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The spectrum of the Poincaré operator in an ellipsoid

Yves Colin de Verdière∗ & Jérémie Vidal ID †

April 28, 2023

Abstract

We study the spectrum of the Poincaré operator in triaxial ellipsoids subject to a constant
rotation. As explained in the paper, this mathematical problem is interesting for many
physical applications It is known that the spectrum of this bounded self-adjoint operator is
pure point with polynomial eigenvectors. We give two new proofs of this result. Moreover,
we describe the large-degree asymptotics of the restriction of that operator to polynomial
vector fields of fixed degrees. The main tool is the microlocal analysis using the partial
differential equation satisfied by the orthogonal polynomials in ellipsoids. This work also
contains numerical calculations of these spectra, showing a very good agreement with the
mathematical results.

1 Introduction

Large-scale flows in natural objects (e.g. planetary liquid cores or stars) are often subject to global
rotation. A striking feature of such rotating flows is the ubiquitous presence of inertial waves
(or modes in some geometries). These wave motions, which exist even without density effects for
incompressible flows, are sustained by the Coriolis force [Kel80]. If the rotating fluid has a non-zero

and spatially uniform vorticity ~Ω ∈ R3 (we define ω := ‖~Ω‖), these motions are in the simplest
case small-amplitude perturbations governed by the linearized rotating Euler equation for all t ∈ R
and the incompressible condition

ut + ~Ω ∧ u = −∇p, div(u) = 0, (1a–b)

where the vector u is the fluid velocity and the scalar p is the pressure. Inertial modes can be excited
by various mechanisms in natural objects, such as orbital (mechanical) forcings [RV10, NC13],
surface viscous effects [AT69, CVS+21], or turbulent convection [Zha94, Lin21]. For instance,
forced inertial modes might have been recently detected in the Sun [TGBR22]. Moreover, inertial
modes are often key in the dynamics of rapidly rotating fluids. Nonlinear couplings of inertial modes
can indeed sustain flow instabilities [Ker02, VCN15, VC23], turbulence [GFLBA17, LRFLB19] and,
possibly, planetary (or stellar) magnetic fields through dynamo action [RFLB18, VCSH18].

Owing to their considerable importance for planetary or astrophysical applications, inertial
modes (and their related flows) are often studied in ellipsoidal geometries [LBCLG15]. Indeed,
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(a) (b)

Figure 1: (a) Velocity magnitude ||v|| of an inertial mode with angular frequency λ ' 0.5412 in

the ellipsoid A1 = A2 = 1 and A3 ' 1.179, rotating at the angular velocity ~Ω = (0, 0, 1). (b)
Integrated probability measure of all the eigenvalues for v ∈ V0

50 in the round ball [VSC20], which
converges towards a uniform distribution.

rapidly rotating fluid masses are usually ellipsoidal at the leading order [Cha69] (because of cen-
trifugal forces and, possibly, tidal interactions due to orbital partners). Let us give some definitions.
For A1, A2, A3 > 0, we introduce the ellipsoid

E = {x = (x1, x2, x3) ∈ R3|A1x
2
1 + A2x

2
2 + A3x

2
3 ≤ 1}. (2)

We equip R3 with the canonical Euclidean structure and the canonical orientation. We denote by
V the Hilbert space of vector fields in E whose coefficients are in L2(E, |dx|), where |dx| is the
Lebesgue measure, and by V0 the closed subspace orthogonal to the vector fields that are gradients
of smooth functions. A smooth element in V0 is divergenceless and tangent to the boundary (see
chapter 3 in [Gal11]). Inertial modes are periodic solutions u = eiλtv of equation (1), where the
complex-valued eigenvector v ∈ V0 is given by

iλv + ~Ω ∧ v = −∇p, div(v) = 0, (3a–b)

together with the no-penetration condition 〈v, ~n〉|∂E = 0 on the ellipsoidal boundary ∂E (where
~n is the unit normal vector to ∂E). An example of a large-scale inertial mode in an axisymmetric
ellipsoid is shown in figure 1(a). Even in this simple physical configuration, solving the inertial
mode problem is very challenging from a mathematical viewpoint. This is more clearly evidenced
by considering the equation for the pressure (called the Poincaré equation after Cartan [Car22]
who revisited Poincaré’s paper [Poi85])

λ2∆p = (~Ω · ∇)2p, 〈∇p, ~n〉|∂E = 〈~n, v ∧ ~Ω〉|∂E. (4a–b)

The Poincaré equation is hyperbolic for |λ| < ω, but, because of the boundary condition, the
inertial-mode problem is an ill-posed Cauchy problem [RGV00]. Explicit solutions in V0 have been

found in spheroids with A1 = A2 and ~Ω = (0, 0, 1) since the pioneering work of Bryan [Bry89], which
admit exact Cartesian polynomial expressions [Kud66, ZL17]. Low-degree polynomial solutions
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in V0 have also been found in triaxial ellipsoids with A1 6= A2 6= A3[Van14], but there are no
explicit solutions for the higher-degree modes. Actually, the inertial-mode spectrum is pure point
in ellipsoids and the polynomial eigenvectors form a complete set [BR17, Ive17]. The latter result
could open new lines of research in fluid dynamics [Gre68], but the inertial-mode spectrum is still
not well understood.

In this paper, we aim to better understand the properties of the inertial-mode spectrum in
ellipsoids. We first prove, using another mathematical route, that the inertial-mode spectrum is
pure point with polynomial eigenvectors. The same result was initially proved in axisymmetric
cases [Den59], and recently extended to triaxial geometries [BR17, Ive17]. Then, we present new
mathematical results on the asymptotic behaviour of the pure point spectrum in triaxial ellipsoids,
which are successfully validated against numerical computations.

2 Poincaré operator in ellipsoids

2.1 Some generalities

We denote by Pn the space of polynomial functions from R3 to C of degree less or equal to n, by
Vn the space of vector fields in E whose coefficients are in Pn and by V0

n = Vn∩V0 the subspace of
Vn whose elements are the vector fields that are divergenceless and tangent to the boundary ∂E.

