, MDD, and
IA, the languages of binary and multivalued decision dia-
grams and of interval automata [Niveau et al., 2010] (see
Figure 1), and the language of algebraic decision diagrams,
ADD [Bahar et al., 1997]. For space reasons, the paper is fo-
cused on these languages (in particular, the relationship be-
tween the MDD and BDD families is presented in Section 5),
but the framework is much more general.4

Remark that there can be elements ω ∈ U with which IL
does not associate any formula, neither inside ΦL nor out-
side. Those elements are thus completely unrelated to the
language; for example, IPROP ignores any object that is not
a Boolean function. The elements of U with which IL asso-
ciates at least one formula are called L-interpretations.

Definition 2.2 (Interpretation space). The interpretation
space of a representation language L, denoted ΩL, is the
codomain of IL, i.e., ΩL = {ω ∈ U | ∃ϕ ∈ Σ ∗,ϕ IL ω }.

Since CNF and HORN-C have the same semantics, they also
have the same interpretation space, which is B. Note that
elements in the interpretation space of a language L are not
guaranteed to have a representation in ΦL; e.g., the syntax of
HORN-C is not expressive enough to cover the whole interpre-
tive power of its semantics—the language is incomplete.

Definition 2.3 (Completeness). A representation language L
is complete if and only if ∀ω ∈ ΩL,∃ϕ ∈ ΦL,Jϕ K

L
= ω .

2.2 Sublanguages

A representation language is not simply a set of formulæ,
therefore the notion of sublanguage cannot simply be based
on a restriction of syntax, as it is in the classical KC map.

Definition 2.4 (Sublanguage). Let L and L
′ be two represen-

tation languages; L′ is a sublanguage of L, denoted L
′ ⊆ L, if

and only if ΦL′ ⊆ ΦL and IL′ ⊆ IL. Moreover, if L′ ⊆ L and
IL′ = IL, L′ is said to be a fragment of L.

4It notably includes VNNF [Fargier and Marquis, 2007], and
languages outside the usual scope of KC, like all flavors of con-
straint networks (discrete or continuous, weighted, fuzzy, etc.) [see,
e.g., Rossi et al., 2006], quadtrees [Finkel and Bentley, 1974], R⋆-
trees [Beckmann et al., 1990] and, with appropriate interpretation
spaces, first-order logic, ontologies, programming languages, etc.



The condition that all formulæ in the sublanguage must re-
spect the syntax of the parent language remains; but they must
also respect its semantics (which was implicit in the classi-
cal framework). Note that our definition of a representation
language distinguishes two kinds of sublanguage hierarchies,
that of fragments, which orders languages of a fixed seman-
tics, and that of the generalized sublanguages, in which even
heterogeneous languages can be compared: e.g., it holds that
OBDD⊆ OMDD⊆ OIA, since OBDDs are specific OMDDs (re-
stricted to Boolean variables), and OMDDs are specific OIAs
(restricted to discrete variables). This natural property cannot
be formally stated within the classical KC map.

It is interesting to notice that contrary to what is usually
expected, incompleteness is not inherited by sublanguages.
Thus, OIA is not complete (edge labels are restricted to closed
intervals), but OBDD is, although OBDD ⊆ OIA. This comes
from the fact that completeness is relative to the interpreta-
tion space of the language, which is not necessarily the same
in a sublanguage. The expected property actually holds on
fragments, which have stronger requirements.

Proposition 2.5. Let L be a representation language, and L
′

a fragment of L. If L′ is complete, then L also is.

2.3 Operations on Languages

In the classical KC map, the hierarchy of fragments is induced
by a set of syntactic properties verified by languages: con-
sidering only read-once BDDs yields FBDD, adding ordering
yields OBDD, etc. These can be seen as syntactic restrictions;
they can reduce expressiveness, since the interpretation space
does not change. On the other hand, the hierarchy of decision
diagrams in the broad sense (OBDD ⊆ OMDD) cannot be gen-
erated by only restricting syntax, since some interpretations
must be removed: it can be built using semantic restrictions.

Definition 2.6 (Language restrictions). The (syntactic) re-
striction of a language L to a set of formulæ Φ ⊆ Σ ∗ is the
fragment L|Φ = 〈ΦL∩Φ ,IL〉 .

The (semantic) restriction of a language L to an in-
terpretation space Ω ⊆ U is the sublanguage L|Ω =
〈{ϕ ∈ ΦL | Jϕ K

L
∈ Ω } ,IL ∩(Σ

∗×Ω)〉 .

Using this definition, HORN-C is the syntactic restriction of
CNF to Horn-CNFs, for example, while BDD is the semantic
restriction of MDD to functions of Boolean variables. Another
way of building a language is to combine existing languages.

Definition 2.7 (Union and intersection). The union of two
languages L and L

′ is L∪ L
′ = 〈ΦL ∪ΦL′ ,I ∪ I ′〉, and their

intersection is L∩L
′ = 〈ΦL∩ΦL′ ,I ∩ I ′〉.

This allows for example to formally state that BDD= MDD∩
ADD, which expresses the fact that BDDs are both exactly the
MDDs on Boolean variables, and the ADDs with two leaves.

We are now ready to define the usual concepts of the KC
map: expressiveness, succinctness, and polynomial translata-
bility, and support of queries and transformations.

