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Abstract: We use a recently proposed fast test of copula radial symmetry based on multiplier bootstrap
and obtain an equivalent randomization test. The literature shows the statistical superiority of the
randomization approach in the bivariate case. We extend the comparison of statistical performance
focusing on the high-dimensional regime in a simulation study. We document radial asymmetry
in the joint distribution of the percentage changes of sectorial industrial production indices of the
European Union.

Keywords: copula; reflection symmetry; radial symmetry; empirical process; test

1. Introduction

Let Fi(x), i = 1, . . . , d be the marginal cumulative distribution functions (CDFs) of
a continuous random vector X = (X1, . . . , Xd). The application of the component-wise
probability integral transform (PIT) leads to a standard uniform random vector U:

U = (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)).

We call 1d a d-dimensional vector with all components equal to one. The following
distributional identity represents the hypothesis of copula radial symmetry:

H0 : U d
=1d −U (1)

This relationship was named, in the 2-dimensional case, radial symmetry of the copula
function [1,2]. The empirical finance literature documents the absence of copula radial
symmetry. Radial symmetry, in this case, is one of the manifestations of financial contagion
or increased dependence of the returns on different assets during market downturns [3–5].
Moreover, this asymmetry of financial returns has consequences in asset allocation [6]. This
behavior could be present also for macroeconomic variables because their dependence
could change in recession periods. However, the literature rarely explored this possibility
due to smaller samples and the lower frequency of macroeconomic variables. The lack of
observations is even more relevant considering Eurostat macroeconomic variables, where
most samples started in 1995. Therefore, one of the paper’s objectives is to understand if the
proposed statistical procedures have access to applications in the European macroeconomic
data domain. In particular, the most urgent requirement is the number of observations
available for macroeconomic series. Therefore, the paper’s main contribution aims to
reduce the sample size required for proper inference. The other constraint is the possibility
of handling time series dependence characteristic of the macroeconomic environment. This
issue was already present in previous financial applications of similar tests, and the solution
was twofold: the extension to prefiltered residuals of a parametric time series model [7]
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or the nonparametric extension to strongly mixing data [8]. In this paper, we follow the
prefiltering path. We can frame the symmetry using copula functions. We provide only
the results and definitions needed in the following, but the interested reader could find
excellent introductions to copula functions in [2,9,10]. According to the work in [11], the
joint CDF F(x) of X at each x ∈ Rd is equivalent to

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

C is of the copula coming from F and represents the joint CDF of U. A similar approach
applies to the marginal survival functions of X, F̄i(xi) = 1− Fi(xi), i = 1, . . . , d. At each
x ∈ Rd, we can write the joint survival function of X:

F̄(x1, . . . , xd) = C̄(F̄1(x1), . . . , F̄d(xd)).

Analogously to the copula case, then, the survival copula C̄ is the CDF of 1d −U.
Using the definitions of copula and survival copula, Equation (1) boils down the

following identity:

H0 : C(u1, . . . , ud) = C̄(u1, . . . , ud). (2)

By Equation (2), for testing H0, we can use a measure of distributional distance. A
nonparametric consistent estimation of this distance could be based on Empirical distribu-
tion. Let us consider an independent sample of size n from d-dimensional random vector

X,
{{

Xij
}n

i=1

}d

j=1
≡ {Xi}n

i=1 be. We denote the indicator for the set A as I(A). In addition,

we call Ûij =
1

n + 1 ∑n
k=1 I

(
Xkj ≤ Xij

)
, i = 1, . . . , n and j = 1, . . . , d. With those definitions,

the empirical copula and the empirical survival copula are

Cn(u) =
1
n

n

∑
i=1

I
(
Ûi ≤ u

)
, C̄n(u) =

1
n

n

∑
i=1

I
(
1d − Ûi ≤ u

)
.

Many measures of the distance between the copula and its survival counterpart lead
to a test statistic ofH0 : C = C̄. Our preferred choice is a Cramér–von Mises statistic under
the random measure generated by the empirical copula:

Sn
(
Û1, . . . , Ûn

)
=
∫
(0,1]d

(Cn − C̄n)
2dCn =

1
n

n

∑
i=1

(
Cn
(
Ûi
)
− C̄n

(
Ûi
))2. (3)

The 2-dimensional version of this statistic was introduced in [12] and investigated
further in [13,14]. In particular, the work in [14] shows that Equation (3) is the most
powerful statistic for a random vector of dimension two. Other bivariate nonparametric
approaches for the same test are in [15,16]. Multivariate nonparametric radial tests are
studied in [17–19].

We can derive the asymptotic null distribution of Sn using the limiting behavior of the
empirical copula process and the empirical survival copula processes:

Cn =
√

n(Cn(u)− C(u)), C̄n =
√

n(C̄n(u)− C̄(u)). (4)

The author of [20] obtains the following weak convergence result for the empirical
copula process:

Cn  C = BC(u)−
d

∑
d=1

∂C(u)
∂ud

Bd,C(ud), (5)
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where BC is a d-dimensional Brownian sheet with covariance function

Cov(BC(u),BC(v)) = C(u ∧ v)− C(u)C(v). (6)

The analogous result for the Empirical survival copula process is obtained as a corollary
of proposition 1 in [21] (see also [19]),

C̄n  C̄ = BC̄(u)−
d

∑
d=1

∂C̄(u)
∂ud

Bd,C̄(ud), (7)

where BC̄ is a d-dimensional Brownian sheet with covariance function

Cov(BC̄(u),BC̄(v)) = C̄(u ∧ v)− C̄(u)C̄(v). (8)

Under the null, Equation (3) becomes

nSn =
∫
(0,1]d

(
Cn − C̄n

)2dĈn. (9)

In proposition 2 of [19] it is showed that, under the null, nSn and its multiplier copies
weakly converge to independent copies of

S =
∫
(0,1]d

(
C− C̄

)2dC. (10)

In the same paper, an extensive simulation study shows that the statistical procedure
based on Equation (3) has size and power better than the proposal introduced in [17].
However, it is comparable to the competitor proposed in [18]. In addition, the procedure
in [19] is faster to compute. The latter feature could help deal with high-dimensional data.