If we denote by Π the orthogonal projection from V onto V0, called the Leray projector, we get
the Poincaré operator P , which is a bounded self-adjoint operator on V0 defined by

Pv = iΠ
(
~Ω ∧ Πv

)
. (5)

The spectrum of P is the set of values of λ for which there are non-zero solutions of equation (3).
We have the following result in ellipsoids [BR17]

Theorem 2.1 The spaces V0
n are invariant by P . The spectrum of P is the interval [−ω, ω] and

is pure point. There is an orthonormal basis of V0 consisting of eigenvectors of P that have
polynomial coefficients.

Note that this result is interesting for (at least) two reasons. First, the fact that the spectrum is
pure point shows that there is no attractors in the classical dynamics. Second, the fact that the
eigenmodes are polynomial allows a good numerical calculus of the spectra.

Next, we introduce the spaces Wn =
(
V0
n−1

)⊥ ∩V0
n of dimension dn = n(n+ 2). It follows from

Theorem 2.1 and from the self-adjointness of P that the spaces Wn are invariant by P . Our main
result is about the asymptotic repartition of the eigenvalues µnj , with j ∈ [1, dn], of the restriction
of P to the spaces Wn. To this end, we define the probability measures πn by

πn :=
1

dn

dn∑
j=1

δ(µnj ), (6)

and we have the following theorem.

Theorem 2.2 As n→∞, the measures πn converge weakly to a probability measure π∞ of support
[−ω, ω]. It means that, for every continuous function f : R→ R, we have

lim
n→∞

1

dn

dn∑
j=1

f(µnj ) =

∫
R
fdπ∞. (7)
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Remark 2.1 A weaker result is obtained by looking not at a fixed degree n, but at the joint the
repartition of the {µlj} for j ∈ [1, dl] and l ≤ n. The limits are the same. This is this last measure
that is numerically computed below in §7.

Previous numerical computations suggest that the probability density is uniform in the round ball
(see figure 1b), but the properties of the spectral measure have not been investigated in ellipsoids
before our work. The recipe for the construction of π∞ will be given in Section 6.

The previous results could be a good sarting point for studying classical problems such as other
spectral asymptotics, control theory. See more on that in Section 9.

2.2 First proof of Theorem 2.1

We give here a first simple proof of Theorem 2.1, which is quite close in spirit of previous proofs
[BR17, Ive17] but without using dimension arguments. We first show that Vn = V0

n ⊕∇Pn+1. It
follows from the Green formula that both spaces are orthogonal. Let us look at the orthogonal
space of ∇Pn+1 in Vn. If v = a∂x1 + b∂x2 + c∂x3 is in Vn and orthogonal to ∇Pn+1, we have for any
polynomial φ ∈ Pn+1 ∫

E

φ div(v) dx1dx2dx3 −
∫
∂E

φ〈v|~n〉 dσ = 0,

where
~n =

(
A2

1x1
2 + A2

2x2
2 + A2

3x3
2
)− 1

2 (A1x1∂x1 + A2x2∂x2 + A3x3∂x3)

is the unit normal vector to ∂E. By taking φ = (A1x1
2 +A2x2

2 +A3x3
2− 1)div(v) ∈ Pn+1, we get∫

E

(A1x1
2 + A2x2

2 + A3x3
2 − 1)div(v)2 dx1dx2dx3 = 0

such that div(v) = 0. Let us then take φ = aA1x1 + bA2x2 + cA3x3 ∈ Pn+1, we get∫
∂E

(x1aA1 + x2bA2 + x3cA3)2
(
A2

1x1
2 + A2

2x2
2 + A2

3x3
2
)− 1

2 dσ = 0

such that v is tangent to ∂E. The spaces Vn are invariant by ~Ω ∧. It follows that the spaces V0
n

are invariant by the Poincaré operator P = iΠ~Ω ∧ Π.
We have to show that ⊕n∈NV0

n is dense in V0 for the L2 topology. By the Stone-Weierstraß The-
orem, ⊕n∈NVn is dense in V . The space K := (⊕n∈NV0

n)⊕ (⊕n∈N∇Pn+1) is dense in V = V0⊕∇H1.
The respective densities of each term in K follows. Thus, we have an orthonormal basis of L2

eigenmodes and the spectrum is pure point.
It remains to prove that the spectrum is the full interval. This follows from the methods of

Theorem 2.1 in [CdVSR20]. P is inside E a pseudo-differential operator, and the computation of
the principal symbol p of P (see Section 6) shows that the image of the eigenvalues of p is the
interval [−ω, ω]. On the other hand, we have ‖P‖ ≤ ω. Hence, the full spectrum is [−ω, ω]. This
holds for any bounded smooth domain. For ellipsoids, this follows also in the context of the present
paper from Theorem 2.2 and 7.1.

2.3 Further spectral properties

Proposition 2.1 The numbers ±ω are not eigenvalues of P in ellipsoids.
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The above result was proved in [BR17, Ive17], but we give below an alternative proof for −ω. We
assume that v ∈ V0 satisfies ΠΩ ∧ v = iωv. Then, by virtue of the Pythagorean theorem, we have
~Ω ∧ v ∈ V0 and ~Ω ∧ v = iωv. It follows that v3 = 0 and v1 = iv2. Then, using div(v) = 0, we
see that v1 is harmonic in (x1, x2). Moreover, (n1 − in2)v1 = 0 on ∂E implies v1 = 0 on ∂E. To
finish, observe that on each level set z = c, v1 is harmonic and vanishes on the boundary. So, we
have v1 = iv2 = 0 everywhere. Actually, the previous argument is valid for any smooth bounded
domain in R3.

The subset of geostrophic modes, which are invariant along the rotation axis, often plays an
important role in the dynamics of rapidly rotating flows [Gre68]. A vector field v ∈ V0 is geostrophic
if v is in the kernel of the Poincaré operator. We have the following result in ellipsoids (initially

proved in [Ive17]). Without loss of generality, we can assume that ~Ω = (0, 0, 1) and

E = {x ∈ R3|Ax2
1 +Bx2

2 + x2
3 + 2Cx1x3 + 2Dx2x3 ≤ 1}.