3 Representation Efficiency

In the KC map, expressiveness has a fundamental role: a dif-
ference in succinctness between two languages is only signif-
icant if they have the same expressiveness. Languages with

different interpretation spaces are a fortiori not compared in
the map. Yet, there are works about translations between het-
erogeneous languages [Walsh, 2000; Gottlob, 1995], and it
would be interesting to cast known results in the map. This
calls for a more general definition of expressiveness, succinct-
ness, and polynomial translatability, that would not require a
strict equality of interpretations, but only their equivalence
modulo some semantic correspondence, i.e., some relation
linking the two heterogeneous interpretation spaces—which
induces a translation between formulæ.

Definition 3.1 (Semantic correspondence, translation). A se-
mantic correspondence between two interpretation spaces Ω1

and Ω2 is a subset of Ω1 ×Ω2. We will call translation from
L1 to L2 a semantic correspondence T ⊆ ΩL1

×ΩL2
.

Examples of well-known translations include the various
encodings of discrete constraint networks into propositional
formulæ [Walsh, 2000], such as the direct encoding Tdir and
the log encoding Tlog, which associate functions in B

◆

with
functions in B; or the discretization translation Tdiscr, which
relates a continuous constraint network with the discrete con-
straint networks it can be discretized into. We also use the
generic identity translation Id, which denotes any relation
{〈ω,ω〉 : ω ∈ Ω} with Ω ⊆ U, in a slight abuse of notation.

3.1 Expressiveness and Succinctness

A first criterion for the comparison of representation lan-
guages is their relative expressiveness [Gogic et al., 1995;
Fargier and Marquis, 2008]. When they have the same se-
mantics, expressiveness compares their ability to represent
objects. However, we want to compare languages of different
semantics, therefore we will define expressiveness as depend-
ing on a semantic correspondence, and similarly extend rela-
tive succinctness [Gogic et al., 1995; Darwiche and Marquis,
2002], which compares the ability of languages to represent
objects compactly.

Definition 3.2 (Expressiveness, succinctness). Let L1 and L2

be two languages, and T a translation from L1 to L2.
L2 is at least as expressive as L1 modulo T , denoted5

L1 ≥
T
e L2, if and only if for each L1-representation ϕ1, there

exists an L2-representation ϕ2 such that Jϕ1 K
L1

T Jϕ2 K
L2

.

L2 is at least as succinct as L1 modulo T , denoted L1 ≥
T
s

L2, if and only if there exists a polynomial P(·) such that for
each L1-representation ϕ1, there exists an L2-representation
ϕ2 such that |ϕ2| ≤ P(|ϕ1|) and Jϕ1 K

L1
T Jϕ2 K

L2
.

Comparable expressiveness is necessary for a translation
to be well-adapted to the comparison of two languages. It is
clearly not a sufficient condition: for any two languages L1

and L2, the trivial translation T = ΩL1
×ΩL2

verifies L1 ≥
T
e

L2, yet it does not allow one to infer any result about L1 and
L2. Sufficient conditions will be studied in Section 4.

As in the classical KC framework, succinctness is a re-
finement of expressiveness: L ≥T

s L
′ =⇒ L ≥T

e L
′. How-

5We also use (i) L1 ≤
T
e L2 to mean L2 ≥

T −1

e L1, (ii) L1 ∼
T
e L2

to mean that both L1 ≥T
e L2 and L1 ≤T

e L2, and (iii) L1 >T
e L2 to

mean that L1 ≥T
e L2 but L1 �T

e L2. This notation applies, mutatis
mutandis, to succinctness and polynomial translatability.



ever, while this implies that the classical succinctness rela-
tion, which corresponds to ≥Id

s , is not very informative when
applied to heterogeneous languages, our generalization does
not suffer from this drawback: it is possible to formally state

succinctness results like MDD�Tdir
s CNF. Note that we can ap-

ply the KC notation to any representation language: for ex-
ample, denoting RADIXn the language of natural integers rep-
resented in radix n, it is well-known that RADIX1 >

Id
s RADIX2,

and that for any n > 1, RADIXn ∼
Id
s RADIX2.

Note also that specific translations can be used to com-
pare the succinctness of languages having the same interpre-
tation space but different expressiveness. For example, lan-
guages HORN-C and KROM-C= 〈ΦKROM-C,IPROP〉, where ΦKROM-C

is the set of 2-CNF formulæ, are incomparable with respect
to ≥Id

e , therefore they are also incomparable with respect to

classical succinctness ≥Id
s ; however, it can be interesting to

know which one is the most succinct when restricted to those
Boolean functions that both can represent. It is possible to
express this within the generalized framework, defining an
ad-hoc translation T , for which HORN-C ≥T

s KROM-C holds if
and only if every HORN-C-representation is either not repre-
sentable in KROM-C, or representable in polynomial size.6

3.2 Polynomial Translatability

Succinctness requires the existence of a polynomial-size
translation, but not the existence of an algorithm building it,
let alone its tractability. The last refinement of expressiveness
is polynomial translatability [Fargier and Marquis, 2009].

Definition 3.3 (Polynomial translatability). Let L1 and L2 be
two representation languages, and T a translation from L1 to
L2; L1 is polynomially translatable into L2 modulo T , de-
noted L1 ≥T

p L2, if and only if there exists a polynomial-
time algorithm mapping any L1-representation ϕ1 to an L2-
representation ϕ2 such that Jϕ1 K

L1
T Jϕ2 K

L2
. Moreover, if

the output is guaranteed to be at most polynomially smaller
than the input, that is, if there is a polynomial P(·) such that
for any ϕ1, any output ϕ2 verifies |ϕ1| ≤ P(|ϕ2|), then the
translation is said to be stable, and we denote L1 ≥

T
p∼ L2.