Recently the authors of [22], limiting themselves to the bivariate case, propose to
approximate the distribution of Equation (3) and other statistics using randomization
instead of the multiplier bootstrap. They show better finite sample behavior compared to
the use of the multiplier techniques. In this paper, we generalize their approach to random
vectors of higher dimensions and compare the behavior of multiplier and randomization
procedures using random vectors with up to 100 components. We call the m-th multiplier
statistic replicate S[m],plain

n with m = 1, . . . , M of [19] as S[m],mult
n with m = 1, . . . , M and the

randomization replicate S[m],rand
n .

The paper is structured as follows. Section 2 generalizes asymptotic results in [22]
to random vectors of any fixed dimension d. Section 3 investigates through simulations
the finite sample behavior of the randomization test and compares it with the multiplier
bootstrap procedure proposed in [19]. In Section 4, we apply the procedure to sectorial
monthly industrial production at the EU27 level. Section 5 summarizes our findings and
proposes further developments.

2. Materials and Methods

In this section, we describe the feasible randomization procedure introduced in [22]
and derive the asymptotic behavior of its generalization for random vectors with more
than two components. Proof can be found in the Appendix A. We consider a group of two
transformations G =

{
π0, π1}, πi : [0, 1]d → [0, 1]d, i = 0, 1:

π0(u) = u, and π1(u) = 1d −U. (11)

G is a group under the operation of composition and we can derive a second group Gn of
2n transformations gτ : [0, 1]dn → [0, 1]dn, by setting Gn =

{
gτ : τ = (τ1, . . . , τn) ∈ (0, 1)n},

where:
gτ(u1, . . . , un) = (πτ1(u1), . . . , πτn(un)).
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Gn is also a group under the composition operation and under Equation (1)

gτ(U1, . . . , Un)
d
=(U1, . . . , Un).

In [22], the following feasible randomization procedure is proposed:

1. draw τ as an independently distributed vector of Bernoulli random variables and set

(Uτ
1 , . . . , Uτ

n) = gτ(U1, . . . , Un).

2. draw n independent standard uniform random variables η1, . . . , ηn and set, for i =
1, . . . , n

Uτ,η
i = Uτ

i − n−11dηi.

3. For i = 1, . . . , n and j = 1, . . . , d compute

Vτ,η
ij =

1
n

n

∑
k=1

I
(

Uτ,η
kj ≤ Uτ,η

ij

)
.

4. Compute

Cτ,η
n (u) =

1
n

n

∑
i=1

I
(

Vτ,η
n ≤ u

)
C̄τ,η

n (u) =
1
n

n

∑
i=1

I
(

1d −Vτ,η
n ≤ u

)
Sτ

n

(
Vτ,η

1 , . . . , Vτ,η
n

)
=

1
n

n

∑
i=1

(
Cτ

n

(
Vτ,η

i

)
− C̄τ,η

n

(
Vτ,η

i

))2

S[1],rand
n = Sτ

n

(
Vτ,η

1 , . . . , Vτ,η
n

)
.

5. repeat steps 1–4 for a large number of times M and compute the approximate p-value

P̂rand =
1
M

M

∑
m=1

I
(

S[m],rand
n > Sn

)
. (12)

The careful reader may notice that in the description of feasible randomization, we have one
step less than in [22]. The actual procedure, implemented by them and for which they study
the asymptotic behavior, is described above their Equation (3.5). The description there is

in line with ours. We denote with P
 
τ

convergence conditional on the data in probability
as in [23]. Consistently with the work in [22] neglecting step 3 in the procedure leads to
BC −BC̄ under the null. This is shown in Lemma 1 and 2 below.

Lemma 1. Let Gτ,η
n and Ḡτ,η

n be defined as follows:

Gτ,η
n (u) = n−1

n

∑
i=1

I
(

Uτ,η
n ≤ u

)
Ḡτ,η

n (u) = n−1
n

∑
i=1

I
(

1d −Uτ,η
n ≤ u

)
.
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Then,

Gτ,η
n (u) =

√
n
(

Gτ,η
n −

1
2
(Cn + C̄n)

)
P
 
τ
A (13)

Ḡτ,η
n (u) =

√
n
(

Ḡτ,η
n −

1
2
(Cn + C̄n)

)
P
 
τ
−A (14)

Gτ,η
n (u)− Ḡτ,η

n (u) =
√

n
(

Gτ,η
n − Ḡτ,η

n

)
P
 
τ

2A.

where A ∈ `∞
(
[0, 1]d

)
is centered and Gaussian with continuous sample paths. The covariance

kernel of A is given by

Cov(A(u),A(v)) = 1
4
[C(u ∧ v) + C̄(u ∧ v)− P(1d − u < U ≤ v)− P(1d − v < U ≤ u)]. (15)

where ∧ is the component-wise minimum.

