Université Blaise 
  
Pascal Ter De Master 
  
Damien Rivet 
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Remarque On sait que domaine naturel de dénition d'une fonction périodique est le cercle.

On anticipe alors la suite en remarquant que le domaine de dénition d'une fonction elliptique est naturellement le tore.

On a les isomorphismes suivants (au sens topologique et algèbrique) :

1 Fonctions elliptiques, dénitions et premiers résultats

Introduction

Les objets de départ de notre étude sont les fonctions elliptiques, ce sont des fonctions méromorphes doublement périodiques (nous en donnons une dénition formelle ci-dessous). Ces objets sont historiquement apparus pour répondre à certaines questions sur les intégrales de la forme 1 √ P où P est un polynôme. Cependant cela n'est pas notre objectif. Le guide de notre exposé est plutôt la curiosité et si l'étude des fonctions periodiques a pu donner une théorie aussi fructueuse que l'analyse de Fourier, ne peut-on pas en espérer autant pour celle des fonctions elliptiques, connaisant en plus l'élégance habituelle de l'analyse complexe ? Cette curiosité sera d'ailleurs rapidement récompensée puisqu'elle nous entrainera vers des résultats surprenants et des endroits improbables tels que la théorie des nombres. Dénition 1. Soit D un ouvert de C, P un ensemble de D sans points d'accumulation, On dit que

f : D → P 1 (C) = C ∪ {∞}
est méromorphe si :

1. La fonction f |D\P est holomorphe 2. Pour tout complexe z ∈ P , z est un pôle de f |D\P . On note f (z) = ∞. Dénition 2. L ⊂ C est appelé réseau de C si L est un sous-groupe additif de C de la forme L = ω 1 Z + ω 2 Z où ω 1 et ω 2 sont des complexes qui ne sont pas R-proportionnels. On dit que (ω 1 , ω 2 ) est une base de L Dénition 3. Une fonction elliptique sur le réseau L est une fontion méromorphe f dénie sur C telle que :

∀ω ∈ L, ∀z ∈ C, f (z + ω) = f (z).
Remarque On observe que ω 1 et ω 2 sont les générateurs de L, on peut donc restreindre la dénition de f avec "ω = ω 1 ou ω = ω 2 " Dénition 4. On note F le parallélogramme F = {z ∈ C, z = t 1 ω 1 + t 2 ω 2 , 0 ≤ t 1 , t 2 ≤ 1} assossié à L. On dit que F est un domaine fondamental du réseau L.

Soit f est une fonction elliptique, si z 1 ≡ z 2 (mod L) alors f (z 1 ) = f (z 2 ) Il est donc naturel de dénir f par :

∀[z] ∈ C/L, f ([z]) = f (z).
Dans la suite on confond souvent f et f , sauf lorsque que des confusions sont possibles. Par exemple lorsqu'on dit que f n'a qu'un seul zéro en a, on sous-entend bien-sûr que cela est vrai modulo L. De même, avant le paragraphe sur les courbes elliptiques, on ne prend pas en compte la structure algébrique de C/L, travailler sur C/L est donc presque équivalent à travailler sur un domaine fondamental. Selon le contexte et pour des raisons de commodité, certaines notations seront préférées à d'autres.

On peut ainsi reformuler la dénition d'une fonction elliptique en disant qu'elle est invariante sous l'action du réseau L. Plus précisément, si l'on considère F un domaine fondamental, f prendra les mêmes valeurs dans tous les domaines F + ω, ∀ω ∈ L. En résumé, connaitre f sur F est susant pour connaitre f sur C tout entier, car on peut prolonger f sur tous les translatés de F, qui pavent le plan.

Les 3 théorèmes de Liouville

Théorème 5. Une fonction elliptique f sans pôle est constante.

Preuve . On note L le réseau assossié à f et F le domaine fondamental assossié.

Grâce à la remarque précédente on obtient que : Preuve . Le premier résultat repose encore sur le fait que F est compact, et donc qu'une famille innie de points possède nécessairement un point d'accumulation. Le second résultat est une application directe du théorème des résidus : Il faut d'abord trouver un domaine fondamental F tel que ∂F ne contient aucun pôle, cela est possible grâce à la compacité de ∂F , en eet, soit {B(z, z , z ∈ F } une famille de boules qui ne cotiennent aucun pôle ailleurs qu'en leur centre (on sait que l'on peut trouver une telle famille grâce au principe de prolongement analytique). On en extrait un sous-recouvrement ni {B(z n , n )} et on note le plus petit des n . F = F + convient. ∂F parcouru dans le sens trigonométrique est un chemin fermé, d'où, Or il sut maintenant de remarquer que f prend les mêmes valeurs sur les côtés opposés de ∂F :

∂F f = ω 1 0 f + ω 1 +ω 2 ω 1 f + ω 2 ω 1 +ω 2 f + 0 ω 2 f.
On a :

ω 1 0 f = - ω 2 ω 1 +ω 2 f ω 1 +ω 2 ω 1 f = - 0 ω 2 f
Grâce aux changements de variable z = z -ω 2 et z = z -ω 1 , qui n'aectent pas les valeurs de f . On a donc ∂F f = 0, on en déduit le résultat.

Remarque Ce résultat se généralise à la somme des résidus sur n'importe quel domaine fondamental F + a car f admet le même résidu sur deux représentants d'une même classe. On peut aussi noter que z∈C Res(f, z) = 0.

Dénition 7. Soit f une fonction elliptique, L'ordre de f en a ∈ C, noté ord(f, a) est l'unique entier n ∈ Z qui vérie que z → (z -a) -n f (z) tend vers un complexe non nul au voisinage de a.

Dénition 8. L'ordre de f est la somme des multiplicités de ses pôles sur le tore C/L, soit P un système de représentant des pôles de f modulo L :

Ord(f ) = - a∈P ord(f, a).
Remarque D'après le premier théorème, si f n'est pas constante : Ord(f ) = 0. De plus, grâce au second théorème, on voit aussi que Ord(f ) = 1, sinon f admettrait un seul pôle d'ordre 1, avec donc un résidu non nul. Théorème 9. Une fonction elliptique f non constante prend chaque valeur le même nombre de fois (y compris la valeur ∞), compté avec multiplicité.

Dire que f prend une valeur donnée b avec multiplicté n est clair si b = 0 ou b = ∞, cependant dans les autres cas, on le dénit clairement en disant que f -b s'annule avec multiplicité n.

Pour démontrer le théorème il va sure de vérier que f a autant de zéros que de pôles (toujours avec multiplicité). En eet si tel est le cas, le résultat s'applique également à la fonction elliptique f -b, or cette fonction admet les mêmes pôles que f .

On démontre d'abord le lemme suivant :

Lemme 10. Soit f une fonction méromorphe sur D ⊂ C, soit a ∈ D :

Res( f f , a) = ord(f, a).
Preuve . Notons n = ord(f, a), on suppose que a est un zéro ou un pôle de f (dans le cas contraire l'énoncé est trivial). Il existe g holomorphe sur D et qui ne s'annule pas en a tel que f (z) = (z -a) n g(z). Il s'ensuit que

f (z) = (z -a) n g (z) + n(z -a) n-1 et donc f (z) f (z) = g (z) g(z)
+ n(z -a) -1 .

Finalement :

Res( f f , a) = Res( g g , a) + Res(z → n(z -a) -1 , a) = n.

Car g est non nulle en a et g est holomorphe.

Remarques 1. La fonction f est elliptique sur le réseau L :

Soit ω ∈ L, z → f (z) = (z → f (z + ω)) = z → f (z + ω).
2. Le quotient de 2 fonctions elliptiques f et g sur un réseau L est elliptique : f (z+ω)

g(z+ω) = f (z) g(z)
.

Notons que comme on travaille avec des fonctions méromorphes, on peut considérer des quotients sans danger. On en déduit que f f est elliptique sur L, ce qui nous conduit à la preuve du théorème :

Preuve . Comme on l'a remarqué précédement, il sut de montrer que f a autant de pôles que de zéros, autrement dit que z∈F ord(f, a) = 0.

On remarque de la somme ne porte en dénitive que sur les zéros et pôles de f . Or, Le théorème précédent nous permet de conclure car on a vu que f f est elliptique sur L.

La fonction ℘ de Weierstrass

Après quatre pages à décrire les propriétés des fonctions elliptiques, il est temps d'en construire au moins une, puisque jusqu'ici les seules que l'on pouvait exhiber était les fonctions constantes. Cependant construire des fonctions elliptiques n'est pas aussi simple que de construire, par exemple, des fonctions periodiques où l'on peut se contenter de recoller par continuité, les fonctions méromorphes ont des propriétés structurelles bien plus restrictives. On va donc utiliser très régulièrement l'outil série par la suite, dont les propriétés s'entendent bien avec celles des fonctions méromophes, pourvu que l'on soit assez minutieux.

Soit L un réseau. un premier essai naïf nous amène à regarder la série :

z → ω∈L 1 z -ω .
A première vue, du fait de la structure de groupe de L, la propriété de périodicité semble être bien respectée. Cependant, cette série est loin d'être normalement convergente, sans quoi nous ne pouvons nous y attarder. De plus un autre argument nous permet de réfuter cet exemple : cette série, si elle convergeait, admettrait un unique pôle simple en 0, ce qu'on sait impossible au vu du théorème 2. Une deuxième tentative, considérons

z → ω∈L 1 (z -ω) 2 .
On va voir dans la suite que cela n'est toujours pas susant.