It holds, for example, that OMDD≥
Tdir
p∼ OBDD and OMDD≥

Tlog
p∼

OBDD [Srinivasan et al., 1990] (e.g., in Figure 1, the OBDD
results from the log encoding of the OMDD). The stability
condition is generally not hard to achieve; in particular, it dis-
cards special cases in which the translated formula is expo-
nentially smaller than the original one.

In the classical KC framework, polynomial translation cor-
responds to ≥Id

p , and has important consequences on the
satisfaction of queries and transformations. For example,
denoting MODS the restriction of PROP to smooth and de-
terministic DNFs [Darwiche and Marquis, 2002], the fact
that MODS ≥Id

p OBDD (i.e., MODS-representations can be trans-
formed into equivalent OBDDs in polynomial time) implies
that MODS supports all queries supported by OBDD; and since
NNF ∼Id

p PROP (propositional formulæ with connectives lim-
ited to ¬, ∨, and ∧ can be put in negation normal form in
polynomial time), NNF and PROP support the exact same set

6One can define T as the set of pairs of Boolean functions
〈 f ,g〉 ∈B

2 for which if g has a KROM-C-representation, then f = g.

of queries and transformations. In the latter case, the two lan-
guages are hence considered as strictly equivalent. However,
these properties do not hold when a translation is used, be-
cause queries and transformations applying to one language
do not necessarily apply to the other. For example, OIAs can
be discretized into OMDDs (e.g., in Figure 1, the OMDD is

a discretization of the OIA), i.e., OIA ≥
Tdiscr
p OMDD, but while

OMDD supports model enumeration, OIAs generally have an
infinite number of models. Conditions under which this kind
of inference is possible are studied in Section 4.

3.3 Properties of Comparison Relations

Let ≥ denote any of the three relations we have defined, ≥e,
≥s, or ≥p. Using the Id translation, we recover the original

definition of each relation; ≥Id is suitable only to homoge-
neous languages, but has the advantage of being a preorder.
It is not the case for any T , simply because interpretation
spaces can be different (in which case ≥T notably cannot be
reflexive). However, when T is an endorelation, ≥T inherits
some of its properties.

Proposition 3.4. Let Ω ⊆ U, and T ⊆ Ω 2. If T is reflexive
(resp. transitive), then ≥T is also reflexive (resp. transitive).

Such translations can be used to compare languages over
the same interpretation space, as shown with HORN-C and
KROM-C. When T has no remarkable property, the next propo-
sition nevertheless expresses a kind of “pseudo-transitivity”.

Proposition 3.5. If, for some representation languages L1,
L2, and L3, and some semantic correspondences T and T ′, it

holds that L1 ≥
T
L2 and L2 ≥

T ′
L3, then L1 ≥

T ′◦T
L3 (where

◦ denotes the composition of relations).

This proposition has a useful corollary, allowing succinct-
ness results in a given fragment hierarchy to be extended to
another, granted that a “reversible” polynomial translation ex-
ists between them (see Section 5 for an example).

Corollary 3.6. Let L1 and L2 (resp. L′1 and L
′
2) be two lan-

guages of interpretation space Ω (resp. Ω ′). If there exists
a bijective correspondence T between Ω and Ω ′ such that
L1 ≤

T
L
′
1 and L2 ≥

T
L
′
2, then L1 ≥

Id
L2 =⇒ L

′
1 ≥

Id
L
′
2.

4 Computational Power

Representation languages are used to solve problems about
the objects they represent. A solution to a problem is gen-
erally found thanks to an algorithm, that is, a sequence of
operations on the objects; the practical implementation of the
algorithm depends on the chosen representation languages.

4.1 Operations

Definition 4.1 (Semantic operation). A semantic operation
on a universe Ω ⊆ U is a piecewise total7 relation ρ ⊆
Ω κ ×P ×A , where P ⊆ U and A ⊆ U are sets containing
parameters and answers respectively, and either κ ∈ ◆ (the
semantic operation is then bounded), or κ = ∗ (the semantic
operation is then unbounded).

7A relation R ⊆ D1 × ·· ·×Dn is piecewise total if and only if
∀i ∈ {1, . . . ,n},∀di ∈ Di,∃〈r1, . . . ,rn〉 ∈ R,ri = di. Less formally,
this means that its projection on each of its dimensions is total.



Let us give examples based on the KC map, with Ω the
set of Boolean functions of real variables: Ω = B

❘

. The
operation associated with the “conditioning” transformation
is the partial function ρCD from Ω × (❘)∗ to Ω , defined as
ρCD : 〈 f , #—x 〉 7→ f | #—x (with ρCD only defined on pairs 〈 f , #—x 〉
such that f is defined on #—x ). Here κ = 1, P = (❘)∗ is
the set of all assignments, and A = Ω is the set of Boolean
functions. The operation associated with the “model extrac-
tion” query is not a function, but a relation ρMX associating
any Boolean function f with all of its models; here κ = 1,
A = (❘)∗, and P is ignored.8 The operation associated with
the “conjunction” transformation is the mapping ρ∧C : 〈 f1,

. . . , fnκ 〉 7→
∧nκ

i=1 fi for any nκ ∈ ◆. Here, the operation is
unbounded: κ = ∗.