Lemma 2. If C = C̄ then A d
=

1
2
(BC −BC̄).

The limit needed for approximating the distribution of Equation (10) is instead C− C̄.
Lemmas 3 and 4 shows that introducing step 3 leads to the right limit under the following
assumption from [20] and the null hypothesis.

Hypothesis 1. For each j ∈ {1, . . . , d}, the jth first-order partial derivative
∂C
∂uj

exists and is

continuous on the set Vd,j :=
{

u ∈ [0, 1]d : 0 < uj < 1
}

.

Lemma 3. Suppose that C satisfies Hypothesis 1. Then,

√
n
(

Cτ,η
n −

1
2
(Cn − C̄n)

)
P
 
τ

D

√
n
(

C̄τ,η
n −

1
2
(Cn − C̄n)

)
P
 
τ
−D

√
n
(

Cτ,η
n − C̄τ,η

n

)
P
 
τ

2D,

where D can be written

D(u) = A(u)− 1
2

d

∑
i=1

[
∂C(u)

∂ui
+

∂C̄(u)
∂ui

]
Ai(ui),

where A ∈ `∞
(
[0, 1]d

)
is centered and Gaussian with continuous sample paths and has covariance

given in Equation (15).

The feasibility of the randomization test relies on the following distributional identity
under the null:

Lemma 4. If C = C̄ then D d
= C− C̄.

In the following proposition, we obtain the asymptotic behavior of the randomization
test replicates:
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Proposition 1. Consider an independent sample of size n from a random vector X of dimension d

having copula C,
{{

Xij
}n

i=1

}d

j=1
≡ {Xi}n

i=1. Under the null of copula radial symmetry C = C̄

and the assumption Hypothesis 1, we obtain, as n→ ∞, the following results:(
nS̃[1],rand

n , . . . , nS̃[M],rand
n

)
P
 
τ

(
S[1], . . . ,S[M]

)
,

where S[1], . . . ,S[M] are independent copies of S.

It follows from Proposition 1 that the approximate p-values for the tests of H0 based
on Sn are given by Equation (12).

3. Simulation Study

This section use simulations to study the finite sample properties of the different tests
of multivariate copula radial symmetry. In all the experiments performed, the number of
bootstrap or randomization replicates is M = 250, and the estimated probabilities of rejection
are computed using 1000 Monte Carlo-independent replicates. Each table in the section
presents varying number of observations n ∈ {50, 100, 125}, dimensions of the copula
d ∈ {2, 5, 10, 50, 100} levels of dependence. In particular, the dependence is measured by
Kendall’s τ on pairs of random variables imposing values in the set {0.25, 0.50, 0.75}. We
compare the tests Smult

n and Srand
n . Random sampling from the different copulas comes

from the R package copula [24]. Before considering the statistical performance, we study
the computational performance of the different procedures and report in Table 1, as an
example, the running times for the number of observations n = 250 and dimension d = 100,
estimated from 1000 replicates, under the Frank copula model, using Matlab on a Windows
10 laptop with an Intel i7-6500U CPU and 8 GB of RAM.

Table 1. Running Times of Smult
n , Srand

n , as estimated from 1000 replicates, in the n = 250, d = 100
case, under the Frank copula model.

Mean (s) Max (s) Min (s)

Splain
n 2.23 2.06 4.42

Srand
n 10.54 9.96 24.61

As we can see, the computing time for the randomization procedure is five times
slower than the multiplier procedure. The discussion of statistical performance is in the
following subsections.

3.1. Elliptical Family

Tables 2 and 3 report results for Normal, t-student copula functions that are radially
symmetric, allowing us to investigate the different procedures’ success in replicating the
distribution of the test statistics under the null hypothesis. Consistently with [22], for
random vectors of low dimension, the randomization test is less conservative than the
multiplier test. The situation deteriorates considering high dimensional random vectors.
The multiplier test never rejects the null hypothesis, while the randomization test remains
close to the nominal level. The major difficulties for the randomization test are at a low
level of dependence. Comparing Tables 2 and 3 we can also see that fatter tails in the
t-Student case, slightly raise the rejection percentage. In general, we can conclude that
while the multiplier test is completely unreliable in the high dimensional setting, using
250 observations suffice to obtain a suitable size for the randomization test.
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Table 2. Rejection percentages at 5% significance level, as estimated from 1000 replicates, for the tests
based on Smult

n and Srand
n under the normal copula.

d = 2 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.055 0.045 0.025 0.050 0.034 0.026 0.038 0.036 0.020

Srand
n 0.062 0.059 0.044 0.059 0.048 0.056 0.041 0.043 0.033

d = 5 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.039 0.012 0.001 0.028 0.028 0.000 0.039 0.038 0.022

Srand
n 0.092 0.066 0.048 0.071 0.073 0.052 0.056 0.051 0.046

d = 10 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.006 0.001 0.000 0.007 0.010 0.000 0.030 0.024 0.004

Srand
n 0.215 0.073 0.058 0.127 0.064 0.051 0.075 0.053 0.056

d = 50 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Srand
n 0.877 0.149 0.097 0.684 0.087 0.070 0.328 0.066 0.058

d = 100 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Srand
n 0.982 0.171 0.100 0.942 0.101 0.073 0.725 0.070 0.059