On énonce deux lemmes qui vont nous être utile par la suite avant de construire notre première fonction elliptique. Soit L un réseau de base (ω 1 , ω 2 ) Lemme 11. Il existe des constantes δ et ∆ strictement positives telles que

∀(n, m) ∈ Z 2 * , ∆(n 2 + m 2 ) ≥ |ω 1 n + ω 2 m| 2 ≥ δ(n 2 + m 2 ). Preuve . Notons f (x, y) = |ω 1 x+ω 2 y| 2
x 2 +y 2 . La fonction f est strictement positive sur

S 1 = {(x, y) ∈ R 2 , x 2 + y 2 = 1} qui est compact. Donc f y admet un minimum δ > 0 et un maximum ∆ > 0. Soit maintenant (x, y) ∈ R 2 non nul, (x, y) = k(x , y ) avec (x , y ) ∈ S 1 et k ∈ R * .
Or,

f (x, y) = k 2 |ω 1 x + ω 2 y | 2 k 2 (x 2 + y 2 ) = f (x , y ) .
Donc δ est un minorant de f sur R 2 * et ∆ un majorant. On particularise à Z 2 * et on résume :

∃δ, ∆ > 0, ∀(n, m) ∈ Z 2 * , ∆(n 2 + m 2 ) ≥ |ω 1 n + ω 2 m| 2 ≥ δ(n 2 + m 2 ).
Lemme 12. La série ω∈L\{0} ω -s converge absolument si et seulement si s > 2.

Preuve . Soit δ et ∆ comme dans le lemme précédent. Notons

L k = {ω ∈ L, ω = nω 1 + mω 2 , max(|ω 1 |, |ω 2 |) = k}
On peut alors observer deux choses :

L 0 = 1 et L k+1 = L k + 8 donc L k = 8k et les L k partitionnent L, observons donc la série k>0 ω∈L k |ω| -s . Soit ω = nω 1 + mω 2 dans L k , on a δ(n 2 + m 2 ) ≤ |ω 1 n + ω 2 m| 2 ≤ ∆(n 2 + m 2 ) et k 2 ≤ (n 2 + m 2 ) ≤ 2k 2 . Donc (δk 2 ) s/2 ≤ (|ω 1 n + ω 2 m| 2 ) s/2 ≤ (∆2k 2 ) s/2 . donc, puisque L k = 8k, 8(2∆) s/2 k -s+1 ≤ ω∈L k |ω| -s ≤ 8(2δ) s/2 k -s+1
La série considérée converge donc si et seulement si s -1 > 1., donc

k≤0 ω∈L k ω -s converge absolument pour s > 2, d'où l'égalité k>0 ω∈L k ω -s = ω∈L\{0} ω -s .
Dénition-Proposition 13. Soit L un réseau, la fonction

℘(z) = 1 z 2 + ω∈L\{0} Ç 1 (z -ω) 2 - 1 ω 2 å ∀z ∈ C \ L ℘(z) = ∞ ∀z ∈ L
dénit une fonction elliptique appelée fonction elliptique de Weierstrass.

Remarque Il ne faut pas oublier que ℘ est assossiée au réseau L, il y a donc autant de fonctions ℘ que de réseaux. Cependant quel que soit le réseau sur lequel on travaille, elle sera toujours implicitement notée ℘, bien qu'une notation rigoureuse serait ℘ L .

Preuve . On va d'abord démontrer que ℘ est méromorphe, soit z dans C \ L, soit ω dans L,

1 (z -ω) 2 - 1 ω 2 = |z||z -2ω| |ω| 2 |z -ω| 2 . Soit r > 0 et K r = D(0, r) \ L, pour tout z dans K r , |z| ≤ r d'où 1 (z -ω) 2 - 1 ω 2 ≤ |r||r -2ω| |ω| 2 |r -ω| 2 .
Supposons |ω| ≥ 2r, on a

|r -2ω| ≤ r + 2|ω| ≤ r + 2|ω| ≤ 3|ω|, |r -ω| ≥ |r| + |ω| ≥ 1 2 |ω|, donc 1 (z -ω) 2 - 1 ω 2 ≤ 6|ω| -3 .

Donc la série

ω∈L\{0} Ç 1 (z -ω) 2 - 1 ω 2 å
converge normalement sur K r \ L car il y a seulement un nombre ni de |ω| < 2r. Cette série dénit donc une fonction holomorphe sur K r , puisque cela est vrai pour tout r, cette fonction est holomorphe sur C \ L. De plus z → 1 z 2 est également holomoprhe sur C \ L. Il en est de même pour ℘. On observe maintenant que ℘ admet des pôles doubles pour chaque ω dans L, ℘ est méromorphe.

Montrer la periodicité de ℘ n'est pas facile directement, on va d'abord s'intéresser à sa dérivée : On dérive terme à terme gâce à la convergence normale :

- 2 z 3 + ω∈L * -2 1 (z -ω) 3 ,
on l'écrit en regroupant les termes :

℘ (z) = -2 ω∈L 1 (z -ω) 3 .
On observe maintenant que :

1. ℘ (-z) = -2 ω∈L 1 (-z-ω) 3 , or le changement de variable ω = -ω nous donne ℘ (-z) = -℘ (z),
℘ est donc impaire, on en déduit directement que ℘ est paire, c'est-à-dire

℘(-z) = ℘(z). 2. Soit ω 0 ∈ L, ℘ (z + ω 0 ) = -2 ω∈L 1 (z + ω 0 -ω) 3 et le changement de varriable ω = ω -ω 0 , nous donne ℘ (z + ω 0 ) = ℘ (z), ℘ est donc elliptique. la fonction z → ℘(z + ω) -℘(z) admet comme dérivée z → ℘ (z + ω) -℘ (z) = 0,
elle est donc constante. Il sut alors de trouver z tel que cette fonction s'annule.

L'élément z := -ω 1 2 n'appartient pas à L, il en est donc de même pourω 1 2 + ω 1 car L est un groupe. On calcule :

℘(- ω 1 2 + ω 1 ) -℘(- ω 1 2 ) = ℘( ω 1 2 ) -℘( ω 1 2 ) = 0.
La fonction z → ℘(z + ω) -℘(z) est donc identiquement nulle pour tout ω ∈ L, ℘ est elliptique.

On a vu que ℘ avait un unique pôle en 0 sur C/L d'ordre 3, grâce au théorème 3, cela nous donne une information sur ses zéros que nous allons exploiter pour montrer que : Proposition 14. Soit a dans C \ L, ℘ (a) = 0 si et seulement si

(2a ∈ L et a / ∈ L).
Preuve . Soit un tel a, ℘ (a) = ℘ (a -2a) car -2a ∈ L, on obtient alors directement par imparité de ℘ que ℘ (a) = -℘ (a), donc que ℘ (a) = 0. Cela nous montre que la condition est susante. Cependant ℘ admet au plus 3 zéros et d'après ce qu'on a dit :

ω 1 2 , ω 2 2 et ω 1 +ω 2 2
sont 3 zéros distincts, donc d'ordre 1, de ℘ . La condition est nécessaire. On relève encore une conséquence directe du théorème 3 :

Proposition 15. Soit z et ω dans C \ L, ℘(z) = ℘(ω) si et seulement si (z ≡ ω (mod L) ou z ≡ -ω (mod L) ).
Preuve . Du fait de la parité de ℘, la condition est nécessaire. De plus, grâce au théorème 3, on sait que ℘ prend une valeur au plus deux fois, la condition est susante.

Remarque Soit

z ∈ C, z ≡ -z (mod L) si et seulement si z = ω 1 2 , ω 2 2 ou ω 1 +ω 2 2 . Ainsi tout z ∈ C \ { ω 1 2 , ω 2 2 , ω 1 +ω 2 2 } admet exactement 2 antécédents par ℘. Les valeurs ω 1 2 , ω 2 2 , ω 1 +ω 2 2 et ∞
admettent chacune un antécédent. La forme que l'on a donné de la fonction ℘ est utile pour comprendre sa nature, mais l'on souhaiterait aussi une formulation plus maniable analytiquement, on va donc calculer son développement en série de Laurent en 0 :

Notons f = z → ℘ -1 z 2 .
f est paire et holomorphe sur un voisinage convenable de 0. On en déduit qu'il existe un disque ouvert U centré en 0 tel que :

∀z ∈ U, f (z) = ∞ n=0 a 2n z 2n et donc ∀z ∈ U, ℘(z) = 1 z 2 + ∞ n=0 a 2n z 2n .
Pour calculer les coecients a 2n , on va utiliser la formule de Taylor :

a 2n = f 2n (0) (2n)! . Puisque f (z) = ω∈L * ( 1 (z-ω) 2 -1 ω 2 )
, donc on a déjà a 0 = f (0) = 0. On dérive ensuite comme on l'a fait pour ℘ et on obtient :

f n (z) = (-1) n (n + 1)! ω∈L\{0} 1 (z -ω) n+2 , nalement, a 2n = (2n + 1)! (2n)! ω∈L\{0} 1 ω 2(n+1) .
On note :

G n (L) = ω∈L\{0} 1 ω n , et on conclut : ∀z ∈ U, ℘(z) = 1 z 2 + ∞ n=0 (2n + 1)G 2(n+1) (L)z 2n .
Les G n sont appelées séries d'Einsenstein et on va s'y intéresser dans la partie suivante.

2 Fonctions de réseaux, fonctions modulaires 

F (λL) = λ -k F (L), ∀L ∈ R et ∀λ ∈ C.
On dit aussi que F est homogène.

Proposition 17. Soit n un entier pair positif, la fonction G n est de poids n.

Preuve . C'est une simple vérication :

G n (λL) = ω∈L\{0} 1 λ n ω n = λ -n G n (L).
L'objectif est maintenant de transformer ces fonctions abstraites en des fonctions méromorphes, que l'on peut étudier analytiquement. On note :

H = {z ∈ C, Im(z) > 0} appelé demi-plan de Poincaré, M = ¶ (ω 1 , ω 2 ) ∈ C 2 , ω 1 ω 2 ∈ H © .
Remarque Pour chaque réseau L, on peut trouver une base (ω 1 , ω 2 ) ∈ M, en eet, soit

(ω 1 , ω 2 ) une base de L, ω 1 et ω 2 ne sont pas proportionnels donc Im( ω 1 ω 2 ) = 0, dès lors, soit Im( 

ω 1 ω 2 ) > 0 et (ω 1 , ω 2 ) convient, soit Im( ω 1 ω 2 ) < 0 et
= aω 1 + bω 2 et ω 2 = cω 1 + dω 2 , avec a, b, c et d ∈ Z, Autrement dit, Ç ω 1 ω 2 å = Ç a b c d å Ç ω 1 ω 2 å .
Cependant comme on peut également exprimer (ω 1 , ω 2 ) dans la base (ω 1 , ω 2 ), on obtient directement que M := 

Ç ω 1 ω 2 å = M Ç ω 1 ω 2 å , Ç ω 1 ω 2 å = N Ç ω 1 ω 2 å . Donc Ç ω 1 ω 2 å = N M Ç ω 1 ω 2 å .
Donc det(M ) ∈ {1, -1}, or M transforme une base de M en une autre base de M, donc il préserve l'orientation, det(M ) = 1.