This equation for E is more convenient in the study of geostrophic fields. We were using the
scaling invariance and a rotation around the x3−axis to make the coefficient of x2

3 equal to 1 and
the coefficient of x1x2 vanish.

Proposition 2.2 There exists exactly one geostrophic field in Wn for n odd and no geostrophic
field in Wn for n even.

Let us denote by F the projection of E onto the (x1, x2)−plane. For each (x1, x2) in the interior of

F , there exist two points (x1, x2, x
±
3 (x1, x2)) in ∂E. From ~Ω∧v = −∇p, we get that v = (v1, v2, v3)

satisfies
v1 = −∂p/∂x2, v2 = ∂p/∂x1, ∂p/∂x3 = 0,

and the boundary condition

(Ax1 + Cx±3 )v1 + (Bx2 +Dx±3 )v2 + (x±3 + Cx1 +Dx2)v3 = 0.

From ∂p/∂x3 = 0, we get that p is independent of x3. From the expressions of v1 and v2 in
terms of p, we get that they are independent of x3 too. Using divv = 0 one gets that v3 is also
independent of x3. So that the four functions [v1, v2, v3, p] are independent of x3; this is called the
Taylor-Proudman theorem [Gre68]. Eliminating v3 from the previous two equations and replacing
v1 and v2 in terms of p, we get that p satisfies a differential equation V p = 0 where the coefficients
of V are linear in (x1, x2):

V = (CDx1 − (B −D2)x2)∂x1 + ((A− C2)x1 − CDx2)∂x2 .

If we write V = M(x)∂x, we see that Trace(M) = 0. Moreover the determinant of M is

δ = AB −BC2 − AD2

which is also the determinant of the quadratic form defining E, hence δ > 0. We can then find
a basis of R2 where V = a(u∂v − v∂u) with a 6= 0. This implies easily that there is a unique
(up to dilation) non-zero quadratic form Q with V Q = 0 and no linear forms L with V L = 0:
Q = u2 + v2. All polynomials p are then clearly of the form p = F (Q) with F a polynomial.
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3 Orthogonal polynomials, Weyl law and a conceptual proof

of Theorem 2.1

3.1 Orthogonal polynomials in Euclidean balls

Let us denote by En the space of polynomials of degree n that are orthogonal to all polynomials
of degree ≤ n − 1 in L2(B, |dx|), where B is the Euclidean ball of radius 1 in R3. The following
result due to Appell and Kampé de Fériet [AKdF26] is proved in Section 5.2 of [DX01]:

Theorem 3.1 The spaces En are the eigenspaces of the operator L, which is called here the Leg-
endre operator, defined by

L = −
3∑
i=1

∂2
i +

3∑
i,j=1

∂ixixj∂j + 9/4

with eigenvalue (n+ 3/2)2 of multiplicity d1
n = (n+ 1)(n+ 2)/2.

Remark 3.1 We can define an operator L in any dimension by a similar formula. In dimension
1, the Legendre polynomials are eigenfunctions of the operator L = −∂2

x + ∂xx
2∂x. They are

orthogonal polynomials on L2([−1, 1], |dx|).

We give below a simple proof of Theorem 3.1. For each n ∈ N, L acts on the space Pn of
polynomials of degree ≤ n. This action of L is triangular. If we decompose Pn into a direct sum
of homogeneous polynomials

Pn = ⊕nk=0Hk,

where Hk is the space of polynomials homogeneous of degree k. We have

L

(
k∑
l=0

hl

)
= (k + 3/2)2hk + rk

with degree(rk) ≤ k−2. Hence, the eigenvalues of L restricted to Pn are the numbers (k+3/2)2, k =
0, · · · , n, with eigenspaces Hk ⊕Rk with Rk ⊂ Hk−2.

Let us show that L is symmetric on C2(B̄) and hence on each Pn. There is a cancellation of
boundary terms coming from both parts of L. Let us rewrite

L = −∆−D?D,

with D = r d
dr

and where D? is the formal adjoint of D. By virtue of the Green-Riemann formula,
we have ∫

B

(u∆v − v∆u)|dx| =
∫
∂B

(
u
∂v

∂n
− v ∂u

∂n

)
|dσ|.

On the other hand, we have also∫
B

(uD?Dv − vD?Du) |dx| = −
∫
∂B

(
u
∂v

∂r
− v∂u

∂r

)
|dσ|.

Both boundary terms cancel out since ∂/∂r = ∂/∂n on ∂B.
It follows that the eigenspaces of L are exactly given by the orthogonal polynomials. The

operator L with domain ⊕n∈NEn is essentially self-adjoint. It will be useful in particular in Section
4 to keep the notation L for the differential operator and to denote by L̂ its closure. Note that, if
u belongs to the Sobolev space H2(B) and is compactly supported in B, then u ∈ D(L̂). �
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3.2 Weyl law

The principal symbol of L, denoted by Λ, is given by

Λ(x, ξ) = ‖ξ‖2 − 〈x|ξ〉2.

We see that L is elliptic in the interior of B, but not on the boundary ∂B. The characteristic
manifold is the co-normal bundle to the boundary.

The pull back of Λ onto the Euclidean sphere S3 ⊂ R3
x ⊕ Rz by the orthogonal projection

(x, z)→ x is the dual metric of the standard metric on S3 (see Appendix A). Hence the operator
L is very similar to the Laplacian on S3 and the eigenfunctions similar to the spherical harmonics.
However the pull-back to S3 of the Lebesgue measure on B vanishes on the equator and is not the
canonical measure on S3. In fact, by looking at orthonormal polynomials in the balls with respect
to the measure (1 − r)−

1
2 |dx|, one could make a similar analysis leading to the usual spherical

harmonics, more precisely to the spherical harmonics which are even under the change z → −z.
Let us look at the Weyl formula:

Theorem 3.2 The eigenvalues counting function N(λ) of L satisfies

N(λ) ∼
λ→∞

λ3/2/6,

where the notation ∼ means that the ratio goes to 1 as λ→∞. This expression coincides with the
phase space volume calculated with respect to the Liouville measure:

1

(2π)3
Vol({(x, ξ) ∈ T ?B|Λ(x, ξ) ≤ λ}) = λ3/2/6.