Table 3. Rejection percentages at 5% significance level, as estimated from 1000 replicates, for the tests
based on Smult

n and Srand
n under the Student-t copula with ν = 4 degrees of freedom.

d = 2 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.040 0.049 0.022 0.043 0.046 0.024 0.054 0.054 0.033

Srand
n 0.050 0.058 0.049 0.061 0.055 0.046 0.059 0.068 0.046

d = 5 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.036 0.011 0.000 0.040 0.018 0.000 0.046 0.039 0.029

Srand
n 0.104 0.064 0.050 0.088 0.059 0.048 0.065 0.055 0.058

d = 10 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.006 0.002 0.000 0.016 0.006 0.000 0.032 0.036 0.005

Srand
n 0.193 0.085 0.075 0.116 0.081 0.067 0.081 0.060 0.071

d = 50 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Srand
n 0.818 0.152 0.087 0.631 0.097 0.075 0.305 0.069 0.059

d = 100 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Srand
n 0.959 0.196 0.098 0.900 0.114 0.088 0.674 0.085 0.058
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3.2. Archimedean Family

We investigate the following Archimedean copulas: the Frank Copula (Table 4), which
is symmetric in two dimensions and mildly asymmetric beyond dimension two, and the
asymmetric Clayton and Gumbel families (Tables 5 and 6, respectively).

Table 4. Rejection percentages at 5% significance level, as estimated from 1000 replicates, for the tests
based on Smult

n and Srand
n under the Frank copula.

d = 2 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.053 0.052 0.016 0.042 0.039 0.017 0.044 0.048 0.030

Srand
n 0.061 0.052 0.040 0.050 0.052 0.040 0.050 0.054 0.048

d = 5 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.016 0.012 0.000 0.134 0.028 0.001 0.781 0.452 0.031

Srand
n 0.081 0.074 0.042 0.302 0.123 0.057 0.882 0.614 0.103

d = 10 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.049 0.003 0.000 0.722 0.157 0.000 1.000 1.000 0.087

Srand
n 0.533 0.249 0.057 0.976 0.789 0.109 1.000 1.000 0.779

d = 50 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.993 1.000 0.008

Srand
n 0.998 0.996 0.313 1.000 1.000 0.917 1.000 1.000 1.000

d = 100 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.968 0.000

Srand
n 1.000 0.999 0.606 1.000 1.000 0.989 1.000 1.000 1.000

Table 5. Rejection percentages at 5% significance level, as estimated from 1000 replicates, for the tests
based on Smult

n and Srand
n under the Clayton copula.

d = 2 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.071 0.087 0.052 0.122 0.178 0.120 0.235 0.460 0.446

Srand
n 0.082 0.112 0.106 0.130 0.209 0.209 0.265 0.495 0.544

d = 5 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.085 0.075 0.000 0.378 0.392 0.019 0.983 0.987 0.738

Srand
n 0.167 0.232 0.142 0.534 0.603 0.396 0.990 0.993 0.897

d = 10 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.052 0.008 0.000 0.810 0.635 0.002 1.000 1.000 0.929

Srand
n 0.402 0.493 0.210 0.942 0.975 0.614 1.000 1.000 1.000

d = 50 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.998 1.000 0.084

Srand
n 0.856 0.993 0.712 0.994 1.000 0.998 1.000 1.000 1.000



Symmetry 2022, 14, 97 9 of 19

Table 5. Cont.

d = 100 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.704 0.000

Srand
n 0.898 0.994 0.927 0.996 1.000 1.000 1.000 1.000 1.000

Table 6. Rejection percentages at 5% significance level, as estimated from 1000 replicates, for the tests
based on Smult

n and Srand
n under the Gumbel copula.

d = 2 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.066 0.090 0.047 0.092 0.163 0.106 0.237 0.457 0.416

Srand
n 0.099 0.128 0.085 0.146 0.236 0.213 0.305 0.537 0.537

d = 5 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.082 0.075 0.001 0.388 0.393 0.026 0.977 0.983 0.751

Srand
n 0.353 0.360 0.187 0.700 0.701 0.427 0.994 0.996 0.929

d = 10 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.058 0.013 0.000 0.816 0.621 0.001 1.000 1.000 0.923

Srand
n 0.696 0.666 0.278 0.988 0.986 0.694 1.000 1.000 1.000

d = 50 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.996 1.000 0.086

Srand
n 0.896 0.996 0.757 0.999 1.000 1.000 1.000 1.000 1.000

d = 100 n = 50 n = 100 n = 250

τ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Smult
n 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.708 0.000

Srand
n 0.890 0.997 0.928 0.995 1.000 1.000 1.000 1.000 1.000

In Table 4, results about the Frank family are reported. In dimension 2, we reproduce
the situation discussed for the elliptic family. In the non-symmetric cases, power increases
with dimension for randomization, detecting symmetry violation in high dimension already
with 100 observations. The multiplier test appears not reliable in the high-dimensional case.
The statistical power decrease with dependence as measured by the pairwise Kendall’s τ.

In the Clayton and Gumbel case (Tables 5 and 6), asymmetry is strong, again power
increases with dimension for the randomization test and is not adequate in high dimensions
for the multiplier test. The relation between power and dependence is not monotonic. The
randomization can discriminate against Clayton and Gumbel alternatives already with
100 observations.