Cela nous amène a rappeler une notation, SL

2 (Z) = ®Ç a b c d å ∈ M 2 (Z), ad -bc = 1
´, le groupe multiplicatif des matrices à coecients de déterminant 1.

Soit maintenant

(ω 1 , ω 2 ) ∈ M et Ç a b c d å ∈ SL 2 (Z), Ç ω 1 ω 2 å et Ç a b c d å Ç ω 1 ω 2 å engendrent un même réseau : On montre simplement que ω 1 et ω 2 s'expriment dans la base (ω 1 , ω 2 ) , dω 1 -bω 2 = adω 1 + bdω 2 -bcω 1 -bdω 2 = (ad -bc)ω 1 = ω 1 aω 2 -cω 1 = acω 1 + adω 2 -acω 1 -bcω 2 = (ad -bc)ω 2 = ω 2 On résume, Proposition 18. Des éléments (ω 1 , ω 2 ) et (ω 1 , ω 2 ) de M engendrent le même réseau si et seulement si Ç ω 1 ω 2 å ≡ Ç ω 1 ω 2 å (mod SL 2 (Z)).
On va maitenant considérer les réseaux uniquement à homothétie près, c'est-à-dire que deux réseaux L et L seront considérés équivalent si il existe λ ∈ C * tel que L = λL (c'est bien une relation d'équivalence car L = 1.L, L = 1 λ L et si on considère L" = aL , L = aλL").On note R/C * l'espace quotient.

Remarque On va bientôt voir que cet espace n'est pas aussi abstrait qu'il n'y parait puisque c'est en fait une variété de dimension 1 complexe et c'est cette propriété qui va nous conduire aux fonctions complexes que l'on recherche (cela ne sera pas démontré, c'est un résultat donné à titre informatif).

Il en résulte alors que, pour (ω 1 , ω 2 ) ∈ M, le réseau L = ω 1 Z + ω 2 Z est équivalent au réseau

L = Z + ω 1 ω 2 Z car L = ω 2 L . Ainsi à chaque réseau L = ω 1 Z + ω 2 Z
on peut assossier un élément de ω 1 ω 2 de H. Cependant, on ne peut pas le faire de façon unique.

Soit Ç a b c d å ∈ SL 2 (Z), on a vu que (aω 1 + bω 2 )Z + (cω 1 + dω 2 )Z et ω 1 Z + ω 2 Z dénissait le même réseau, mais on n'a pas nécessairement ω 1 ω 2 = aω 1 +bω 2 cω 1 +dω 2 .
On touche alors presque au but, il sut maintenant d'aner M en conséquence. On fait agir SL 2 (Z) sur M de la façon suivante :

∀(ω 1 , ω 2 ) ∈ M, ∀g = Ç a b c d å ∈ SL 2 (Z), g.(ω 1 , ω 2 ) = (aω 1 + bω 2 , cω 1 + dω 2 ) .

C'est bien une action :

Déjà, on vérie que (aω 1 + bω 2 , cω 1 + dω 2 ) est bien dans M :

Im Ç aω 1 + bω 2 cω 1 + dω 2 ) = Im( (aω 1 + bω 2 )(c ω1 + d ω2 ) |cω 1 + dω 2 | 2 å = Im Ç ac|ω 1 | 2 + bc ω1 ω 2 + adω 1 ω2 + bd|ω 2 | 2 |cω 1 + dω 2 | 2 å .
Il sut maintenant de voir que bc ω1 ω 2 + adω 1 ω2 = (ad -bc)ω 1 ω2 et

ω 1 ω2 = ω 1 ω 2 ω 2 ω2 .
Donc de partie imaginaire strictement positive. On anticipe la suite en remarquant que pour z ∈ H, si on particularise ω 1 = z et ω 2 = 1, on obtient

Im Å az + b cz + d ã = Im(z) |cz + d| 2 .
Il reste maintenant à vérier les prérequis d'une action :

Ç 1 0 0 1 å .(ω 1 , ω 2 ) = (ω 1 , ω 2 ), de plus Ç a b c d å Ç e f g h å = Ç ae + bg af + bh ce + dg cf + dh å et Ç a b c d å Ç e f g h å .(ω 1 , ω 2 ) = Ç a b c d å .(eω 1 + f ω 2 , gω 1 + hω 2 ) = ((ae + bg)ω 1 + (af + bh)ω 2 , (ce + dg)ω 1 + (cf + dh)ω 2 ).
Puisqu'on regarde les réseaux à homothétie près, il est naturel d'en faire de même pour les éléments de M, ainsi (ω 1 , ω 2 ) est équivalent à (1, ω 1 ω 2 ). Ce qui nous permet de dénir une application de M/C * dans H via (ω 1 , ω 2 ) → ω 1 ω 2 . De plus l'application z → (z, 1) nous fournit l'application réciproque, on peut donc indentier M/C * à H.

Cela nous permet maintenant de transférer l'action de SL 2 (Z) sur H, que l'on explicite :

∀z ∈ H, ∀g = Ç a b c d å ∈ SL 2 (Z), g.z = az + b cz + d .
On a alors tout ce qu'il faut pour conclure, d'après la proposition 18 la classe d'équivalence d'un réseau

ω 1 Z + ω 2 Z dans R/C * est ® Z + aω 1 + bω 2 cω 1 + dω 2 Z, Ç a b c d å ∈ SL 2 (Z) Ĺ'image
dans M/C * de cette classe est :

® (aω 1 + bω 2 , cω 1 + dω 2 ), Ç a b c d å ∈ SL 2 (Z)
´.

C'est un élément de Soit F une fonction de réseaux de poids k. On a vu que R s'identiait à M/SL 2 (Z) grâce à la proposition 18, on peut donc dénir F comme une fonction sur M homogène et invariante sous l'action de SL 2 (Z).

Notons f : H → C la fonction dénie par f (z) = F (z, 1) On a

F (ω 1 , ω 2 ) = F (ω 2 . ω 1 ω 2 , ω 2 .1) = ω -k 2 f ( ω 1 ω 2 ).
Ainsi, pour tout

Ç a b c d å ∈ SL 2 (Z), f Å az + b cz + d ã = (cz + d) k F (az + b, cz + d) = F (z, 1) = f (z).
Ce qui nous amène à la dénition suivante :

Dénition 19. Soit k un entier pair, On appelle fonction faiblement modulaire de poids k toute fonction f méromorphe sur H qui vérie :

f (z) = (cz + d) -k f Å az + b cz + d ã , ∀ Ç a b c d å ∈ SL 2 (Z).
On va maintenant revenir en détail sur le groupe SL 2 (Z) et son action sur H. Cette action n'est pas dèle, en eet : Dénition 20. Le groupe Γ est appelé groupe modulaire.

Soit g =
On note maintenant Remarques Puisque G est un sous-groupe de Γ, si on prend g dans G, alors on a -g = g.

D = {z ∈ H, - 1 2 ≤ Re(z) ≤ 1 2 et |z| ≥ 1} .
Théorème 21. Preuve . On va démontrer les deux théorèmes simultanément en prouvant d'abord que le premier est vrai si on remplace Γ par G, la démonstration du second nous fournira alors le dernier argument, on introduit au préalable la notation ρ = e iπ/3 . Soit z ∈ H. On rappelle que pour 

Ç a b c d å ∈ Γ, Im Ä az+b cz+d ä = Im(z)
donc g = Ç a b c d å ∈ G tel que Im(g.z) = Im Ä az+b cz+d ä = Im(z)
|cz+d| 2 soit maximal. On peut maintenant translater g.z d'une distance convenable n, ce qui n'aecte pas la partie imaginaire, tel que z = T n g.z soit dans la bande

{z ∈ H, Re(z) ∈ ± 1 2 } et on a bien |z | ≥ 1 car sinon l'élément S.z = -1 z vérirait Im(S.z ) > Im(z ) = Im(g.z)
ce qui contredirait la maximalité de Im(g.z). Cela sut à démontrer 1, T n g.z est un représentant de la classe de z.

Passons à la

2 eme assertion, soit z ∈ D et g = Ç a b c d å ∈ G, Supposons que g.z ∈ D.
Les rôles de (z, g) et (gz, g -1 ) sont symétriques donc quitte à les échanger on peut supposer

Im(g.z) > Im(z), c'est-à-dire que |cz + d| ≤ 1. On a Im(z) > 1 2 donc |Im(cz +d)| > |c| 1 2 donc si on avait |c| ≥ 2 cela donnerait |Im(cz +d)| > 1, donc |c| ≤ 1, ce qui nous laisse trois cas à traiter : cas c=0 : L'élément g est de la forme Ç a b 0 d å donc ad = 1 c'est-à-dire (a, d) = ±(1, 1) qui dans les deux cas g.z = z + b, on obtient imédiatement que b = ±1 et Re(z) = ± 1 2 .
cas c=1 :

On a |Re(cz + d)| = |Re(z) + d| ≤ |cz + d|, mais puisque Re(z) ∈ ± 1 2 , on a nécessairement |d| ≤ 1.

Le cas d=1 nous donne

|z + 1| ≤ 1 donc (Re(z) + 1) 2 ≤ 1 -Im(z) 2 . Puisque z est dans D, Im(z) ≥ √ 3 2 donc Im(z) 2 ≥ 3 4 , d'où (Re(z) + 1) 2 ≤ 1 4 .