The Weyl formula can be easily derived from the explicit expression of the eigenvalues, which is

N(λ) =
∑

n+3/2≤
√
λ

(n+ 1)(n+ 2)

2
.

On the other hand, the calculus of the phase space volume is a simple exercise. Theorem 3.2 will
be useful later in order to control the boundary effects.

In the case of ellipsoids, we get similar results by replacing L by LE given by

LE = −
3∑
i=1

∂2
i

Ai
+

3∑
i,j=1

∂ixixj∂j +
9

4
.

This is proved by using the affine diffeomorphism Φ : B → E defined by

Φ(x1, x2, x3) =

(
x1√
A1

,
x2√
A2

,
x3√
A3

)
,

and remarking that Φ transforms the Lebesgue measure into a multiple of the Lebesgue measure
and of course polynomials of degree n into polynomials of degree n. Note that Φ also transforms
also divergenceless vector fields that are tangent to the boundary in B to vector fields with the
same properties in E.
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3.3 A conceptual proof of Theorem 2.1

The Leray projector is the orthogonal projector on vector fields L2-orthogonal to the space of
gradient of smooth functions. The operator

∑3
i=1(1/Ai) ∂

2
i and the dilation operator L preserves

the latter space. L is called the dilation operator, because it is the infinitesimal generator of the
group of homotheties. This is also the case for its adjoint L? = −L − 3. The Legendre operator
LE = −∑3

i=1(1/Ai) ∂
2
i −L?L+ 9/4 is self-adjoint and preserves the space of gradients. It implies

that the Legendre operator LE commutes with Π. This holds formally for any domain, but LE is
a well-defined symmetric operator only on ellipsoids. Note then that any operator with constant
coefficients like ~Ω∧ commutes with LE. Hence, the Poincaré operator commutes with LE. This
gives a proof of Theorem 2.1 using only the spectral theory of LE.

4 The microlocal Weyl law

This is the most technical part of this paper. We use the pseudo-differential boundary opera-
tor calculus of Boutet de Monvel on manifolds with boundary [BdM71] (see also [Gru08] and
Appendix C), as well as the construction of a parametrix for the “wave equation” utt + Lu = 0
using Fourier Integral Operators coming from [Hör68, DG75].

Let d1
n := dim(En) = (n + 1)(n + 2)/2. We have the following result:

Theorem 4.1 Let A be a self-adjoint pseudo-differential boundary operator of degree 0 in B of
principal symbol σ(A). Let us denote by (φnj ), j = 1, · · · , d1

n, an orthonormal basis of En. We have
in the large n limit

lim
n→+∞

1

d1
n

d1n∑
j=1

〈Aφnj |φnj 〉 =
6

(2π)3

∫
Λ≤1

σ(A)|dxdξ|.

Proof.– We use the method of the papers [CdV79, Wei77] which are inspired from Hörmander
[Hör68] (see also [DG75], section 2). We have two main difficulties: the fact that we have to work
with a manifold with boundary and the fact that L is not elliptic at the boundary. For that we
will make first an assumption on A avoiding both difficulties and then make approximations of A.

4.1 The case where A is a “nice” pseudo-differential boundary oper-
ator

If A is a pseudo-differential boundary operator, WF ′(A) is the conic support of the full symbol
of the pseudo-differential operator part of A. The conical set Z is the set of points in the phase
space T ?B \ 0 such that the Hamiltonian flow of Λ hits ∂B at a characteristic point, namely a
point in N?∂B (see Appendix A). We have

Z = {(x, ξ) ∈ T ?B \ 0|ξ = sx for some s ∈ R}.

In the following, it will be important to make a difference between L as a differential operator
acting in R3, and the self-adjoint operator on L2(B) denoted by L̂.

Definition 4.1 A pseudo-differential boundary operator A is nice if it satisfies

WF ′(A) ∩
(
Z ∪

(
∂B × R3 \ 0

))
= ∅.
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Recall that, if K : R→ L(H), we can sometimes define the distributional trace as the Schwartz
distribution defined by

〈TraceK|φ〉 = Trace

∫
R
K(t)φ(t)dt,

where φ is a test function and the trace in the right-hand side is the usual trace of trace class
operator. The singularities of the distributional trace

Z : t→ Z(t) := Trace

(
e−it
√
L̂A

)
=
∞∑
n=0

ane
−it(n+3/2),

with an =
∑d1n

j=1〈Aφnj |φnj 〉, determine the asymptotics of the sequence (an)n∈N (see Lemma B.1).

We define
√
L̂ using the functional calculus for positive self-adjoint operators. However, L is

not elliptic and
√
L̂ is not a pseudo-differential boundary operator at characteristic points. It is

more convenient to start from cos
(
t
√
L̂
)

. The solution of the wave equation

�u := utt + L̂u = 0, u(0) = u0, ut(0) = 0

is u(t) = cos
(
t
√
L̂
)
u0. If

C : t→ C(t) := Trace
(

cos
(
t
√
L̂
)
A
)
,

we have
Z = 2HC

where H is the “Hilbert” projector defined by

F(Hf)(τ) = Heaviside(−τ)F(f)(τ)

with F(f)(τ) =
∫
R e
−itτf(t) the Fourier transform of a function f . Hence, the singularities of Z

can be deduced from those of C.
Let us denote by E := {(x, ξ) ∈ T ?R3|Λ(x, ξ) > 0} (the “elliptic” domain), by φt, t ∈ R, the

Hamiltonian flow of
√

Λ and by

L± := {(t, τ ;x, ξ; y, η)|(x, ξ) = φ±t(y, η)|τ ±
√

Λ(x, ξ) = 0, (y, η) ∈ E}

the Lagrangian submanifolds of T ?(Rt × R3
x × R3

y) associated to the flow φt.

Lemma 4.1 If A is a nice pseudo-differential operator of degree 0 (see the definition 4.1), the

Schwartz kernel of cos
(
t
√
L̂
)
A is the restriction to R×B×B of a Fourier Integral Operator of

degree 0 associated to the union of the Lagrangian manifolds L± modulo an operator R(t) whose
trace is a smooth function of t.