4. Empirical Application

We apply the proposed procedure to the percentage changes of seasonally and calendar
adjusted monthly industrial production by industry by NACE rev2 up to the second digit
for mining and manufacture sectors at the EU27 level. In the Table 7, we detail the labels of
31 the sectors used. The sample started in 2001. In particular, we have 248 observations.
Therefore, in line with our simulation study, we can consider the randomization procedure
reliable in this setting. Nevertheless, the time series present autocorrelation, and we filtered
them before applying the test. We fitted an AR(12) model without selecting the lags to
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each series and tested using the Ljung–Box statistics the absence of autocorrelation up
to lag 18 and up to lag 24. Only the sector “Mining support service activities” exhibited
autocorrelation, and we switched to estimating an AR(15) for this series. The new model for
this sector resulted in no significant autocorrelation up to lag 24. In [7], the author performs
a detailed theoretical investigation of prefiltering procedure for that kind of test. Corollary
1 of the latter paper presents the asymptotic equivalence of replacing i.i.d observations with
residuals of a fitted general class of models. The class considered includes independent
univariate autoregressive processes (see also [25]). The filtering approach was used in the
bivariate case, in [22] for symmetry test with randomization, in [26] for a copula change
point test. Moreover, the authors of [25] use prefiltering in the context of bivariate and
trivariate independence tests. Finally, in [27], the results in [7] are further generalized,
including the behavior of multiplier and ordinary bootstrap procedures, and applied to
multivariate change point test. The simulation studies in the cited literature make us
confident that inference for our radial symmetry test is not altered prefiltering. In addition,
we performed a limited set of experiments under AR(12) univariate processes and the null
of radial symmetry. The results are indistinguishable from the i.i.d. case and are available
upon request.

Table 7. Mining and Manufacturing 2-digit Nace rev. 2 industrial sectors.

Mining of coal and lignite
Extraction of crude petroleum and natural gas
Mining of metal ores
Other mining and quarrying
Mining support service activities
Manufacture of food products
Manufacture of beverages
Manufacture of tobacco products
Manufacture of textiles
Manufacture of wearing apparel
Manufacture of leather and related products
Manufacture of wood and of products of wood and cork, except furniture
Manufacture of paper and paper products
Printing and reproduction of recorded media
Manufacture of coke and refined petroleum products
Manufacture of chemicals and chemical products
Manufacture of basic pharmaceutical products and pharmaceutical preparations
Manufacture of rubber and plastic products
Manufacture of other non-metallic mineral products
Manufacture of basic metals
Manufacture of fabricated metal products, except machinery and equipment
Manufacture of computer, electronic and optical products
Manufacture of electrical equipment
Manufacture of machinery and equipment n.e.c.
Manufacture of motor vehicles, trailers and semi-trailers
Manufacture of other transport equipment
Manufacture of furniture
Other manufacturing
Repair and installation of machinery and equipment
Electricity, gas, steam, and air conditioning supply
Water collection, treatment and supply

The objective of the application is the statistical formalization of the stylized fact that
dependence increase in recessions.
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In Figure 1, we compute, using a rolling window of one year, an average over the
possible couples of sectors residuals from autoregressive models of the most used measure
of bivariate dependence: Linear (Pearson) correlation, Rank Correlation (Spearman’s ρ),
and Kendall’s τ. Recessions and slowdown periods are from Eurostat’s Business Cycle
Clock (BCC). The proposed dependence indicators all increase during recessions. However,
we cannot understand if this increase is a statistical fluke due to the small sample. One
possible way of formally testing for differences in dependence during a recession is testing
the overall radial symmetry of the residual copula. While applying the multiplier bootstrap
procedure results in a p-value of 0.8400 and not detecting asymmetry, the randomization
procedure produces a p-value of 0.000, strongly suggesting the absence of symmetry.
Asymmetry highlights the need for models of the distribution of residuals different from
the usual Normal or t-Student assumption.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1. Average Linear correlation, Spearman’s ρ, and Kendall’s τ, computed using a rolling win-
dow of one year. Recessions and slowdown periods are from Eurostat’s Business Cycle Clock (BCC).
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5. Conclusions

This paper extends the randomization approach in testing radial symmetry in [22]
to more than two variables. It also compares in a simulation study with a high number
of variables and its computing and statistical performance with the performance of the
multiplier bootstrap procedure developed in [19]. However, even if the multiplier approach
is computationally advantageous, it is statistically unreliable with a high number of series
and observations up to 250. Instead, the randomization approach delivers reasonable size
and power with 250 observations and 100 series, particularly for moderate and high values
of pairwise Kendall’s tau. Understanding this striking difference in the high dimensional
regime would require the study of the asymptotic behavior of the empirical copula process
when both n and d go to infinity. This investigation is outside the scope of the paper but
would be an exciting avenue for future research. The number of observations is sufficient
to investigate asymmetry in a macroeconomic context where the highest frequency of the
time series is monthly. Consequently, the samples are much smaller than in a financial
application. We apply the randomization test to a European macroeconomic dataset,
including growth rates of industrial production in 30 different sectors and 241 observations.
Given our simulation study, the rejection of the null of radial symmetry below the 0.01%
significance level, a consequence of the smallness of the randomization p-value of the test
applied to the industrial production data, has to be considered statistically sounded. To our
knowledge, we are the firsts to document radial asymmetry in the joint distribution of the
percentage changes of sectorial industrial production indexes of the European Union. This
finding allows better models of the joint distribution of the residuals, potentially leading
to a better forecast of the economy-wide industrial production. In addition, this detection
of asymmetry in industrial production could be a symptom of a change in dependence
among sectorial production in recessions and booms, similar to what is happening to asset
prices when subject to financial contagion. Those two consequences of our findings will be
an exciting avenue for further investigation and research.
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Appendix A. Proofs and Auxiliary Results