Dès lors on obtient

Re(z) + 1 ≤ 1 2 , d'où Re(z) ≤ -1 2 et puisque z est dans D, Re(z) = -1 2 . On a alors Im(z) = √ 3 2 donc z = ρ Si maintenant d=-1, (Re(z) -1) 2 ≤ 1 4 , donc Re(z) -1 ≥ -1 2 donc Re(z) ≥ 1 2 , Re(z) = 1 2 et Im(z) = √ 3 2 donc z = ρ 2 .
Si d=0, g est alors de la forme

Ç a -1 1 0 å ce qui donne |cz + d| = |z| ≤ 1, donc |z| = 1. On a donc -1 z ∈ D et puisque g.z = -1 z + a est dans D, alors a = 0, sauf si Re(z) = ± 1 2 , auquel cas z = ρ ou z = ρ 2 .
cas c=-1 : Puisque (-g).z = g.z, on peut reprendre le cas c = 1 en prennant -g au lieu de g.

Il faut maintenant montrer que Γ = G, autrement dit montrer Γ ⊂ G. Soit g ∈ Γ et z 0 dans l'intérieur de D, on note z = g.z 0 , ce point n'est pas dans D et on a donc montré qu'il existait g ∈ G tel que g .z soit dans D. Ainsi z 0 et g .z = g g.z 0 sont dans la même orbite, donc z 0 = g g.z 0 , il nous reste alors à voir que le stabilisateur de z 0 est trivial : dans la démonstration, on n'a pas supposé z = g.z, on a donc bien montré que si z est dans l'intérieur de D et que g.z aussi, alors g = I. Par conséquent g g = 1, donc g ∈ G, ce qui conclut.

Remarque Lors de cette preuve on a implicitement démontré quelque chose : Si on prend z dans D distinct de i, ρ et ρ 2 , et si il existe g dans Γ tel que g.z est aussi dans D, il y a deux cas possibles : g = T ±1 ou(exclusif) g = S, cela montre que les points z et g.z vont par deux , c'est-à-dire que g.z et z sont les seuls représentants de la classe de z dans D.

On déduit du théorème 22. un critère pour qu'une fonction soit faiblement modulaire :

Proposition 23. Soit f une fonction méromorphe sur H, f est faiblement modulaire de poids k si et seulement si :

f (z + 1) = f (z) f (- 1 z ) = z k f (z) Preuve . La condition est évidemment nécessaire. Soit g = Ç a b c d å ∈ SL 2 (Z) et f méromorphe sur H, notons : f |g (z) = (cz + d) -k f Å az + b cz + d ã .
Notre objectif est d'abord de démontrer que pour g, g ∈ SL 2 (Z),

(f |g = f et f |g = f ) ⇒ f |gg = f.
Soit f une fonction de H, on lui assossie la fonction

F de M vériant F (z, 1) = f (z) et homogène de poids k, ainsi, F est bien dénie car pour tout (ω 1 , ω 2 ) ∈ M F (ω 1 , ω 2 ) = F (ω 2 . ω 1 ω 2 , ω 2 .1) = ω -k 2 f ( ω 1 ω 2 ) .
On note maintenant,

pour g = Ç a b c d å ∈ SL 2 (Z) : F |g (ω 1 , ω 2 ) = F (aω 1 + bω 2 , cω 1 + dω 2 ) = F (g.(ω 1 , ω 2 )).
Si on suppose maintenant que pour g, g ∈ SL 2 (Z),

f |g = f et f |g .
Cela se traduit sur F par les conditions

F |g = F et F |g = F.
Mais puisque l'on sait que (g, (ω 1 , ω 2 )) → (aω 1 + bω 2 , cω 1 + dω 2 ) est bien une action on obtient directement

F |gg = F.
Dès lors,

f |gg = f.

Supposons maintenant que

f (z + 1) = f (z) et f (-1 z ) = z k f (z), cela signie f |T = f et f |S = f , tout élément g de SL 2 (Z)
, s'écrit comme un produit ni de termes de la forme S α et T β . En utilisant alors l'implication que l'on vient de voir à l'aide d'une récurrence, on a

f |g = f, donc f est faiblement modulaire de poids k.

Les fonctions modulaires

Soit f une fonction sur H vériant :

f (z + 1) = f (z)
Soit maintenant z dans la bande verticale B = {z ∈ H, 1 ≤ Re(z) ≤ 2}, la détermination naturelle du logarithme, notée ln, bien dénie sur cet ensemble. On peut alors consiédérer :

f (z) = f • ln(z) 2iπ ce qui donne f (e 2iπz ) = f (z)
Du fait de la relation f (z + 1) = f (z), la fonction f est entièrement déterminée par les valeurs qu'elle prend sur B, considérer f au lieu de f ne fait pas perdre d'information. On a en fait exprimé f comme une fonction f de la variable q = e 2iπz et puisqu'on a composé f avec une fonction holomorphe, f est bien méromorphe. L'image de B par la fonction fonction z → e 2iπz est le disque unité privé de 0, c'est donc l'ensemble de dénition de la fonction f .

Dénition 24. Une fonction faiblement modulaire f est dite modulaire si f est méromorphe à l'inni, c'est-à-dire que f se prolonge en une fonction méromorphe en 0. Si f est holomorphe en 0, on dit que f est holomorphe à l'inni. On note f (∞) = f (0).

On appelle forme modulaire toute fonction modulaire qui est holomorphe partout (y compris à l'inni), si en plus on a

f (∞) = 0,
alors f est appelée forme parabolique.

Remarques Si f est méromorphe en 0, elle admet alors un développement de Laurent au voisinage de l'origine de la forme :

f (q) = ∞ n=-N a n q n .
On peut alors traduire les conditions précédentes sur le développement de Laurent de f , c'est une forme modulaire si les a n sont tous nuls lorsque n est négatif et c'est une forme parabolique si a 0 est nul. Dans la suite on écrira simplement,

f (z) = ∞ n=-N a n q n .
Avant de donner les premiers exemples de formes modulaires, on va en donner une idée intuitive. Comme on l'a vu D est un domaine fondamental, mais il en est aussi de même pour tous les g.D avec g dans Γ(On peut en observer certains sur la gure précédente). Cela semble a priori moins évident sur le dessin que pour les fonctions elliptiques, où les symétries étaient euclidiennes . Ici, on parle de symétries hyperboliques (on ne donnera pas une vraie dénition de ce terme). Il faut donc imaginer les formes modulaires comme prenant des valeurs qui respectent ces symétries, c'est-à-dire qu'une telle fonction prend les mêmes valeurs (à homogénéité près) dans chacun des domaines fondamentaux.

Proposition 25. Soit k un entier pair positif, la fonction G k dénie sur H par

G k (z) = (n,m)∈Z 2 * 1 (nz + m) k , est une forme modulaire de poids k. On a G k (∞) = 2ζ(k) ,
où ζ désigne la fonction Zêta de Riemann qui ici est bien dénie.

Preuve . On commence par noter que G k (z) = G k (z, 1) est bien déni pour tout z dans H.

Soit z dans D, |z| ≥ |i|, d'où 1 (nz + m) k ≤ 1 (ni + m) k .
Or le terme de droite est simplement, pour

L := Z + iZ ω∈L\{0} ω -k .
Puisqu'ici k > 2, le lemme 12 nous assure que cette série converge. Par conséquent G k converge normalement sur D et est donc holomorphe sur D. Soit maintenant z dans H, il existe g ∈ SL 2 (Z) tel que gz soit dans D, par dénition τ → gτ et z → g -1 τ sont des bijections continues réciproques de H. Soit alors U un voisinage de gz tel que G k soit holomorphe sur U , g -1 U est un voisinage de z et pour tout

τ dans g -1 U G k (τ ) = G k|g (τ ) et G k|g est holomorphe sur U donc G k est holomorphe sur g -1 U . En conclusion G k est holo- morphe sur H.
Il reste alors à voir que G k est holomorphe à l'inni. Il faut pour cela regarder le comportement de f lorsque e 2iπz tend vers 0 : e 2iπz = e 2iπRe(z)-2πIm(z) , de plus on peut se restreindre à z ∈ D, ce qui est équivalent à observer f pour Im(z) qui tend vers +∞, on a alors

lim Im(z)→∞ G k (z) = lim Im(z)→∞ m∈Z * 1 m k + lim Im(z)→∞ (n,m)∈Z 2 ,n =0 1 (nz + m) k .

On a de plus lim

Im(z)→∞ 1 (nz+m) k = 0 pour (n, m) ∈ Z 2 , n = 0 et k > 1. On échange limite et somme pour obtenir lim Im(z)→∞ (n,m)∈Z 2 ,n =0 1 (nz + m) k = 0.
Maintenant, sachant que k est pair, on a aussi

m∈Z * 1 m k = 2 m∈N * 1 m k = 2ζ(k). Finalement, f est holomorphe à l'inni et on a bien G k (∞) = 2ζ(k).
Remarques Les séries G k , en plus d'intervenir dans le développement de ℘ vont également être d'une importance capitale pour la connaissance des formes modulaires puisqu'on va voir dans le paragraphe suivant qu'en fait toute forme modulaire (de poids au moins 4) s'exprime comme un polynôme en G 4 et G 6 .

L'espace des formes modulaires

Le théorème suivant est un outil fondamental pour classer les fonctions modulaires, par la suite on y fera référence par l'appellation formule k 12 .

Théorème 26. Soit f une fonction modulaire de poids k non nulle. On a

ord(f, ∞) + 1 2 ord(f, i) + 1 3 ord(f, ρ) + p ord(f, p) = k 12 .
où la somme porte sur un système de représentant des classes modulo Γ privé des classes de i et de ρ.

Notons que f est dénie sur un compact, elle a donc un nombre ni de pôles et de zéros, il en est donc de même pour f , la somme considérée peut donc être vue comme nie puisqu'on peut négliger tous les p qui ne sont ni des zéros, ni des pôles.