The complexity of a semantic operation ρ ⊆ Ω κ ×P×A

depends on the representation languages considered. The
most important one is the “input” language, that is, the lan-
guage representing elements of Ω . Semantic operations can
be much more generic than needed: the operations presented
above apply to all Boolean functions of real variables, but
they can also be used, in a more restricted fashion, to com-
pare Boolean functions of Boolean variables. A semantic op-
eration can indeed be applied to a subset Ω ′ of its universe:

we denote ρ|Ω
′

the largest (with respect to inclusion) seman-

tic operation verifying ρ|Ω
′
⊆ ρ ∩ (Ω ′κ ×P×A ), and PΩ ′

and AΩ ′ the sets of parameters and answers of ρ|Ω
′
, from

which all “superfluous” elements have been removed. We
will say that a semantic operation on Ω ⊆ U is applicable to a
language L when ΩL ⊆ Ω holds: for example, ρCD is applica-
ble to CNF, and then PΩCNF

is the set of Boolean assignments
and AΩCNF

the set of Boolean functions of Boolean variables.
We use this notion of application to define the syntactic oper-
ations that are associated with semantic operations.

Definition 4.2 (Operation). A (syntactic) operation is a tu-
ple O = 〈ρ,L,PRM,ANS〉 such that (i) ρ is a semantic opera-
tion: ρ ⊆ Ω κ ×P ×A ; (ii) L is a representation language
to which ρ is applicable: ΩL ⊆ Ω ; (iii) PRM is a represen-
tation language covering all parameters compatible with L:
PΩL

⊆ ΩPRM; (iv) ANS is a representation language covering
all answers compatible with L: AΩL

⊆ ΩANS.

Note how the choice of the main representation language in
the syntactic operation restricts the semantic operation. When
choosing L, we discard all elements in the domain of ρ that
are not L-interpretations. Languages in an operation induce a
syntactic version of its underlying semantic operation.

Definition 4.3 (Complexity of an operation). Let O = 〈ρ,L,
PRM,ANS〉 be a syntactic operation, with ρ ⊆ Ω κ ×P ×A .
The problem associated with O is the following: for any tu-
ple 〈ϕ1, . . . ,ϕnκ ,π〉 of formulæ from Φκ

L
× ΦPRM, compute

a formula α ∈ ΦANS such that 〈Jϕ1 K
L
, . . . ,Jϕnκ K

L
,Jπ K

PRM
,

Jα K
ANS

〉 ∈ ρ , if there exists one. The complexity of O is that
of its associated problem.

It is the complexity of this syntactic problem that defines
the complexity of the corresponding operation. Thus, “op-
eration O is in polynomial time” means that there exists a

8When a semantic operation needs no parameter, we omit P for
simplicity (we implicitly consider that it is a singleton).

polynomial-time algorithm that solves the problem associ-
ated with O . An operation is hence a way of specifying a
problem; classical decision problems in computability theory
constitute a special case of operations. A decision problem
can be modeled as O = 〈ρΦ ,Σ ∗,bool〉, where ρΦ is the in-
dicative function of a formal language Φ , and bool the repre-
sentation language associating the symbol “0” with ⊥ and the
symbol “1” with ⊤. More generally, an operation allows one
to express a function problem without losing the semantics.

4.2 Queries and Transformations

We recover queries and transformations as special operations
by fixing some elements, namely, languages and complexity.

Definition 4.4 (Query, transformation). A query (resp. a
transformation) is a tuple Q = 〈ρ,PRM,ANS〉 (resp. T = 〈ρ,
PRM〉) such that for any representation language L to which
ρ is applicable, OQ,L = 〈ρ,L,PRM,ANS〉 (resp. OT,L = 〈ρ,L,
PRM,L〉) is an operation. Language L supports Q (resp. T)
if and only if OQ,L is in input-output polynomial time (resp.
OT,L is in polynomial time).

For languages representing Boolean functions, denoting
term the language of conjunctions of atoms of the form
[x = n] (where x ∈ Σ is a variable and n ∈ ❘), the model
extraction query can be defined as MX = 〈ρMX,term〉, the
conditioning transformation can be defined as CD = 〈ρCD,

term〉, and the conjunction transformation as ∧C = 〈ρ∧C〉.
These operations apply to any language representing Boolean
functions, be it restricted or not to a subset of this space, e.g.,
to functions of Boolean or integer variables.

Support of given queries and transformations is an indica-
tor of the absolute and relative computational power of rep-
resentation languages; with our definition, the concept ap-
plies universally to any representation language. However,
it should be clear that the actual list of queries and trans-
formations useful to compare a given hierarchy of languages
generally depends on their interpretation space. Neverthe-
less, it is sometimes possible to infer results about queries and
transformations on a hierarchy from results on another hierar-
chy; e.g., support of most queries and transformations for lan-
guages in the MDD family can be inferred from results on the
BDD family, because these families are polynomially equiv-
alent modulo a “suitable” translation. We will now present
sufficient conditions for this kind of inference to be possible.

4.3 Operations and Polynomial Translation

In the general case, we are interested in deducing the
tractability of an operation O from the tractability of another,
into which O can be translated. We start by defining the no-
tion of translation between two semantic operations.

Definition 4.5 (Semantic operation translation). Let ρ1 and
ρ2 be two semantic operations: ρ1 ⊆ Ω κ

1 ×P1 ×A1 and
ρ2 ⊆ Ω κ

2 ×P2 ×A2. A semantic operation translation from
ρ1 to ρ2 is a triple 〈TΩ ,TP ,TA 〉, where (i) TΩ ⊆ Ω1 ×Ω2,
(ii) TP ⊆ P1 ×P2, and (iii) TA ⊆ A1 ×A2, that verifies
ρ1 = T −1

A
◦ρ2 ◦(T

κ
Ω · TP), where ◦ (resp. ·) denotes the com-

position (resp. product) of relations.