Lemma A1. For any u, v ∈ [0, 1]d, we have

1
n

n

∑
i=1

I(u ≤ Uni ≤ v)→ P(u < U ≤ v) a.s.

https://ec.europa.eu/eurostat/data/database
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Proof. If for some k = 1, . . . , d, vk < uk, both terms are zero. Therefore, w.l.o.g we consider
only the case for which for each k = 1, . . . , d vk ≥ uk. Let us call D = {1, . . . , d}, then
we obtain

1
n

n

∑
i=1

I(u ≤ Uni ≤ v) =
1
n

n

∑
i=1

d

∏
k=1

I(uk ≤ Unik ≤ vk)

=
1
n

n

∑
i=1

d

∏
k=1
{I(uk < Unik ≤ vk) + I(Unik = uk)}

=
1
n

n

∑
i=1

d

∑
l=0

∑
E ⊆ D
|E| = m

∏
k∈E

I(Unik = uk) ∏
k∈D\E

I(uk < Unik ≤ vk)

=
1
n

n

∑
i=1

∏
k∈D

I(uk < Unik ≤ vk)

+
1
n

n

∑
i=1

d

∑
l=1

∑
E ⊆ D
|E| = m

∏
k∈E

I(Unik = uk) ∏
k∈D\E

I(uk < Unik ≤ vk).

As with probability 1, and for every k ∈ D we cannot have Unik = uk for more than
one i the last term is bounded by n−1, using the same reasoning we compute the following:

1
n

n

∑
i=1

∏
k∈D

I(uk < Unik ≤ vk) =
1
n

n

∑
i=1

∏
k∈D
{I(Unik ≤ vk)− I(Unik ≤ uk)}

=
1
n

n

∑
i=1

d

∑
l=0

(−1)l ∑
E ⊆ D
|E| = m

∏
k∈E

I(Unik ≤ uk) ∏
k∈D\E

I(Unik ≤ vk).

Let us define uE =
(
uE1 , . . . , uEd

)
with:

uEk =


uEk = uk if k ∈ E

uEk = vk if k ∈ D \ E
,

and this leads to

1
n

n

∑
i=1

∏
k∈D

I(uk < Unik ≤ vk) =
d

∑
l=0

(−1)l ∑
E ⊆ D
|E| = m

Cn

(
uE
)

.

By the strong consistency of the empirical copula then

lim
n→∞

1
n

n

∑
i=1

I(u ≤ Uni ≤ v) =
d

∑
l=0

(−1)l ∑
E ⊆ D
|E| = m

C
(

uE
)
= VC([u, v]) = P(u < U ≤ v) a.s. ,

where VC([u, v]) is the C-Volume on the hyperbox [u, v] [2].
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Appendix A.1. Proof of Lemma 1

Proof. Let us define

Gτ
n(u) = n−1

n

∑
i=1

I(Uτ
n ≤ u)

Ḡτ
n(u) = n−1

n

∑
i=1

I(1d −Uτ
n ≤ u).

Following arguments analogous to the proof of Lemma A.3 in [22] we obtain the bounds∣∣∣Gτ,η
n − Gτ

n

∣∣∣ ≤ 2dn−1,
∣∣∣Ḡτ,η

n − Ḡτ
n

∣∣∣ ≤ 2dn−1. (A1)

As they are asymptotically equivalent, the limit of Gτ,η
n and Ḡτ,η

n will be equal to the
limit of

Gτ
n(u) =

√
n
(

Gτ
n −

1
2
(Cn + C̄n)

)
Ḡτ

n(u) =
√

n
(

Ḡτ
n −

1
2
(Cn + C̄n)

)
.

In particular if we define

fni(u) = n−1/2I(πτi (Un,i) ≤ u)

f̄ni(u) = n−1/2I
(

π1−τi (Un,i) ≤ u
)

,

the expectation conditional on the data is

Eτ [ fni] = Eτ

[
f̄ni
]
= n−1/2

[
1
2
I
(

π0(Un,i) ≤ u
)
+

1
2
I
(

π1(Un,i) ≤ u
)]

.

and we obtain

Gτ
n =

n

∑
i=1

fni −Eτ [ fni]

Ḡτ
n =

n

∑
i=1

f̄ni −Eτ

[
f̄ni
]
.

Gτ
n and Ḡτ

n are simple maps from their underlying probability space into `∞
(
[0, 1]d

)
.

Therefore, they are borel measurable and satisfy the second condition of definition 4.1
in [22]. As in [22], we will apply Theorem 11.16 in [23] originally due to that in [28]. As the
following relation holds

fn,i(u)−Eτ [ fni] =
(−1)τi

2
√

n
[
I
(
π0(Un,i) ≤ u

)
− I
(
π1(Un,i) ≤ u

)]
f̄n,i(u)−Eτ

[
f̄ni
]

=
(−1)1−τi

2
√

n
[
I
(
π0(Un,i) ≤ u

)
− I
(
π1(Un,i) ≤ u

)]
= −( fn,i(u)−Eτ [ fni]),

(A2)

we obtain the following result:

Ḡτ
n = −Gτ

n, (A3)

we can focus only on Gτ
n, in addition, using the Equations (A2) and (11) fni is (−1)τi times

the difference of a coordinate-wise non decreasing function and a decreasing function in u.
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We should check that the triangular array fni verify a.s. conditions (A)–(E) of Theorem 11.16
in Kosorok and that fni is almost measurable Suslin (AMS).