Preuve . La démonstration va essentiellement consister en un calcul de résidus, il faut donc d'abord trouver un contour convenable. Il existe un voisinage de zéro D(0, r) tel que f ne contient ni zéro, ni pôle autre que 0. Ce voisinage correspond pour f à un voisinage de l'inni , de la forme {z ∈ H, Im(z) > e 2πr }, ainsi :

D = {z ∈, Im(z) ≤ e 2πr },
contient tous les zéros et pôles de f contenu dans D donc contient un représentant de chaque pôle modulo Γ de f f . On va maintenant considérer C, le contour de D parcouru dans le sens trigonométrique, où l'on contourne des voisinages de i, ρ et ρ 2 d'un même rayon qui ne contiennent ni zéro, ni pôle, autres que i, ρ et ρ 2 , axes repestifs des points notés I, R et R. On s'appuie sur la gure suivante qui représente C pour les notations :

On suppose dans un premier temps que ∂D ne contient ni zéro, ni pôle de f , on a vu que :

1 2iπ C f f = p ord(f, p)
où la somme est indexée comme précédemment. Via le changement de variable z = T.z, comme

f f est 1-periodique on a, AB f f + B A f f = 0.
Le changement de variable q = e 2iπz transforme le segment A A en le cercle C(0, r) parcouru dans le sens anti-trigonométrique :

A A = {z, -1/2 ≤ Re(z) ≤ 1/2 et Im(z) = e 2πr }, son image est donc {e 2iπz , -1/2 ≤ Re(z) ≤ 1/2 et Im(z) = e 2πr } = {ke 2iπθ , -1/2 ≤ θ ≤ 1/2 et k = r} = C(0, r).
De plus, lorsque Re(z) décroit, son image se déplace bien dans le sens antitrigonométrique. On peut maintenant voir que :

A A f f = AB f f = ∂C(0,1) f f = -ord(f, ∞),
où le signe -provient du sens d'intégration. Sur le disque unité, S agit comme la conjugaison, donc l'image par S de CD est C D (le symétrique par rapport à l'axe des ordonnées). Grâce à cela on va pouvoir calculer

ĈD f f ,
En fonction de la même intégrale sur D C grâce au changement de variable z = Sz. Il faut cependant voir ce qu'il advient de f f par ce changement de variable :

f (S.z) = f (-1/z) = z k f (z) et donc f (S.z) = z k f (z) + kz k-1 f (z), ce qui donne f f (S.z) = f f (z) + k z . Finalement, ĈD f f + D C f f = C D f f (S.z)dz + D C f f .
Donc,

1 2iπ ĈD f f + 1 + 2iπ D C f f = C D - k z .
De plus lorsque l'on fait tendre vers 0, D C tend vers ĪR , qui représente 1 12 me de cercle :

lim →0 Ö - 1 2iπ ĈD f f + 1 2iπ D C f f è = ÎR - k z = -k(- 1 12 ) = k 12 .
Le signe -vient encore une fois du fait qu'on intègrek z dans le sens anti-trigonométrique. Il faut maintenant vérier que lorque tend vers 0 :

1 2iπ BC f f → - 1 6 ord(f, ρ 2 ), 1 2iπ C B f f → - 1 6 ord(f, ρ), 1 2iπ DD f f → - 1 2 ord(f, i).
On va démontrer le premier cas, l'argument est le même pour les autres. On considère la tangente au cercle en R et on note C" son intersection avec C, on a

1 2iπ BC f f = 1 2iπ BC" f f + 1 2iπ C"C f f .
Maintenant on peut voir que le premier terme ne dépend pas de et :

1 2iπ BC" f f = - 1 6 ord(f, ρ),
car cela se résume à intégrer le résidu de f f sur 1 6 e de cercle, qui n'est autre que z → ord(f,ρ) z . La longueur de l'arc CC" est donc de l'ordre d'un o( ) alors que la longueur ρ 2 C" est ( la mesure de l'angle tend vers 0 ) donc on a bien

1 2iπ CC" f f → 0.
Si l'on récapitule en mettant les intégrales bout à bout et en faisant tendre vers 0, on a obtenu :

1 2iπ C f f = k 12 .
Mais comme Cependant on n'a pas encore tout à fait terminé puisqu'on avait supposé au départ que ∂D ne contenait ni zéro ni pôle, supposons alors qu'il en ait. Soit z un tel point distinct de i, ρ ou ρ 2 , tel que Re(z) ± 1 2 , on peut supposer que Re(z) = -1 2 du fait de la symétrie des rôles de z et T z, on modie le contour C de la façon suivante : Tous les contours des points singuliers sont des arcs de cercle d'un même rayon (on ignore pour l'instant le point u, C n'est pas encore supposé modié sur C(0, 1)). On remarque que la partie A B de C est l'image par T de la partie AB, puisque f f est invariante par T , on a encore

1 2iπ C f f = ord(f, ∞) + 1 2 ord(f, i) + 1 6 ord(f, ρ) + 1 6 ord(f, ρ 2 ) +
AB f f + B A f f = 0.
Les intégrales sur les autres morceaux de C ne sont pas modiés, on trouve alors toujours

C f f = k 12 .
Mais désormais, z est à l'intérieur de C, d'où :

ord(f, ∞) + 1 2 ord(f, i) + 1 3 ord(f, ρ) + ord(f, z) p∈ • D ord(f, p).
De plus le seul autre représentant de la classe de z et z + 1, qui n'est pas à l'interieur de C. Soit maintenant u un pôle de f f dans D tel que |z| = 1, on modie alors C comme sur la dernière gure. Les contours de points singuliers sont des arcs de cercle de rayon , sauf le contour de u qui est de rayon , donc celui de S.u, qui est l'image de l'arc de cercle contournant u, admet un rayon qui est un O( . Construit de cette façon, la partie CD est bien l'image par S de la partie D C et comme précédemment, lorsque τ parcoure CD de gauche à droite, Sτ parcoure D C de droite à gauche, on a donc

1 2iπ ĈD f f + 1 2iπ D C f f = ĈD k z .
Cependant CD n'est pas ici un arc de cercle. On calcule alors les autres morceaux de l'intégrale de la même façon que précédemment et on prend la limite sur pour obtenir

ord(f, ∞) + 1 2 ord(f, i) + 1 3 ord(f, ρ) + ord(f, u) + p∈ • D ord(f, p) = R I k z .
On prend maintenant la limite sur pour obtenir

ord(f, ∞) + 1 2 ord(f, i) + 1 3 ord(f, ρ) + ord(f, u) + p∈ • D ord(f, p) = k 12 .
De plus u est le seul représentant de sa classe dans l'intérieur de C. On conclut la preuve en remarquant qu'on a traité tous les cas, car [A, A ] a été choisi pour ne pas contenir de pôle de f f . Ensuite, puisque ∂D est compact, il ne contient qu'un nombre ni de pôles de f f , ainsi, on peut recommencer le deux dernières étapes autant de fois que nécessaire.

Dénition 27. Soit k un entier pair, On note M k le C-espace vectoriel des formes modulaires de poids k.

M 0 k celui des formes paraboliques de poids k.

Remarque Ce sont bien des espaces vectoriels : La fonction nulle est trivialement une forme parabolique, de plus la somme de deux formes modulaires est bien une forme modulaire et les valeurs en l'inni s'additionnent normalement par dénition, idem pour la multiplication externe.

Soit k un entier pair. Rappelons d'abord qu'une forme modulaire f n'a pas de pôle, donc on a toujours ord(f, p) ≥ 0, donc si k est strictement négatif, la formule k 12 assure qu'il ne peut exister de forme modulaire de poids négatif, on suppose donc désormais k poitif. On peut voir que les fonctions constantes sont des formes modulaires de poids 0, dim(M 0 ) > 0. Supposons maintenant k strictement positif, l'existence de la fonction

G k implique dim(M k ) > 0. Soit φ la forme linéaire sur M k dénie par f → f (∞), on a ker(φ) = M 0 k . Sachant que φ(G k ) = 0 et donc que Im(φ) = {0}, le théorème du rang nous permet de dire que dim(M 0 k ) = dim(M k )-1. Considérons l'espace C.G k , il est de dimension 1 et G k (∞) = 0 donc C.G k ∩ M 0 k = 0, d'où M k = M 0 k ⊕ C.G k
Il serait également commode de connaitre une forme parabolique, nous allons donc en construire une non trivale, de poids le plus petit possible. Notons d'abord que le produit de deux fonctions modulaires f et g de poids respectifs k et k est une forme modulaire de poids k + k :

f g(z) = (cz + d) -k f Å az + b cz + d ã f (z)(cz + d) -k g Å az + b cz + d ã = (cz + d) -(k+k ) f g Å az + b cz + d ã
On va donc utiliser les fonctions G 4 et G 6 qui sont les formes modulaires de plus petits poids qu'on connaisse. Notons

g 2 = 60G 4 , g 3 = 140G 6 .
Par suite,

g 2 (∞) = 4 3 π 4 et g 3 (∞) = 8 27 π 6 .
Si on pose

∆ = g 3 2 -27g 2 3 .
On obtient ∆(∞) = 0 de plus c'est une forme modulaire de poids 12, c'est une forme parabolique.

Théorème 28. Soit k un entier pair positif

1. On a M k = 0 pour k < 0 et k = 1 2. Pour k = 0, 4, 6, 8, 10 M k est de dimension 1 admettant respectivement pour base 1, G 4 , G 6 , G 8 , G 10 et M 0 k = 0.