We begin to see why some translations are more useful
than others: for example, the trivial semantic correspondence



T = Ω1 ×Ω2 is not likely to be used in a semantic operation
translation. The interest of having L1 ≥

T
p L2 actually depends

on how this specific T relates to the operations considered.
Moreover, nothing can be deduced if the translation of pa-
rameters and answers is not tractable: we need the notion of
polynomial translation between syntactic operations.

Definition 4.6 (Polynomial translation between operations).
Let O1 = 〈ρ1,L1,PRM1,ANS1〉 and O2 = 〈ρ2,L2,PRM2,ANS2〉
be two operations. We say that O1 is polynomially translat-
able into O2 if and only if there exists a semantic operation

translation 〈TΩ ,TP ,TA 〉 from ρ1 to ρ2 verifying (i) L1 ≥
TΩ
p

L2; (ii) PRM1 ≥
TP
p PRM2; and (iii) ANS1 ≤

TA
p ANS2. If the poly-

nomial translation between answer languages is stable, that is,

if ANS1 ≤
TA
p∼ ANS2, then the translation between operations is

said to be answer-stable.

This notion encompasses the familiar polynomial many-
one reduction of computational complexity theory: a prob-
lem, i.e., an operation O1 = 〈ρΦ1

,Σ ∗
1 ,bool〉, is polynomial-

time many-one reducible to another, i.e., to an operation
O2 = 〈ρΦ2

,Σ ∗
2 ,bool〉, if and only if O1 is polynomially trans-

latable into O2. In a fashion similar to reductions between
problems, the tractability of an operation depends on that of
operations into which it can be polynomially translated.

Theorem 4.7. Let O1 and O2 be two operations such that O1

is polynomially translatable into O2. If O2 is in polynomial
time, then O1 is in polynomial time. When the translation is
answer-stable, it holds that if O2 is in input-output polyno-
mial time, then O1 is in input-output polynomial time.

By this theorem, 〈ρMX,OMDD,term〉, 〈ρCD,MDD,term,

MDD〉, and 〈ρ∧C,MDD,MDD〉 are tractable, relying on the
tractability of the corresponding operations on languages of
the BDD family. However, the fact that OBDD supports SFO
(the forgetting of a single variable) does not imply that OMDD
supports SFO, because forgetting a multivalued variable boils
down to forgetting an unbounded number of Boolean vari-
ables, which is NP-hard on OBDD. Similarly, translations that
do not maintain the number of models cannot be used to in-
fer that OMDD supports CT from the fact that OBDD supports
CT. Note that the condition of answer-stability is necessary
for the second statement of the theorem to hold, because the
time complexity of the overall procedure depends on the size
of O2’s answer, which can be exponential in the input.

The deductions allowed by this theorem can pertain to very
disparate operations. However, in the context of a KC map,
the setting is generally more restricted: typically, one has
found a semantic correspondence between two interpretation
spaces, inducing a polynomial translation between languages
in the two hierarchies, and would like to make deductions
such as “if L supports this query, then L

′ also supports it”;
i.e., one is interested in a single semantic operation applica-
ble to both languages. This can actually be cast as a corollary
of Theorem 4.7, as long as one considers only queries and
transformations that are suitable to the given translation.

Definition 4.8 (T -suitability). Let T be a semantic corre-
spondence between some Ω1 ⊆ U and some Ω2 ⊆ U. A
query Q = 〈ρ,PRM,ANS〉 is T -suitable if and only if: (i) ρ

is applicable to Ω1 and Ω2; (ii) there exist two seman-
tic correspondences TP and TA such that 〈T ,TP ,TA 〉 is a

translation from ρ|Ω1 to ρ|Ω2 ; (iii) PRM|PΩ1 ≥
TP
p PRM|PΩ2 ;

(iv) ANS|AΩ1 ≤
TA
p∼ ANS|AΩ2 . A transformation T = 〈ρ,PRM〉

is T -suitable if and only if it verifies conditions i–iii, with
TA =T (the last condition does not apply, since there is no
ANS language in a transformation).

Most queries and transformations of the classical KC map
are suitable to direct and log encoding, including MX, CD,
∧C, and those considered by Darwiche and Marquis [2002]—
with the exception of SFO, for reasons stated earlier. This is
particularly interesting with regard to the following result.

Theorem 4.9. Let L1 and L2 be two representation lan-
guages, and T a translation from L1 to L2. If L1 ≥

T
p L2, then

every T -suitable query supported by L2 is also supported by
L1. If L1 ∼

T
p L2, then every T -suitable query or transforma-

tion supported by L2 is also supported by L1.

This allows to automatically extend most known results
about BDDs to MDDs, and more generally, most results from
the Boolean KC map to languages over non-Boolean vari-
ables. Note however that results are not exactly the same, as
they depend on the suitability of each query and transforma-
tion to the translation considered; thus, OMDD does not support
SFO [Amilhastre et al., 2012], even though OBDD does.

5 Conclusion

In this paper, we have presented a framework for compar-
ing representation languages. While taking as few hypothe-
ses as possible about what constitutes an admissible repre-
sentation language, we showed how the usual concepts of the
knowledge compilation map could be adapted to this broader
setting, allowing the comparison of heterogeneous languages
with respect to their representation efficiency and their com-
putational capabilities, and the exploitation of known results
in the Boolean case to numerous languages, over discrete or
continuous variables and non-Boolean valuation.