(A) Maneageability of the fni’s with envelopes Fni = n−1/2 is a consequence of the
monotonicity of the fni, as discussed in [23].

(B) If i 6= j, using the independence of τi and τj, it follows that Eτ

[
fni(u) fnj(v)

]
=

Eτ [ fni(u)]Eτ

[
fnj(v)

]
. In the case i = j we obtain:

Eτ [ fni(u) fni(v)]−Eτ [ fni(u)]Eτ [ fni(v)]

=
1

4n

[
I
(

π0(Un,i) ≤ u ∧ v
)
+ I
(

π1(Un,i) ≤ u ∧ v
)

− I
(

π0(Un,i) ≤ u
)
I
(

π1(Un,i) ≤ v
)

− I
(

π0(Un,i) ≤ v
)
I
(

π1(Un,i) ≤ u
)]

.

Then, we the following expectation can be computed:

Eτ [Gτ
n(u)Gτ

n(v)] =
1
4
[Cn(u ∧ v) + C̄n(u ∧ v)]

− n−1
n

∑
i=1

I(1d − v < Un,i ≤ u)

− n−1
n

∑
i=1

I(1d − u < Un,i ≤ v).

Using Lemma A1 it follows that

lim
n→∞

Eτ [Gτ
n(u)Gτ

n(v)] =
1
4
[C(u ∧ v) + C̄(u ∧ v)

− P(1d − v < U ≤ u)

− P(1d − u < U ≤ v)].

(C) lim supn→∞ ∑n
i=1 Eτ

[
F2

ni
]
= 1 < ∞.

(D) ∑n
i=1 Eτ

[
F2

niI(Fni > ε)
]
= I
(

n−1/2 > ε
)
→ 0 for each ε.

(E) Eτ

[
| fni(u)− fni(v)|2

]
= Eτ

[
fni(u)

2
]
+Eτ

[
fni(v)

2
]
− 2Eτ [ fni(u) fni(v)]

ρn(u, v)2 =
n

∑
i=1

Eτ

[
| fni(u)− fni(v)|2

]
.

Using the same line of reasoning of [22] in their proof of Lemma 4.1 point (E), we obtain

ρn(u, v)2 =
1
2

Cn(u) +
1
2

C̄n(u) +
1
2

Cn(v) +
1
2

C̄n(v)

− Cn(u ∧ v)− C̄n(u ∧ v).

so the uniform strong consistency of the empirical copula along with Lemma A1
ensures that condition (E) is satisfied a.s. with

ρ(u, v)2 =
1
2

C(u) +
1
2

C̄(u) +
1
2

C(v) +
1
2

C̄(v)

− Cn(u ∧ v)− C̄n(u ∧ v).

It remains to show that the triangular array fni is almost measurable Suslin (AMS). We
verify Kosorok’s separability condition for fni that by Lemma 11.15 of [23] implies AMS.
Analogously to the last part of the proof of Lemma 4.1 in [22], given that πτi (Uni) takes
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values on the grid Tn = {i1/n, . . . , id/n : 0 ≤ ik ≤ 1, k = 1, . . . , d}, it can be shown that for
every v ∈ [0, 1]d

inf
u∈Tn

n

∑
i=1
| fni(u)− fni(v)|2 = 0,

and infimum is attained in u = (bv1nc/n, . . . , bvdnc/n) where bxc is the floor function
applied to x. This condition suffice to prove separability and consequently AMS. By

Theorem 11.16 in [23] Gτ
n

P
 
τ

A and by the conditional continuous mapping theorem

(Theorem 4.1 in [22]) and Equation (A3) Ḡτ
n

P
 
τ
−A. The statement of the theorem follows

from the asymptotic equivalence in Equation (A1).

Appendix A.2. Proof of Lemma 2

Proof. The covariance between BC and BC̄ are the weak limit of the multivariate empirical
processes Gn and Ḡn where

Gn(u) = n−1/2

(
n

∑
i=1

I(Ui ≤ u)− C(u)

)

Ḡn(u) = n−1/2

(
n

∑
i=1

I(1d −Ui ≤ u)− C̄(u)

)

with Ui = (F1(X1i), . . . , Fd(Xdi)) with known marginal distributions Fk, k = 1, . . . , d. The
Covariance between BC and BC̄ is the limit of the covariance between Gn and Ḡn:

Cov(BC(u),BC̄(v)) = lim
n→∞

Cov
(
Gn(u), Ḡn(v)

)
= lim

n→∞

1
n

n

∑
i,j=1

Cov
(
I(Ui ≤ u), I

(
1d −Uj ≤ u

))
.