L'application

f → ∆f dénit un isomorphisme de M k sur M 0 k+12 . Preuve . Prouvons d'abord le point 1., soit f dans M k . On a déjà vérié le premier point, rappelons que si f est non nulle :

ord(f, ∞) + 1 2 ord(f, i) + 1 3 ord(f, ρ) + p ord(f, p) = k 12 .
Si k = 2, il est impossible d'écrire 

M k = M 0 k ⊕ C.G k , on a bien les dimensions annoncées pour M 4 , M 6 , M 8 et M 10 . Considronsmaintenantφ = f → ∆f . Soit f ∈ M k , φ(f ) est une forme modulaire de poids k + 12 et φ(f )(∞) = f (∞)∆(∞) = 0. On note ψ = f → f ∆ .
Avant de montrer que c'est l'application réciproque de φ, on va vérier qu'elle est bien dénie. Comme on l'a vu, la formule k 12 nous donne que ord(∆, ∞) = 1 et que l'inni est son seul zéro. Aussi si l'on prend f dans M 0 k+12 , f s'annule à l'inni avec l'ordre au moins 1, donc ψ(f ) est bien holomorphe à l'inni. Il est maintenant évident que Il reste à voir pour un entier pair k,

ψ • φ = id et φ • ψ = id.
dim(M k+12 ) = dim(M k ) + 1
Cependant on sait que

dim(M k ) = dim(M 0 k+12 ) = dim(M k+12 ) -1 .
Corollaire 30. L'espace M k admet pour base :

{G α 4 G β 6 , 4α + 6β = k , α, β ∈ N.
Preuve . Pour montrer que cette famille engendre bien M k , c'est encore une récurrence : Elle engendre bien M k pour k ≤ 10 puisque M k est de dimension 1. Soit maintenant k un entier pair positif, supposons que la famille engendre M k . On note k = k + 12. Soit f ∈ M k , soit k 2 est pair, auquel cas on peut écrire k = 4α sinon, k 2 -3 est pair et donc on peut écrire k = 4α + 6, en conclusion il existe α et β tel que k = 4α + 6β. On considère alors g = G α 4 G β 6 qui est de poids k . Il existe un complexe λ tel que f -λg soit parabolique, grâce à l'isomorphisme qu'on a exhibé plus haut, on sait qu'il existe h ∈ M k tel que f -λg = ∆h, réécrivons cette égalité comme suit :

f = ∆h -λg.
On remarque alors que les termes du membre de gauche s'expriment bien en fonction des On veut s'assurer que cette famille est libre, soient alors des complexes ω α,β tel que

G α 4 G β 6 , 4α + 6β = k }, c
α,β ω α,β G α 4 G β 6 = 0.
Si on multiplie maintenant cette égalité par

G k/2 4 G k/2 6 : α,β ω α,β G α 4 G β 6 G 2α+3β 4 G 2α+3β 6 = α,β ω α,β Ç G 3 4 G 2 6 å α+β = 0.
Mais si on prend (α, β) et (α , β ) des couples distincts, on a

4(α -α ) + 6(β -β ) = 0. On en déduit α -α = β -β et donc α + β = α + β .
Si on suppose par l'absurde la combinaison linéaire précédente non triviale, il existe un couple unique (α, β) qui maximise α + β, dont le coecient ω α,β est non nul, puisque G 6 s'annule en i

et non G 4 , G 3 4 G 2 6
α+β admet un pôle, d'ordre supérieur aux éventuels pôles du membre de gauche, donc le membre de gauche admet un pôle, ce qui est absurde. La combinaison linéaire est triviale. La famille considérée est donc libre et génératrice.

On a obtenu des réponses satisfaisantes à nos question sur les séries G 4 et G 6 , il est temps maintenant de revenir aux fonctions elliptiques pour lesquelles il reste encore beaucoup de questions en suspens.

3 Courbes elliptiques

Le corps des fonctions elliptiques

Soit L un réseau, on note K(L) l'ensemble des fonctions elliptiques sur L. On a vu que la fonction nulle est elliptique sur L, la somme et la diérence de deux fonctions elliptiques sur L est elliptique, idem pour le produit et le quotient par une fonction ellitique non-nulle. Résumons : Proposition 31. K(L) est un corps.

Il s'agit maintenant de décrire ce corps avec précision, le lemme suivant est un bon début : Lemme 32. Soit f une fonction elliptique paire, dont tous les pôles sont contenus dans L. La fonction f s'exprime comme un polynôme en ℘ :

∃P ∈ C[X], f = P (℘).
Preuve . Soit une fonction f supposée comme dans l'énoncé, puisque ses pôles sont tous contenus dans L, par periodicité, ils sont tous de même ordre, noté 2n. On va raisonner par récurrence sur n. Si n = 0, f est constante du fait du premier théorème de Liouville. Soit maintenant n dans N, supposons que pour tout k < n toute fonction comme précédemment dont l'ordre du pôle est 2k s'exprime en polynôme de ℘. Soit maintenant une telle fonction f dont le pôle est d'ordre 2n. On rappelle que sur un disque U centré en 0 de rayon convenable et puisque f est paire,

℘(z) = 1 z 2 + ∞ n=0 a 2n z 2n , f (z) = b -2n z -2n + b -2(n-1) z -2(n-1) + • • • + ∞ n=0 b 2n z 2n .
Mais on remarque que ℘(z) n -1 z 2n a un pôle d'ordre au plus 2(n -1) en 0. Ainsi, la fonction

f -b -2n ℘(z) n .
est une fonction elliptique paire dont les pôles sont contenus dans L et son pôle en 0 est d'ordre au plus 2(n -1), il en est donc de même pour tous ses pôles. D'après l'hypothèse de récurrence, f -b -2n ℘(z) n s'exprime comme un polynôme en ℘, il en est donc de même pour f . Ce résultat est prometteur, mais très restreint, le résultat suivant l'élargit :

Lemme 33. Soit f une fonction elliptique paire. La fonction f s'exprime comme une fraction rationnelle en ℘ :

∃R ∈ C(X), f = R(℘)
Preuve . Soit f une fonction elliptique paire, si f admet uniquement des pôles dans L, la fonction rationnelle est simplement un polynôme et le lemme précédent conclut. On raisonne maintenant sur le cardinal n de l'ensemble des pôles de f dans le quotient C/L autre que 0, le cas n = 0 vient d'être traité. Supposons que le résultat est vrai pour toute fonction qui admet n -1 pôles autre que 0 dans C/L et prenons f une telle fonction qui en admet n. Soit a un pôle qui n'est pas contenu dans L, d'ordre noté k. La fonction ℘ prend une valeur nie en a, donc z → (℘(z) -℘(a)) k s'annule à l'ordre (au moins) k donc

g = z → (℘(z) -℘(a)) k f (z)
prend une valeur nie en a, la fonction g n'a donc plus de pôles dans L + a et a donc seulement n -1 pôles dans C/L. Autrement dit g s'exprime g = R(℘). En résumé :

f (z) = R(℘(z)) (℘(z) -℘(a)) k
et le membre de droite est bien une fraction rationnelle en ℘. On a alors l'outil susant pour expliciter le corps K(L) : Théorème 34. Le corps des fonctions elliptiques sur L est de la forme :

K(L) = C(℘) + ℘ C(℘).
Autrement dit toute fonction elliptique f s'exprime

f = R(℘) + ℘ S(℘),
où R et S sont des fractions rationnelles.

Preuve . Soit f une fonction elliptique, il est connu que la relation

f (z) = f (z)+f (-z) 2 + f (z)-f (-z) 2
fournit une expression de f de la forme f = p + i, où p est une fonction paire et i impaire et ces fonctions sont bien elliptiques. On peut réécrire cette relation

f = p + ℘ i ℘ .
Or i ℘ est une fonction elliptique paire comme quotient de deux fonctions impaires, il existe donc des fractions rationnelles R et S telle que p = R(℘) et i ℘ = S(℘).

La fonction ℘2 est paire, on va donc tâcher de l'exprimer en fonction de ℘. Toujours sur un voisinage U de 0, on donne le début du développement de ℘ :

℘(z) = z -2 + 3G 4 z 2 + 5G 6 z 4 + o(z 5 ).
En dérivant :

℘ (z) = -2z -3 + 6G 4 z + 20G 6 z 3 + o(z 4 ).
C'est susant pour obtenir le début du développement de ℘ 2 puis de ℘3 

℘ 2 (z) = z -4 + 6G 4 + 10G 6 z 2 + o(z 2 ), ℘ 3 (z) = z -6 + 9G 4 z -2 + 15G 6 + o(1) et enn ℘ 2 (z) = 4z -6 -24G 4 z -2 -80G 6 + o(z).
On peut nalement voir que

℘ 2 (z) -4℘(z) 3 = -60G 4 z -2 -140G 6 + o(1).
On peut se permettre d'ajouter 60G 4 ℘(z) = 60G 4 z -2 + o(1) pour obtenir :

℘ 2 (z) -4℘(z) 3 + 60G 4 ℘(z) = -140G 6 + o(1)
Le terme de gauche est une fonction elliptique mais le terme de droite n'a pas de pôle ! ℘ 2 (z) -4℘(z) 3 + 60G 4 ℘(z) est donc constant sur U . C'est donc vrai sur C. On rappelle qu'on avait noté dans le cadre des formes modulaires : g 2 = 60G 4 et g 3 = 140G 6 et ici on considèrera implicitement g 2 = g 2 (L) et g 3 = g 3 (L). En conclusion : Théorème 35. Les fonctions ℘ et ℘ sont liées par la relation :

℘ 2 = 4℘ 3 -g 2 ℘ -g 3 .
Remarque On remarque que le discrimant de l'équation n'est autre que g 3

Les courbes elliptiques anes et projectives

Observons maintenant X = {(x, y) ∈ C 2 , y 2 = 4x 3 -g 2 x -g 3 }qu'on appelle courbe elliptique ane. Naturellement, on se demande si on peut dénir une bijection entre le tore C/L et X. On va d'abord voir que : Proposition 36. L'application

C/L \ {0} -→ X [z] -→ (℘(z), ℘ (z))
est une bijection.