As an illustration of the latter point, let us take the simple
example of the “bounded MDD” family: we define the k-MDD
language as the restriction of MDD to variables with domains of
cardinality k, and its fragments k-FMDD, k-OMDD, and k-OMDD<
as its restriction to read-once, ordered, and <-ordered dia-
grams [Darwiche and Marquis, 2002], respectively.

Proposition 5.1. It holds that k-MDD<s k-FMDD<s k-OMDD<s

k-OMDD<, and each of the queries and transformations con-
sidered by Darwiche and Marquis [2002] is supported by
k-MDD (resp. k-FMDD, k-OMDD, k-OMDD<) if and only if it is
supported by BDD (resp. FBDD, OBDD, OBDD<).

This proposition follows directly from the fact that

k-MDD ∼
Tk
p BDD, k-FMDD ∼

Tk
p FBDD, k-OMDD ∼

Tk
p OBDD, and

k-OMDD< ∼
Tk
p OBDD<, denoting Tk the restriction of Tdir to

variables with domains of cardinality k, by applying Corol-
lary 3.6 (Tk is bijective) and Theorem 4.9 (all queries and
transformations defined by Darwiche and Marquis [2002] are
Tk-suitable), respectively.

This is a first step towards a generalized knowledge com-
pilation map, in which heterogeneous language hierarchies
could be presented in a unified way.



References
[Amilhastre et al., 2012] Jérôme Amilhastre, Hélène Fargier,

Alexandre Niveau, and Cédric Pralet. Compiling CSPs: A
complexity map of (non-deterministic) multivalued decision
diagrams. In Proceedings of the International Conference on
Tools with Artificial Intelligence (ICTAI), pages 1–8, 2012.

[Bahar et al., 1997] R. Iris Bahar, Erica A. Frohm, Charles M.
Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and
Fabio Somenzi. Algebraic decision diagrams and their applica-
tions. Formal Methods in System Design, 10(2/3):171–206, 1997.

[Beckmann et al., 1990] Norbert Beckmann, Hans-Peter Kriegel,
Ralf Schneider, and Bernhard Seeger. The R*-tree: An efficient
and robust access method for points and rectangles. In SIGMOD
Conference, pages 322–331, 1990.

[Brachman and Levesque, 2004] Ronald J. Brachman and Hector J.
Levesque. Knowledge Representation and Reasoning. Elsevier,
2004.

[Bryant, 1986] Randall E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre Mar-
quis. A knowledge compilation map. Journal of Artificial In-
telligence Research (JAIR), 17:229–264, 2002.

[Fargier and Marquis, 2007] Hélène Fargier and Pierre Marquis.
On valued negation normal form formulas. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI),
pages 360–365, 2007.

[Fargier and Marquis, 2008] Hélène Fargier and Pierre Marquis.
Extending the knowledge compilation map: Krom, Horn, affine
and beyond. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 442–447, 2008.

[Fargier and Marquis, 2009] Hélène Fargier and Pierre Marquis.
Knowledge compilation properties of trees-of-BDDs, revisited.
In Proceedings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 772–777, 2009.

[Finkel and Bentley, 1974] Raphael A. Finkel and Jon Louis Bent-
ley. Quad trees: A data structure for retrieval on composite keys.
Acta Inf., 4:1–9, 1974.

[Gogic et al., 1995] Goran Gogic, Henry A. Kautz, Christos H. Pa-
padimitriou, and Bart Selman. The comparative linguistics of
knowledge representation. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 862–
869, 1995.

[Gottlob, 1995] Georg Gottlob. Translating default logic into stan-
dard autoepistemic logic. Journal of the ACM, 42(4):711–740,
1995.

[Levesque and Brachman, 1985] Hector J. Levesque and Ronald J.
Brachman. A fundamental tradeoff in knowledge representation
and reasoning (revised version). In R. J. Brachman and H. J.
Levesque, editors, Readings in Knowledge Representation, pages
41–70. Kaufmann, Los Altos, CA, 1985.

[Niveau et al., 2010] Alexandre Niveau, Hélène Fargier, Cédric
Pralet, and Gérard Verfaillie. Knowledge compilation using in-
terval automata and applications to planning. In Proceedings of
the European Conference on Artificial Intelligence (ECAI), pages
459–464, 2010.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and Toby
Walsh, editors. Handbook of Constraint Programming. Elsevier,
2006.

[Russell and Norvig, 2010] Stuart J. Russell and Peter Norvig. Arti-
ficial Intelligence — A Modern Approach (3. internat. ed.). Pear-
son Education, 2010.

[Srinivasan et al., 1990] Arvind Srinivasan, Timothy Kam, Sharad
Malik, and Robert K. Brayton. Algorithms for discrete function
manipulation. In Proceedings of the International Conference
on Computer Aided Design (ICCAD), pages 92–95, November
1990.

[van Harmelen et al., 2008] Frank van Harmelen, Vladimir Lifs-
chitz, and Bruce Porter, editors. Handbook of Knowledge Repre-
sentation, volume 1. Elsevier Science, 2008.

[Walsh, 2000] Toby Walsh. SAT v CSP. In Proceedings of the In-
ternational Conference on Principles and Practice of Constraint
Programming (CP), pages 441–456, 2000.