Proof.– In R3, the equation
�u = 0, u(0) = Au0, u̇(0) = 0

admits a Fourier Integral Operator parametrix U(t) as in [DG75], section 1: this is possible
because L± ⊂ T ?R × E × E . It means that �U(t) has a smooth kernel on R × R3 × R3 and that
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U(0) = A and Ut(0) = 0 modulo operators with smooth kernels. We define then, for u0 ∈ L2(B),

V (t)u0 = (U(t)u0)|B. The operator V (t) is a parametrix for cos
(
t
√
L̂
)
A: it means that, if

u0 ∈ D(L̂), V (t)u0 ∈ D(L̂), S := �V (t) has a smooth kernel on R × B × B and that U(0) = A
and Ut(0) = 0 modulo operators with smooth kernels.

If u0 ∈ D(L̂), then Au0 belongs to the Sobolev space H2(B). It follows from the continuity
properties of FIO’s that, for all t ∈ R, V (t)u0 is also in H2(B) and hence in the domain of L̂. The
other properties follow from the properties of U(t).

If cos
(
t
√
L̂
)
A = V (t) + R(t), we have �R(t) = −S(t) and R(0), Rt(0) are smoothing. We

get

R(t) = eit
√
L̂R1 + e−it

√
L̂R2 +

∫ t

0

ei(t−s)
√
L̂R3(s)ds+

∫ t

0

e−i(t−s)
√
L̂R4(s)ds,

where the Rj’s have smooth Schwartz kernels. It follows that they belong to the domains of all

powers of L̂, hence using the fact that, for all N ≥ 2, eit
√
L̂L̂−N is trace class, we get the smoothness

of t→ Trace(R(t)). �
The bicharacteristic flow lifts to the geodesic flow on S3 which is simply periodic of period 2π:

the orbits starting outside Z are projections of great circles of S3, hence ellipses tangent to ∂B
(see Appendix A). This implies that there are no periodic orbits of period smaller than 2π in L±.
Using the argument of [DG75], Corollary 1.2, we deduce from the calculi of wave-front sets that
the distribution C is only singular at the points 2πn with n ∈ Z. The antiperiodic distribution
Z = 2HC is also singular only at the points 2πn with n ∈ Z.

The analysis of [Hör68, DG75] shows that the Fourier transform of ρZ, with ρ ∈ C∞o (]−2π, 2π[)
with ρ(0) = 1, is a symbol τ → σ(τ) of degree 2 and principal part

σ2(τ) =
6τ 2

(2π)3

∫
Λ≤1

σ(A)|dxdξ|.

Theorem 4.1 in the case where A is nice follows then from Lemma B.1.

4.2 The general case

Let us give some ε > 0 and rewrite A as A = Aε +Rε in the following way. We choose a pseudo-
differential boundary operator Qε = χε + ηε of degree 0 so that, denoting by d the Euclidean
distances,

1. χε : B̄ → [0, 1] is smooth, equal to 1 if d(x, ∂B) ≤ ε/2 and vanishes if d(x, ∂B) ≥ ε.

2. ηε is a compactly supported pseudo-differential operator in B whose full symbol is 1 in the
cone {(x, ξ)|d((x, ξ), Z) ≤ ε/2‖ξ‖ and d(x, ∂B) ≥ ε/2} and 0 in the cone {(x, ξ)|d((x, ξ), Z) ≥
ε‖ξ‖ and d(x, ∂B) ≤ ε/4}.

Let us decompose A by putting Rε = Q?
εAQε, and see that A−Rε is nice. We have

A = P +G,

where G is a Green operator (see Appendix C). We have then

A−Rε = (P −Q?
εPQε) + (G−Q?

εGQε) .

10



The first term P − Q?
εPQε is nice. Then, we need to prove that B := G − Q?

εGQε is smoothing:
(1−Q?

ε)G is smoothing, then it remains to prove that

B = Q?
εG(1−Qε)

is smoothing: this is true because 1−Qε is smoothing near ∂B.

We have to estimate rn(ε) :=
∑d1n

j=1〈Rεφ
n
j |φnj 〉. For any φ ∈ L2, we have

|〈Rεφ|φ〉| ≤ C〈Q?
εQεφ|φ〉

with C = ‖A‖. Moreover, we have

d1n∑
j=1

〈Q?
εQεφ

n
j |φnj 〉 = d1

n −
d1n∑
j=1

〈(Id−Q?
εQε)φ

n
j |φnj 〉.

The last term can be evaluated because Id−Q?
εQε is nice, and we get

lim
n→∞

1

d1
n

d1n∑
j=1

〈(Id−Q?
εQε)φ

n
j |φnj 〉 =

6

(2π)3

∫
Λ≤1

(1− σ(Qε)
2)|dxdξ|.

The integral
∫

Λ≤1
σ(Qε)

2|dxdξ| tends to 0 as ε→ 0. It follows that lim
n→∞

(1/d1
n)rn(ε)→ 0 as ε→ 0.

5 A scalar version of Theorem 2.2

We will prove the following theorem

Theorem 5.1 Let A be a self-adjoint pseudo-differential boundary operatorof degree 0 in the
Euclidean ball B, which commutes with the operator L̂ and of principal symbol σ(A). Let us
denote by µnj , j = 1, · · · , d1

n, the eigenvalues of A restricted to En. Then, when n → ∞, the
probability measures

πλ :=
1

d1
n

d1n∑
j=1

δ
(
µnj
)

(8)

converge weakly to a probability measure π∞ that is defined as follows. For any continuous function
f : R→ R, we have ∫

R
fdπ∞ =

6

(2π)3

∫
Λ≤1

f(σ(A))|dxdξ|. (9)

We can apply Theorem 4.1 to the operators AN with N ∈ N. This gives

〈ANφnj |φnj 〉 =
(
µnj
)N

.

Then, we get the asymptotics for f a polynomial function. The answer for a continuous function
f is given by uniform approximation of f by polynomial functions.