Because of the independence of Ui and Uj if i 6= j,

lim
n→∞

1
n

n

∑
i,j=1

Cov
(
I(Ui ≤ u), I

(
1d −Uj ≤ u

))
= lim

n→∞

1
n

n

∑
i

Cov(I(Ui ≤ u), I(1d −Ui ≤ u))

= P(1d − v ≤ U ≤ u)− C(u)C̄(v). (A4)

Using Equations (A4), (6) and (8) we obtain

Cov(BC(u)−BC̄(u),BC(v)−BC̄(v))

= C(u ∧ v) + C̄(u ∧ v)

− P(1d − v ≤ U ≤ u)− P(1d − u ≤ U ≤ v)

− (C(u)− C̄(u))(C(v)− C̄(v)).

then underH0 A
d
=

1
2
(BC −BC̄).

Appendix A.3. Proof of Lemma 3

Proof. The proof is analogous to the proof of Lemma 4.3 in [22].
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We introduce the map [29]

Φ :

{
DΦ 7→ `∞[0, 1]d

H 7→ H
(

H−1 , . . . , H−d
) ,

where H−j = inf
{

x ∈ R : Hj(x) ≥ u
}

, u ∈ [0, 1] , DΦ denotes the set of all distribution func-
tions H on [0, 1]p, whose marginal CDFs Hj satisfy Hj(0) = 0, j ∈ {1, . . . , d}. Theorem 2.4
in [29] implies that Φ is Hadamard differentiable at any copula C satisfying under Hypoth-
esis 1, tangentially to

D0 =
{

h ∈ C : h
(
u1, . . . , uj−1, 0, . . . , ud

)
= h(1, . . . , 1) = 0 for all u ∈ [0, 1]d, j = 1, . . . , d

}
,

where C is the space of continuous real valued functions on [0, 1]d. The derivative in the

direction h ∈ D0 is Φ′C(h) = h(u)−
d

∑
j=1

∂C
∂uj

hj
(
uj
)
.

From Equations (5) and (7) to obtain the weak limit

√
n
[

1
2
(Cn + C̄n)−

1
2
(C + C̄)

]
 

1
2
(
C+ C̄

)
, (A5)

We would like to use Equations (14) and (A5) and the conditional delta method
(Theorem 4.2 in [22]) applied to the map Φ to obtain the result. We face the same diffi-
culty experienced in [22]. C̄n and Gτ

n do not have marginals grounded at zero. Letting
D̃ denote the set of CDF on [0, 1]d and we generalize the sequence of maps Λn : D̃ →
Dφ introduced in the latter paper by defining Λn(H)(u) = I

(
u1 ∧ . . . ∧ ud ≥ n−1)H(u).

The rest of the proof follows the line of the proof of Lemma 4.3 in [22] by recogniz-
ing that

∣∣∣Φ(Λn

(
Gτ,η

n

))
− Cτ,η

n

∣∣∣ = O
(
n−1) and

∣∣Φ((1/2(Cn + C̄n)))− 1/2(Cn + C̄n)
∣∣ =

O
(
n−1).

Appendix A.4. Proof of Lemma 4

Proof. According to Lemma 3
√

n
(

Cτ,η
n − C̄τ,η

n

)
P
 
τ

2D. From the work in [29], we have

Φ′C(BC) = C, and from the proof of Proposition 1 in [19] Φ′C̄(BC̄) = C̄, then underH0

Φ′C(BC −BC̄) = Φ′C̄(BC −BC̄) = Φ′C(BC)−Φ′C̄(BC̄) = C− C̄. (A6)

From Lemma 2 and using Equation (A6)D = Φ′C(A) =
1
2

Φ′C(BC −BC̄) =
1
2
(
C− C̄

)
.

Appendix A.5. Proof of Proposition 1

We consider only one multiplier replicate being the generalization to M replicates
straightforward. Under the null and assumption Hypothesis 1, using Lemma Using
Lemma 3, the conditional continuous mapping theorem (Theorem 4.1 in [22]) and a constant
δ > 0, we can write

√
n

(( √
n(Cτ

n − C̄τ
n)

2

Cn + δ/
√

n

)
−
(

0
Cn

))
P
 
τ

(
C− C̄

δ

)
.

By the weak convergence of the empirical copula process the following limit holds true:

√
n
((

0
Cn

)
−
(

0
C

))
 
(

0
C

)
.
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Let C[0, 1]d be the space of function f : [0, 1]d → R that are continuous D[0, 1]d;
the space of cadlag function on [0, 1]d; and BV1[0, 1]d the subspace of D[0, 1]d consist-
ing of the functions with total variation bounded by one. Let us introduce the map
Ψ : `∞[0, 1]d × BV1[0, 1]d −→ R2, defined by

Ψ(α, β) =
∫
(0,1]d

αdβ.

By Lemma 1 in [19] Ψ is Hadamard differentiable tangentially to C[0, 1]d × D[0, 1]d at
each (α, β) in `∞[0, 1]d × BV1[0, 1]d, such that

∫
|dα| < ∞. with derivative given by

Ψ′A,B(α, β) =

(∫
(0,1]d

Adβ +
∫
(0,1]d

αdB
)

.

Then, an application of the conditional delta method (Theorem 4.2 in [22]) gives

n
∫
(0,1]d

(Cτ
n − C̄τ

n)
2d(Cn + δ)− n

∫
(0,1]d

0 dCn
P
 
τ

∫
(0,1]d

0 dδ +
∫
(0,1]d

2DdC,

or equivalently

n
∫
(0,1]d

(Cτ
n − C̄τ

n)
2dCn

P
 
τ

∫
(0,1]d

2DdC.

The statement of the theorem for one replica follows from Lemma 4.
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