A Proofs

Proof of Proposition 2.5. Completeness of L′ means that ev-
ery interpretation in ΩL′ has an L

′-representation. By def-
inition of a fragment, the interpretation space of L is the
same as that of L′, and every L

′-representation is also an L-
representation. Hence, every element in the interpretation
space of L has an L-representation: L is complete.

Proof of Proposition 3.4. Suppose that T is reflexive; let L
be a representation language with ΩL = Ω . Consider an L-
representation ϕ; there exists an L-representation ϕ ′ such that
Jϕ K

L
T Jϕ ′ K

L
(simply take ϕ ′ = ϕ), therefore L≥T

e L.
Suppose that T is transitive; let L1, L2, and L3 be three

representation languages of interpretation space Ω such that
L1 ≥T

e L2 and L2 ≥T
e L3. Let ϕ1 be an L1-representation.

By definition, there exists an L2-representation ϕ2 such that
Jϕ1 K

L1
T Jϕ2 K

L2
, and an L3-representation ϕ3 such that

Jϕ2 K
L2

T Jϕ3 K
L3

. Since T is transitive, Jϕ1 K
L1

T Jϕ3 K
L3

,

therefore L1 ≥
T
e L3.

The same proofs hold, mutatis mutandis, for ≥s and ≥p,
since the composite of two polynomials is a polynomial.

Proof of Proposition 3.5. Since L1 ≥T
e L2, there exists, for

each L1-representation ϕ1, an L2-representation ϕ2 such that

Jϕ1 K
L1

T Jϕ2 K
L2

. But L2 ≥
T ′

e L3, so an L3-representation ϕ3

exists that verifies Jϕ2 K
L2

T ′ Jϕ3 K
L3

. By definition of the

composition of relations, Jϕ1 K
L1
(T ′ ◦ T )Jϕ3 K

L3
, hence the

result. A similar proof holds for ≥s and ≥p, once again be-
cause the composite of two polynomials is a polynomial.

Proof of Corollary 3.6. Suppose that L1 ≤
T
L
′
1 (i.e., L′1 ≥

T −1

L1), L2 ≥T
L
′
2, and L1 ≥Id

L2 hold. By Proposition 3.5, the

first and third statements imply that L′1 ≥Id◦T −1
L2, which

is equivalent to L
′
1 ≥T −1

L2, by definition of Id and of the
composition of relations. Again, Proposition 3.5 can be used

to infer (thanks to the second statement) that L′1 ≥
T ◦T −1

L
′
2.

Since T is bijective, this boils down to L
′
1 ≥

Id
L
′
2.

In the following proofs, we sometimes use the follow-
ing convenient notation: given a relation R ⊆ D1 × ·· · ×
Dn × E, where n ∈ ◆, we denote as R(d1, . . . ,dn) the set
{ e ∈ E | 〈d1, . . . ,dn,e〉 ∈ R}; that is, we consider the relation
R as a function from D1 ×·· ·×Dn to 2E .



Proof of Theorem 4.7. Let us denote O1 = 〈ρ1,L1,PRM1,

ANS1〉 and O2 = 〈ρ2,L2,PRM2,ANS2〉, and suppose 〈TΩ ,TP ,

TA 〉 is a semantic translation from ρ1 to ρ2 verifying the poly-
nomial translatability conditions.

Consider the following algorithm, that takes as input a tu-
ple of formulæ

#—
ϕ = 〈ϕ1, . . . ,ϕnκ ,π〉 ∈ Φκ

L1
× ΦPRM1

. First,

it computes a tuple
#—
ϕ ′ = 〈ϕ ′

1, . . . ,ϕ
′
nκ
,π ′〉 ∈ Φκ

L2
× ΦPRM2

,

such that ∀i ∈ {1, . . . ,nκ},Jϕi KL1
TΩ Jϕ ′

i KL2
and Jπ K

PRM1
TP

Jπ ′ K
PRM2

. The computation of each formula in the tuple can

be done in polynomial time by hypothesis (Def. 4.6); hence
the computation of the entire tuple is polynomial.

Then, our algorithm applies the procedure for O2 on
the computed tuple: it builds an ANS2-representation α ′,
such that Jα ′ K

ANS2
∈ ρ2(Jϕ ′

1 K
L2
, . . . ,Jϕ ′

nκ
K
L2
,Jπ ′ K

PRM2
). Fi-

nally, our algorithm builds an ANS1-representation α veri-
fying Jα K

ANS1
TA Jα ′ K

ANS2
, this computation being in time

polynomial by hypothesis (Def. 4.6).
Let us first check that α is a correct answer for O1. By

hypothesis (Def. 4.5), ρ1 = T −1
A

◦ ρ2 ◦ (T
κ

Ω · TP), that is to
say,

∀ #—
ω ∈ Ω κ

1 ×P1,∀a ∈ A1,

a ∈ ρ1(
#—
ω) ⇐⇒

∃ #—
ω ′ ∈ Ω κ

2 ×P2,∃a′ ∈ A2,











#—
ω ′ ∈ (T κ

Ω · TP)( #—
ω)

∧ a′ ∈ ρ2(
#—
ω ′)

∧ a′ ∈ TA (a)).

Here,
#—
ω = 〈Jϕ1 K

L1
, . . . ,Jϕnκ K

L1
,Jπ K

PRM1
〉 and a = Jα K

ANS1
.

We have built an
#—
ω ′ and an a′ that verify all conditions:

take
#—
ω ′ = 〈Jϕ ′

1 K
L2
, . . . ,Jϕ ′

nκ
K
L2
,Jπ ′ K

PRM2
〉 and a′ = Jα ′ K

ANS2
.