11



6 The proof of Theorem 2.2

Lemma 6.1 The operator Π is a pseudo-differential boundary operator in B belonging to the
Boutet de Monvel calculus (see Appendix C). The operator valued symbol of Π at the point (x, ξ) ∈
T ?B \ 0 is the orthogonal projection on the hyperplane ker(ξ).

Proof.– We use the isomorphism between vector fields and 2-forms given by V → ι(V )dx1∧dx2∧dx3

where ι is the inner product. The image of the divergenceless vector fields tangent to the boundary
is the closed 2-forms α satisfying j?(α) = 0 where j : ∂B → R3 is the embedding. The relative
cohomology H2(B, ∂B) vanishes: by Poincaré duality H2(B, ∂B) is isomorphic to H1(B) which
vanishes. This implies that the Hodge Laplacian on 2-forms with the relative boundary conditions
is invertible and the inverse is a pseudo-differential boundary operator in B. The projector Π is
then given by Π = dd?∆−1 which is clearly also a pseudo-differential boundary operator. The
symbol can be easily computed: the symbol of the divergence is the linear form ξ and hence the
symbol of Π is the orthogonal projection onto the hyperplane ker ξ. �.

The spectrum of P is the union of the eigenvalues of P on V0, the λnj ’s with n ∈ N, 1 ≤ j ≤ dn,
and the eigenvalue 0 with eigenspace V⊥0 . We can compute the principal symbol σ(P ) of the
Poincaré operator using Lemma 6.1 and the composition rules of symbols. If we denote by φ ∈ [0, π]

the angle between ~Ω and ξ, the eigenvalues of σ(P )(x, ξ) are (0,Λ1 := ω cosφ,−Λ1). If ~Ω = (0, 0, ω),
this can be written (

0, ω
ξ3

‖ξ‖ ,−ω
ξ3

‖ξ‖

)
.

We see that these eigenvalues are simple if ξ3 6= 0 where all eigenvalues vanish.
We will now prove Theorem 2.2. The measure πE∞ is defined by∫

R
fdπ∞ =

6

(2π)3

∫
σ(LE)≤1

f(Λ1)|dxdξ|.

In other words, we have∫ t

−∞
dπE∞ =

6

(2π)3
Vol
(
{(x, ξ) ∈ E × R3|σ(LE)(x, ξ) ≤ 1 and ωξ3 ≤ t‖ξ‖}

)
. (10)

Recall the dimension involved in what follows: dn = 3d1
n − d1

n+1 = n(n + 2) is the dimension of
polynomial vector fields in V0

n orthogonal to Vn−1 The proof is a corollary of Theorem 5.1. When
f is a polynomial, we get

Trace

(
e−it
√
L̂f(P̃ )

)
=
∞∑
n=0

e−it(n+3/2)

3d1n∑
j=1

f(µnj )

where the µnj , j = 1, · · · , 3d1
n, are the eigenvalues of P restricted to ⊕3

i=1En. This set is the union
the eigenvalues of the restriction to divergenceless vector fields which is of interest for us and the
eigenvalue 0 corresponding to gradient vector fields, namely ker Π, of multiplicity d1

n+1.

On the other hand, the symbol of the operator e−it
√
L̂f(P̃ ) is the symbol of the Fourier Integral

Operator e−it
√
L̂ multiplied by the symbol of f(P̃ ). Taking the trace, we obtain for the measure

π̃n :=
1

3d1
n

(
d1
n+1δ(0) +

dn∑
j=1

δ(µnj ))

)

12



the limit ∫
R
fdπ̃∞ =

f(0)

3
+

2

(2π)3

∫
σ(LE)≤1

(
f

(
ω
ξ2

3

‖ξ‖2

)
+ f

(
−ω ξ2

3

‖ξ‖2

))
|dxdξ|.

Removing the terms f(0) on both sides, we get the final answer.

7 Some properties of π∞

7.1 Asymptotic formula

Theorem 7.1 The spectra (µnj )dnj=1 are symmetric with respect to 0. The measures πE∞ admit
densities fE := dπE∞/du that are even, non-vanishing and analytic in [−ω, ω] and have a jump at
±ω. Assuming that ω = 1 for simplicity, we have

∀u ∈ R,
∫ u

−∞
dπE∞ =

1

4π
Area(CE

u ∩ S2) (11)

where CE
u is the cone of R3 defined by CE

u := {ξ|ΛE(ξ) ≤ u} where

ΛE(ξ) = ω cos
(
~Ω, AE(ξ)

)
(12)

and with AE(ξ) =
(√

A1ξ1,
√
A2ξ2,

√
A3ξ3

)
.

We will make the calculation using the coordinate system in E given by the linear diffeomorphism
BE : B → E defined by

BE(x) =
(
x1/
√
A1, x2/

√
A2, x3/

√
A3

)
,

and the induced canonical transformation Φ? : T ?B → T ?E defined by Φ?(x, ξ) = (BE(x), AE(ξ)).
The pullback of the operator LE is L while the pullback of ωξ3/‖ξ‖ is given by Equation (12).
The result follows then by calculating the integral (10) as follows. We evaluate first the integral in
x with ξ fixed and then calculate the ξ-integral in polar coordinates; with more details, it works
like that: we need to compute I :=

∫
Λ(x,ξ)≤1

f(ξ)|dxdξ| with f homogeneous of degree 0. First, we

compute Vol ({x ∈ B|Λ(x, ξ) ≤ 1}) = F (‖ξ‖). Using polar coordinates, we obtain

I =

∫
R3

F (‖ξ‖)f(ξ)|dξ| =
∫ ∞

0

F (r)r2dr ×
∫
S2

f(σ)|dσ|

= C

∫
S2

f(σ)|dσ|,

where the constant C is calculated by taking f = 1. �
If E is an ellipsoid of revolution with A1 = A2 and ~Ω = (0, 0, 1), the density of the measure πE∞

is given by

fE :=
dπE∞
du

= χ[−1,1](u)
a

2 [u2 + a(1− u2)]3/2
, χ[−1,1](u) =

{
1 if |u| ≤ 1

0 if |u| > 1
, (13a–b)

where we have introduced a = A3/A1. Formula (13) is illustrated in figure 2(a). The density
is uniform in [−1, 1] for the round ball, but we observe that the density becomes strongly non-
uniform in flattened or elongated axisymmetric ellipsoids. The density is indeed peaked near zero
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Figure 2: Non-vanishing density fE for eigenvalues λ ∈ [−ω,+ω] obtained from theorem 7.1. (a)