Preuve . Pour la surjectivité :

Soit (u, v) ∈ X.
On a vu qu'une fonction elliptique non-constante était surjective (troisième théorème de Liouville), donc il existe z ∈ C tel que ℘(z) = u et du fait de l'équation liant ℘ et℘ , on obtient que

℘ (z) 2 = v 2 . Dès lors, soit ℘ (z) = v, dans ce cas, [z] est un antécédent de (u, v). Soit ℘ (z) = -v et on remarque que ℘ (-z) = v et ℘(-z) = u donc [-z] est un antécédent de (u, v). L'application est surjective. Pour l'injectivité : Soit [z] et [ω] dans C/L tels que ℘([z]) = ℘([ω]) et ℘ ([z]) = ℘ ([ω])
La première égalité nous assure que (proposition 14)

z ≡ ω (mod L) ou z ≡ -ω (mod L)
Il faut donc montrer que nécessairement z ≡ ω (mod L). Supposons que z ≡ -ω (mod L) , on a On cherche maintenant un moyen de trouver une bijection avec C/L tout entier, or puisque 0 est un pôle de ℘ et ℘ , on peut imaginer que si on prolonge la bijection qu'on vient d'exhiber, 0 serait envoyé à l'inni . C'est donc dans le plan projectif complexe que l'on va pouvoir dénir cela convenablement. On dénit une action de

C * sur C 3 par ω.(z 1 , z 2 , z 3 ) = (ωz 1 , ωz 2 , ωz 3 ).
Dénition 37. On appelle plan projectif complexe

P 2 (C) = C 3 /C * .
C'est l'ensemble des droites vectorielles de C 3 .

Dénition-Proposition 38. Le sous-ensemble de P 2 (C)

A 2 (C) = {[z] ∈ P 2 (C), z = (z 0 , z 2 , z 3 ) avec z 0 = 0}
est appelé plan-ane complexe et il est en bijection avec C 2 . Remarque On n'introduit pas cette notion par hasard, puisque [tz 1 , tz 2 , tz 3 ] = [z 1 , z 2 , z 3 ] il est naturel de demander que P (tz 1 , tz 2 , tz 3 ) = 0 équivale à P (z 1 , z 2 , z 3 ) = 0. L'homogénéité est donc une bonne réponse à cette contrainte. Dénition 41. On appelle courbe plane projective tout sous-ensemble X de P 2 (C) de la forme X{[z] ∈ P 2 (C) P (z) = 0} où P est un polynôme homogène.

Revenons maintenant à notre courbe elliptique X = {(x, y) ∈ C 2 , 2 = 4x 3 -g 2 x -g 3 }. On veut la prolonger en une courbe projective. Notons P = Z 2 2 -4Z 3 1 -g 2 Z 1 -g 3 . On dénit le polynôme homogénéisé assossié à P

P = Z 0 Z 2 2 -4Z 3 1 -g 2 Z 1 Z 0 2 -g 3 Z 3 0
(On a simplement complété chaque monôme pour qu'il soit du degré de P).

On note

X = {[z] ∈ P 2 (C) P (z) = 0}.
Remarque Toutes ces notions ont été indroduites dans le cadre très restreint des courbes planes, cependant elles se généralisent facilement en dimensions plus grandes. L'application φ (cf. preuve de la proposition 38), permet de regarder X comme sous-ensemble de P 2 (C), on note le fait suivant : Proposition 42. La courbe X prolonge X :

φ(X) = X ∩ A 2 (C) et X \ A 2 ne contient qu'un seul point, [0, 0, 1]. Preuve . Soit (z 1 , z 2 ) ∈ X, φ(z 1 , z 2 ) = [1, z 1 , z 2 ] et on a bien que P ([1, z 1 , z 2 ]) = z 2 2 -4z 3 1 - g 2 z 1 -g 3 = 0 et si on prend [z 0 , z 1 , z 2 ] dans X ∩ A 2 , ψ([z 0 , z 1 , z 2 ]) est dans X. On a bien φ(X) = X ∩ A 2 (C). Soit maintenant z ∈ X \ A 2 , z appartient donc à P 2 (C) \ A 2 (C), z est de la forme z = [0, z 1 , z 2 ] et P ([0, z 1 , z 2 ]) = 4z 3 1 = 0 donc z 1 = 0 et z = [0, 0, z 2 ] = [0, 0 , 1] 
. On en sait maintenant assez pour conclure : Théorème 43. L'application

C/L -→ X [z] -→ ® [1, ℘(z), ℘ (z)] si z ∈ C \ L [0, 0, 1] si z ∈ L est une bijection.
Remarques On parle de la courbe elliptique X mais il faut se rappeler qu'elle est associée à un réseau L et dépend donc des paramètres g 2 (L) et g 3 (L), il existe donc (au moins) autant de courbes elliptiques que de réseaux. Le fait que C/L était jusque là assez anectodique , et ne servait qu'à simplier l'ensemble de dénition d'une fonction elliptique, cependant C/L ≈ S 1 × S 1 possède une structure de groupe abélien, que l'on va pouvoir transférer aux courbes elliptiques projectives.

Théorème d'addition sur les courbes elliptiques

Appelons Φ l'application précédente, comme on vient de le dire on peut dénir une structure de groupe abélien sur la courbe X de la façon suivante, étant donnés a, b dans X :

a + b = Φ(Φ -1 (a) + Φ -1 (b)).
Puisque maintenant Φ est un morphisme, on note O = [0, 0, 1] = Φ(0) l'élément neutre, il se situe donc à l'inni. On va maintenant donner un sens géométrique à tout cela avant d'énoncer le théorème d'addition.

Dénition 44. Une partie D de P 2 (C) est appelée droite projective, si elle est de la forme

D = {P (λ, µ) := [λz 0 + µω 0 , λz 1 + µω 1 , λz 2 + µω 2 ], (λ, µ) ∈ C 2 * } où [z 0 , z 1 , z 2 ] et [ω 0 , ω 1 , ω 2 ] sont des points de P 2 (C).
Proposition 45. P 1 (C) et D sont en bijection, en eet considérons

[λ, µ] → P (λ, µ)
Preuve . Cette application est visiblement surjective. Montrons qu'elle est injective : Soit [λ, µ] et [x, y] tels que P (x, y) = P (λ, µ), il existe donc k complexe tel que :

     λz 0 + µω 0 = k(xz 0 + yω 0 ) λz 1 , µω 1 = k(xz 1 + yω 1 ) λz 2 , µω 2 = k(xz 2 + yω 2 ) c'est-à-dire :      (λ -kx)z 0 = (ky -µ)ω 0 (λ -kx)z 1 = (ky -µ)ω 1 (λ -kx)z 2 = (ky -µ)ω 2 Or [z 0 , z 1 , z 2 ] et [ω 0 , ω 1 , ω 2 ] sont distincts donc (λ -kx) ou (ky -µ) est nul, mais ils sont donc tous deux nuls et on a (λ, µ) = k(x, y) donc [λ, µ] = [x, y], l'application est injective. Soit [z 0 , z 1 , z 2 ], [ω 0 , ω 1 , ω 2 ] et [τ 0 , τ 1 , τ 2 ],
3 points de P 2 (C), dire qu'ils sont alignés, signie qu'ils appartiennent à une même droite projective. Il existe (λ, µ) ∈ C 2 * tels que :

[τ 0 , τ 1 , τ 2 ] = [λz 0 + µω 0 , λz 1 + µω 1 , λz 2 + µω 2 ].
Cela signie qu'il existe k tel que

(τ 0 , τ 1 , τ 2 ) = kλ(z 0 , z 1 , z 2 ) + kµ(ω 0 , ω 1 , ω 2 ).
Ce qui est équivalent à dire que ces trois vecteurs sont linéairements dépendants :

det Ö z 0 z 1 z 2 ω 0 ω 1 ω 2 τ 0 τ 1 τ 2 è = 0.
On énonce maintenant une première implication du théorème d'Abel dont on utilise par la suite, qu'une seule implication. La réciproque n'est pas démontrée, on peut en trouver une preuve dans [START_REF] Eberhard | Complex Analysis[END_REF].

Théorème 46. (Abel) Il existe une fonction elliptique f , dont les zéros sont a 1 , ..., a n et les pôles b 1 , ..., b n , si et seulement si :

a 1 + ... + a n ≡ b 1 + ... + b n (mod L).
Preuve . (de la première implication) Soit f une fonction elliptique dont les zéros et les pôles sont notés comme dans l'énoncé. Remarquons d'abord que tous les zéros et pôles considérés dans l'énoncé sont de multiplicité 1 et reviennent éventuellement plusieurs fois, le troisième théorème de Liouville nous assure alors qu'il y en a le même nombre. Notons g(z) = z f (z) f (z) , Soit p un zéro ou un pôle de f non nul, comme on l'a vu, f a un developpement de Laurent au voisinage de a de la forme :

f (z) f (z) = ord(f, p) (z -p) + o(1)
donc, toujours au voisinage de p

g(z) = z ord(f, p) (z -p) + o(1)
et res a (g) est simplement la valeur en 0 de (z -p)g(z), qui est p.ord(f, p). Soit maintenant un domaine fondamental F a := F + a tel que ∂F a ne contient pas 0 et pas de zéros ni de pôles de f , la première condition nécessite juste une translation susamment grande, la seconde a déjà été observée en détail dans la preuve du théorème 2. Il s'ensuit que

I := 1 2iπ ∂Fa g = a 1 + ... + a n -b 1 -... -b n
Pour démontrer le théorème, il s'agit maintenant de montrer que I ∈ L, on va même montrer I = 0, une stratégie est pour cela est de montrer que

I 1 = 1 2iπ a+ω 1 a g + 1 2iπ a+ω 2 a+ω 1 +ω 2 g = 0 .
La symétrie des rôles de ω 1 et ω 2 permet alors de conclure. Remarquons que

a+ω 2 a+ω 1 +ω 2 g(z)dz = a a+ω 1 g(z + ω 2 )dz .

Puis que

g(z) -g(z + ω 2 ) = -ω 2 f (z) f (z) .
On peut donc écrire

I 1 = -ω 2 1 2iπ a+ω 1 a f (z) f (z) dz .
Maintenant, puisque ∂F a ne contient ni zéro, ni pôle, il en est de même pour [a, a + ω 1 ]. Grâce au principe du prolongement analytique, il existe un ouvert U contenant [a, a + ω 1 ] et sans zéro ni pôle de f , on peut même choisir U étoilé (par exemple, un rectangle). Dès lors on considère h une primitive de z → 1 z . La fonction h • f est donc une primitive de f (z) f (z) , d'où

a+ω 1 a f (z) f (z) dz = h(f (a + ω 1 )) -h(f (a)) = 0
Il s'ensuit que I = 0.