Therefore, Jα K
ANS1

∈ ρ1(
#—
ω), so α is a correct answer for O1.

Now, let us prove the complexity claims. All steps in our
algorithm were in polynomial time, except the application of
the procedure for O2. If it is polynomial, then clearly, hav-
ing been obtained by the composition of three polynomial
procedures, our algorithm is in polynomial time. If it is in
input-output polynomial time, then it means α ′ has been ob-
tained in time P(∑n

i=1|ϕi|+ |π|, |α ′|) (with P a fixed polyno-
mial). Now, if the translation between answer languages is
stable, by Definition 3.3 there exists a fixed polynomial P′

such that |α ′| ≤ P′(|α|), therefore α ′ has been obtained in
time bounded by a polynomial of ∑

n
i=1|ϕi|+ |π| and |α|, and

since the answer translation step is polynomial, the whole al-
gorithm is in time polynomial in its input and output.

Lemma A.1 (Operation application). Let O = 〈ρ,L,PRM,
ANS〉 be an operation, with ρ ⊆ Ω κ ×P ×A . The problem

associated with O does not change if we replace ρ by ρ|ΩL ,

and/or PRM by PRM|PΩL , and/or ANS by ANS|AΩL .

Proof. The problem associated with O is the follow-
ing: given a tuple

#—
ϕ = 〈ϕ1, . . . ,ϕnκ ,π〉 in Φκ

L
× ΦPRM,

compute an ANS-representation α of an element of
ρ(Jϕ1 K

L
, . . . ,Jϕnκ K

L
,Jπ K

PRM
), if there exists one.

Relation ρ is a set of “semantic” tuples 〈ω1, . . . ,ωnκ , p,a〉.
Tuples for which some ωi is not representable in L are not
considered. The problem thus remains the same if we replace

ρ by any semantic operation ρ ′ ⊆ ρ ∩ (Ω κ
L
×P ×A ), and

in particular by ρ|ΩL . We have shown that O is the same as

O ′ = 〈ρ|ΩL ,L,PRM,ANS〉.
Now, if in the tuple

#—
ϕ , the PRM-representation π is not in

Φ
PRM|

PΩL
, it means that its interpretation p is not in PΩL

,

which in turn means that no semantic tuple in ρ|ΩL contains
p; the problem associated with O ′ and O is undefined on this
particular tuple

#—
ϕ . Hence, we can remove these unused PRM-

representations from the problem: O and O ′ remain the same

operation when PRM is replaced by PRM|PΩL .
Finally, the interpretation of the answer α ∈ ΦANS is guar-

anteed to be in AΩL
, by definition. All answers are thus

representations of the language ANS|AΩL , which implies that
the operation does not change when ANS is replaced by

ANS|AΩL .

Proof of Theorem 4.9. Suppose first that L1 ≥
T
p L2. Let Q =

〈ρ,PRM,ANS〉 be a T -suitable query, and suppose that L2 sup-
ports Q: this means (Def. 4.4) that the operation OQ,L2

= 〈ρ,
L2,PRM,ANS〉 is input-output polynomial.

Now, by Lemma A.1, it holds that OQ,L2
= 〈ρ|ΩL2 ,

L2,PRM|
PΩL2 ,ANS|

AΩL2 〉, and OQ,L1
= 〈ρ|ΩL1 ,L1,PRM|

PΩL1 ,

ANS|
AΩL1 〉—we know that O is applicable to L1 because of

the first item of the definition of a T -suitable query (Def. 4.8):
here, Ω1 = ΩL1

and Ω2 = ΩL2
.

Because of the other items in this definition, we know
that there exists a semantic operation translation 〈T ,TP ,TA 〉

from ρ|ΩL1 to ρ|ΩL2 , such that

1. PRM|
PΩL1 ≥

TP
p PRM|

PΩL2 ;

2. ANS|
AΩL1 ≤

TA
p∼ ANS|

AΩL2 .

Since, by hypothesis, L1 ≥
T
p L2, it means that 〈T ,TP ,TA 〉 is

an answer-stable polynomial translation from OQ,L1
to OQ,L2

.
Because we took the hypothesis that OQ,L2

is input-output
polynomial, we can infer by Theorem 4.7 that OQ,L1

is also
input-output polynomial: L1 supports Q, hence the first point
of the theorem holds.

Let us suppose now that L1 ∼T
p L2, and consider T = 〈ρ,

PRM〉 a T -suitable transformation supported by L2. By Defi-
nition 4.4, it means that the operation OT,L2

= 〈ρ,L2,PRM,L2〉
is polynomial. Once again, Lemma A.1 implies that OT,L2

=

〈ρ|ΩL2 ,L2,PRM|
PΩL2 ,L2〉 and OT,L1

= 〈ρ|ΩL1 ,L1,PRM|
PΩL1 ,

L1〉.
Since T is T -suitable, by Definition 4.8 there exists a se-

mantic operation translation 〈T ,TP ,T 〉 from ρ|ΩL1 to ρ|ΩL2 ,

such that PRM|
PΩL1 ≥

TP
p PRM|

PΩL2 . Since, by hypothesis,

L1 ≥
T
p L2 and L1 ≤

T
p L2, 〈T ,TP ,T 〉 is a polynomial transla-

tion from OT,L1
to OT,L2

. Theorem 4.7 can be applied again:
OT,L2

is polynomial, therefore OT,L1
is polynomial, which

means that L1 supports T.