Formula (13) for integrable cases in axisymmetric ellipsoids with A1 = A2 = 1 and ~Ω = (0, 0, 1). (b)

Numerical evaluation of formula (11 for non-integrable cases with a tilted vector ~Ω = (sin θ, 0, cos θ)
in an axisymmetric ellipsoid A1 = A2 = 1 and A3 = 0.01.

when A3/A1 → 0, whereas the density becomes maximum near the edge of the spectrum |λ| → ω
when A3/A1 → ∞. Low-frequency inertial modes (known as quasi-geostrophic modes, since they
are almost invariant along the rotation axis [MJL17]) are thus favoured in prolate ellipsoids. On
the contrary, inertial modes have preferentially high frequencies in flattened ellipsoids. For other
configurations, formula (11) is not integrable (it generally involves elliptic integrals). Yet, the area
intersection can be readily evaluated numerically (e.g. figure 2b for tilted rotation axes).

7.2 Numerical validation

An excellent quantitative agreement is found between formula (13) and prior computations, for
both the round ball (figure 1b) and other integrable cases in axisymmetric ellipsoids (not shown).
However, since formula (13) is not valid for non-integrable cases, it remains to compare theorem
7.1 with numerical computations of the inertial-mode spectrum in such cases.

To do so, every complex-valued eigenvector v ∈ V0
n of equation (3) is sought using an exact

polynomial expansion in ellipsoids as

v =
N∑
j=1

αjej, N = n(n+ 1)(2n+ 7)/6, (14a–b)

where {ej}j≤N are real-valued basis elements of V0
n and ~α = (α1, . . . , αB) contains the complex-

valued coefficients of the eigenvector in the chosen basis. Different algorithms have been proposed
to explicitly construct polynomial bases of V0

n, which all involve non-orthogonal basis elements in
ellipsoids [Leb89, WR11, Ive17]. To determine the modal coefficients in expansion (14), we employ
here a projection method [VC23]. We substitute expansion (14) in equation (3) and, then, we
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(a) Triaxial ellipsoid A1 = 1, A2 ' 1.235, A3 ' 2.04 with θ = 0

(b) Axisymmetric ellipsoid A1 = A2 = 1, A3 = 0.01 with θ = π/4

Figure 3: Comparison between numerical computations of the full inertial-mode spectrum for
v ∈ V0

35 and theorem 7.1 for non-integrable cases with ~Ω = (sin θ, 0, cos θ). Left panels : Probability
densities. Right panels : Integrated probability measures.

project the resulting equation onto every basis element ei such that

iλ

N∑
j=1

αj

∫
E

〈ej, ei〉 dx1dx2dx3 = −
N∑
j=1

2αj

∫
E

〈~Ω× ej, ei〉 dx1dx2dx3,

where the volume integration is performed analytically in ellipsoids [Leb89]. This procedure gives
an exact system of equations that can be written in the form of a generalized eigenvalue problem
as A~α = iλB~α, where [A,B] are N×N real-valued matrices. The matrix B is definite positive but,
since the basis elements are not mutually orthogonal in ellipsoids, it is not diagonal. Moreover,
the two matrices [A,B] can become ill-conditioned for some polynomial degrees (usually when
n ≥ 20, as also found in prior studies using Cartesian polynomial expansions in ellipsoids [GJNV20,
VC21]). Thus, we have solved the eigenvalue problem using extended floating-point precision (when
required).
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As shown in figure 3, a very good quantitative agreement is obtained for non-integrable cases
between the asymptotic measure πE∞ and the numerics. Therefore, theorem 7.1 can be used to
obtain the asymptotic behaviour of the inertial-mode spectrum for any configuration.

8 Ray dynamics

As usual the classical (ray) dynamics gives a good way to approach the eigenmodes of large degrees.
Hence, we show below a “classical version” of Theorem 2.1.

We define the ray dynamics associated to the Poincaré operator. We consider the Hamiltonians
±Λ1(ξ) defined in Section 6. The trajectories inside B are lines because the Hamiltonians are
independent of x. There is a reflexion when a trajectory hits the boundary; we re-start there with
the Hamiltonian field associated to opposite eigenvalue. The law of reflexion is not trivial. Let us
consider, at energy λ, the dispersion relation Σ that is obtained as the zero set of the determinant
of the symbol of P−λ: we have Σ = {λ‖ξ‖2−ωξ2

3 = 0}. We assume that a trajectory (x−(t), ξ−) of
the Hamiltonian Λ1 hits the boundary at the point m with the normal ~n to it. Then, the reflected
trajectory is (x+(t), ξ+) where ξ+ is determined by ξ+ 6= ξ−, ξ+ ∈ Σ and (ξ+ − ξ−)(~n) = 0 (recall
that the ξ’s are linear forms on R3). The commutation of P and L implies the fact that the Poisson
bracket of their principal symbols vanishes. Hence, σ(L) is a first integral of the motion. On the
other hand, the dispersion relation implies that |ξ3|/‖ξ‖ is a constant along each trajectory. This
fact can be proved directly using the law of reflexion we have just described. This proves that the
classical ray dynamics admits a constant of motion. If we were in dimension 2, we would have an
integable Hamiltonian system.

9 Perspectives

The following related questions are of some interest from a mathematical viewpoint.

1. An inverse spectral problem: does the measure π∞ determine the pair (E, ~Ω) up to dilation
of E?

2. What is the asymptotic behaviour of the eigenvalues when the ellipsoid degenerates to a 1-D
or 2-D limit?

3. What is the asymptotic behaviour, as n → ∞, of the first eigenvalues λnj for fixed j ≥ 1
whose limits are −ω?

4. Are the non-zero eigenvalues of P of finite multiplicities and, hence, all eigenfunctions poly-
nomials? In case the answer is negative or unknown, are all eigenfunctions smooth?

5. Are there other examples of integrable cases than ellipsoids of revolution with ~Ω on the axis
of revolution?

Finally, the mathematical analysis presented in this study could also be used to better under-
stand the properties of other linear wave motions, such as in non-rotating stably stratified fluids
(i.e. having a stable density profile ρ such that 〈∇ρ,~g〉 > 0 for incompressible fluids, where ~g is the
gravity field). Indeed, there is a strong analogy between uniformly rotating fluids and stably strat-
ified fluids [Ver70], and the analogue of ω for stratified flows is called the Brunt-Väisälä frequency
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N . The buoyancy force can sustain internal gravity waves in stratified fluids [Lig78], which usu-
ally exhibit singular spatial structures called attractors in bounded domains [DRV99, CdVSR20].
However, if we assume that N and ~g are spatially uniform in the fluid (with g := ||~g||), the pressure
associated with a divergenceless velocity field is given by [RN99]

∇2p =
N2

g2(N2 − λ2)
(~g · ∇)2p, (15)

which is very similar to Poincaré equation (4a). Therefore, under these assumptions, internal
gravity waves will admit smooth polynomial solutions in ellipsoids without any attractor. This
will be the subject of a future work.

A The bicharacteristic flow of Λ and the geodesic flow on

S3

Let us introduce the maps j± : B → S3 ⊂ R3
x × Rz defined by j±(x) = (x, z = ±

√
1− r2) with

r = ‖x‖. We have

h = j?±(dx2
1 + dx2

2 + dx2
3 + dz2) = dx2

1 + dx2
2 + dx2

3 +
r2

1− r2
dr2.

Because of the invariance by the rotations in R3, we can restrict the computation of the dual metric
to the points (x1, 0, 0), where h = 1

1−x21
dx2

1+dx2
2+dx2

3, hence the Hamiltonian h? = (1−x2
1)ξ2

1+ξ2
2+ξ2

3

which is equal to Λ(x1, 0, 0; ξ). This proves that the Hamiltonian flow φt of Λ is the projection
of the geodesic flow of S3. The geodesics of S3 (which are not meridians) project onto ellipses in
B̄ tangent to ∂B at two antipodal points. This part of the flow is simply periodic of period 2π.
The meridian great circles project onto a diameter, hitting the boundary at characteristic points
of ∂B.

B A simple Tauberian Theorem

Lemma B.1 Let Z(t) =
∑

n∈Z ane
it(n+3/2) be an antiperiodic distribution on R. Assume that the

singular support of Z is 2πZ and that, for a function ρ ∈ C∞o (] − 2π, 2π[) with ρ ≡ 1 near t = 0,
the Fourier transform of ρZ is

ρ̂Z(τ) = b(τ).

Then we have an = b(n+ 3/2) +O (n−∞).

Proof.– The asymptotics of the Fourier transform ρ̂Z(τ) is independent of ρ: changing ρmodifies
ρZ by a smooth compactly supported function whose series has a rapid decay. We can choose ρ = ρ0

so that
∑

n∈Z ρ0(t+ 2πn) = 1: assuming that [−π, π] ⊂ Support(ρ), we take

ρ0(t) = ρ(t)/
∑
n∈Z

ρ(t+ 2kπ).

The Fourier coefficients of Z are

an =
1

2π

∫ 2π

0

e−it(n+3/2)Z(t)dt =
1

2π

∫
R
e−it(n+3/2)ρ0(t)Z(t)dt = b(n+ 3/2) +O

(
n−∞

)
.

�
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C The boundary pseudo-differential operator calculus of

Boutet de Monvel

The pseudo-differential boundary operator are operators on functions on B of the form u →
Au := Pũ+Gũ where ũ is the extension of u by 0 outside B̄ and

1. P is a (classical) pseudo-differential operator in some neighbourhood of B̄ satisfying the
transmission property; this property is satisfied for differential operators and their paramet-
rices.

2. G is an integral operator sending functions into smooth functions in B and functions smooth
near ∂B into smooth functions.

What will be important for us is that such operators form an algebra: the pseudo-differential
operator parts P compose with the usual rules; if ∆ is an elliptic operator with elliptic boundary
conditions, then the parametrix of ∆ is of the previous form.

Our basic example is the Leray projector Π = dd?∆−1 where ∆ = dd? + d?d is the Hodge-de
Rham laplacian with relative boundary conditions: if j : ∂B → B̄ is the embedding, we ask
that the 2-forms ω satisfy j?ω = 0, j?(d?ω) = 0. Recall that ∆ is invertible: the kernel of ∆ is
isomorphic to the space H2

rel(B, ∂B;R) which vanishes, because B is simply connected and the
Poincaré duality. The Poincaré operator is a composition of Leray projectors and a wedge product
by ~Ω hence belongs also to this algebra.

D A short review about the calculus of wave-front sets

For more details on this section, one can look at section 2.5 in [Hör71] or section in 1.3[DH96].
Let us simply recall that, if u is a Schwartz distribution on a smooth manifold X, one can define
the wave-front set WF (u) of u as a closed conical subset of T ?X \ 0 whose projection onto X is
the singular support of X.

If A : C∞o (Y ) → D′(X) is a linear operator, one can look at the Schwartz kernel [A] of
A which is a distribution on X × Y . It is then natural to define WF ′(A) := {(x, ξ; y, η) ∈
T ?(X × Y )|(x, ξ; y,−η) ∈ WF ([A])}. If WF ′(A) ⊂ T ?(X) \ 0 × T ?(Y ) \ 0, one has for any
u ∈ D′(Y ), WF (Au) ⊂ WF ′(A) ◦WF (u).

Hörmander [Hör71] introduced what is called Fourier Integral Distributions associated to a
conic Lagrangian manifold Z. Such distributions are defined as oscillatory integrals of the form

u(x) =

∫
RN

eiφ(x,θ)a(x, θ)|dθ|,

where φ is “generating function” of Z and a is a symbol. There exists m ∈ R so that, for any
multi-indices α, β, there exists Cα,β > 0 so that

|Dα
xD

β
θ |(x, θ) ≤ Cα,β|θ|m−|β|.

If u is such a distribution, then we have WF (u) ⊂ Z.
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