On peut maintenant énoncer le thèorème suivant, qui donne une interprétation géométrique de la struture de groupe sur la courbe elliptique X. 

a = [1, ℘(u), ℘ (u)], b = [1, ℘(v), ℘ (v)] et c = [1, ℘(z), ℘ (z)].
On a vu que a, b et c étaient alignés si et seulement si

f (z) := det Ö 1 ℘(u) ℘ (u) 1 ℘(v) ℘ (v) 1 ℘(z) ℘ (z) è = 0.
Il s'agit maintenant de trouver les zéros de f , ce qui va être facile car f est elliptique ! Le développement par rapport à la première ligne nous donne

f (z) = (℘(u)℘ (u) -℘(u)℘ (v)) -℘(z).(℘ (u) -℘ (v)) + ℘ (z).(℘(u) -℘(v))
Supposons dans un premier temps que ℘ (u) -℘ (v) = 0 : La fonction f admet un unique pôle en 0 modulo L, d'ordre 3 et en regardant f sous forme de déterminant, on voit que u et v sont des zéros de f . Soit z le troisième zéro de f (Rappel : en prenant compte la multiplicité, on pourrait avoir z = u ou z = v). Le théorème d'Abel implique que :

u + v + z ∈ L donc [u] + [v] + [z] = 0 La réciproque suit le même principe, si [u] + [v] + [z] = 0 alors f s'annule et a, b et c sont bien alignés. Est-il possible d'avoir ℘ (u) -℘ (v) = 0 ?
La fonction f aurait un pôle d'ordre 2, donc u et v seraient les seuls zéros de f , donc a, b et c ne serait pas alignés, ce qui est en contradiction directe avec nos suppositions. on a donc bien ℘ (u) -℘ (v) = 0, donc le paragraphe précédent clos la démonstration.

Ce premier résultat est satisfaisant, cependant nous souhaiterions plus de détails :

Soit u et v tels que u, v, u + v et u -v ne soient pas nuls modulo L, considérons a = (x 1 , y 1 ) = (℘(u), ℘ (u)), b = (x 2 , y 2 ) = (℘(v), ℘ (v)), c = (x 3 , y 3 ) = (℘(u + v), -℘ (u + v)).
En appliquant les résultats précédents avec l'application ψ à la partie ane de la courbe X, on obtient que a, b et c sont alignés dans C 2 , ils appartient donc à une droite d'équation de la forme

Y = mX + b ou X = c
si les points sont alignés verticalement.

Cependant dans ce dernier cas, on obtient en combinant cette relation au fait que a, b et c sont sur la courbe X, ils vérient

Y 2 = 4c 3 -g 2 c -g 3 et X = c
Mais cette équation n'a que 2 solutions et a, b et c ont été supposés distincts au vu des conditions sur u et v. Les points a, b et c appartiennent donc bien à une droite de la forme

Y = mX + b, donc ℘(u) = m℘ (u) + b, ℘(v) = m℘ (v) + b, d'où m = ℘ (u) -℘ (v) ℘(u) -℘(v) .
Sachant que u + v est non nul modulo L, ℘(u) -℘(v) = 0 Les points a, b et c sont dans l'intersection de cette droite et de la courbe X donc ils vérient

P (X) := 4X 3 -g 2 -g 3 -(mX + b) 2 = 0
Or cette condition ne porte en réalité que sur x 1 , x 2 et x 3 . On remarque d'ailleurs au passage que puisque P est de degré 3, il a au plus 3 points alignés sur une courbe elliptique. P s'écrit donc 4(X -x 1 )(X -x 2 )(X -x 3 ) et on peut alors identier le coecient en X 2

m 2 = 4(x 1 + x 2 + x 3 )
Ce qui, en identiant les termes, nous conduit au théorème suivant :

Théorème 48. (d'addition, forme analytique) Soit u et v tels que u, v, u + v et u -v ne soient pas nuls modulo L, on a

℘(u + v) = 1 4 Ç ℘ (u) -℘ (v) ℘(u) -℘(v) å2 -℘(u) -℘(v).
Il reste encore un détail à traiter pour que l'on sache additionner des points sur une courbe elliptique. Soit a et b des points de X, on sait que -(a + b) est aligné avec a et b, et qu'il est le seul à l'être. Il faut alors savoir où se situe a + b. Plus généralement, pour un point c de X non nul (c n'est donc pas à l'inni), considérons u l'élément de C/L associé,

c = (℘(u), ℘ (u)) et puisque Φ -1 (-c) = -u, -c = (℘(u), -℘ (u))
Donc -c est le symétrique de c par rapport à l' axe des abscisses . Ici, l'axe est une droite complexe, l'analogie peut-être faite avec le plan réel en observant la partie réelle X ∩ R de la courbe elliptique. On obtient de cette façon le point a + b que l'on cherche. [START_REF] Roger | Analysis IV Integration and spectral theory, harmonic analysis, the garden of modular delights[END_REF] Les séries d'Eisenstein, le discriminant et l'invariant modulaire 4.1 L'invariant modulaire La question que l'on se pose désormais est : Combien existe-t-il de courbes elliptiques ? On répond de suite à cette question par la proposition suivante, Proposition 49. Soit g 2 et g 3 ∈ C tel que ∆ := g 3 2 -27g 2 3 = 0, il existe un réseau L tel que

g 2 = g 2 (L) et g 3 = g 3 (L).
Il existe donc autant de courbes ellitpiques que de couples (g 2 , g 3 ) tel que ∆ = 0. Pour démontrer cette proposition on introduit la fonction de réseaux suivante.

Dénition 50. On note j et on appelle invariant modulaire la fonction dénie par

j(L) = g 3 2 (L) ∆(L) .
Remarque C'est une fonction de poids 0 car quotient de deux fonctions de poids 12 et on lui associe la fonction

j : z → g 3 2 (z) ∆(z)
qui est modulaire de poids 0. De plus ∆ admet un unique zéro d'ordre 1 à l'inni et G 4 ne s'annule pas à l'inni, la fonction j admet un unique pôle d'ordre 1 à l'inni.

Proposition 51. La fonction j est surjective sur C et dénit par passage au quotient une bijection entre H/Γ et C.

Preuve . Puisque j est modulaire de poids 0, elle prend la même valeur sur chaque représentant d'une classe modulo Γ, elle est bien dénie sur le quotient

H/Γ. Soit λ ∈ C, j(z) -λ = 0 est équivalent à g 3 2 (z) -∆(z)λ = 0
Mais on observe maintenant que f := g 3 2 -∆λ est une forme modulaire de poids 12, qui ne s'annule pas à l'inni, ainsi

1 2 ord(f, i) + 1 3 ord(f, ρ) + p ord(f, p) = 1
f s'annule donc soit en i à l'ordre 2, soit en ρ à l'ordre 3 ou alors à l'ordre 1 pour un certain p distinct de i ou ρ. De plus la somme porte sur un système de représentant, donc de façon équivalente, sur les éléments de H/Γ. Donc f , dénie sur H/Γ, prend une et une seule fois la valeur λ.

On en déduit également que j en tant que fonction de réseaux est surjective. Prouvons donc la proposition (49).

Preuve . Soient g 2 et g 3 ∈ C tel que ∆ := g 3 2 -27g 2 3 = 0, puisque j est surjective, il existe L tel que

g 3 2 (L) ∆(L) = g 3 2 ∆ .
Soit a tel que

ag 3 2 (L) = g 3 2 ,
puisque g 3 2 (.) est de poids 12, g 3 2 = ag 3 2 (L) = g 3 2 (a 12 L) et on réajuste, a := a 12 . Ainsi, on a

g 3 2 (aL) = g 3 2 , ∆(aL) = ∆.
Donc on obtient directement

g 2 3 (aL) = g 2 3 ,
Soit ζ 3 une racine cubique de l'unité tel que

ζ 3 g 2 (aL) = g 2 .
Puisque g 2 est de poids 4,

g 2 (ζ 3 aL) = g 2 .
De plus on a

g 2 3 (ζ 3 aL) = (ζ -3 3 g 3 (aL)) 2 = g 2 3 (aL).
On prend alors a := ζ 3 a, on obtient

g 2 (aL) = g 2 , g 2 3 (aL) = g 2 3 .
Soit maintenant ζ 2 une racine carrée de l'unité telle que

ζ 2 g 3 (aL) = g 3 , g 3 (ζ 2 aL) = g 3 et g 3 2 (ζ 2 aL) = g 3 2 (aL).
En réajustant alors une dernière fois a := ζ 2 a, on obtient

g 2 (aL) = g 2 et g 3 (aL) = g 3 .
Le réseau aL est celui que l'on cherche. On énonce à présent un résultat intéressant concernant la fonction j, Proposition 52. L'ensemble des fonctions modulaires de poids 0 est le corps des fonctions rationnelles de j, C(j).

Preuve . On voit déjà que, étant donné P (j) Q(j) dans C(j), chaque monôme de P (j) et Q(j) sont des fonctions modulaires de poids 0, il en est donc de même pour P (j) et Q(j), ainsi que leur quotient P (j) Q(j) . Soit maintenant f une fonction modulaire de poids 0, si f a un pôle en z 0 d'ordre k, alors z → (j(z) -j(z 0 )) n est holomorphe en z 0 . Ainsi, puisque f a un nombre ni de pôles (car elle est dénie sur un ouvert borné en fonction de la variable q), il existe un polynôme R tel que R(j)f soit holomorphe sur C, on peut donc supposer f holomorphe sur C par la suite.

Notons n = -ord(f, ∞), on peut déjà voir que si n ≤ 0, f est une forme modulaire de poids 0, donc constante et l'énoncé est trivial. Supposons n ≥ 0 et remarquons que ∆ n f est modulaire de poids 12n donc f s'exprime donc comme combinaison linéaire de termes de la forme

G α 4 G β 6 ∆ n avec 4α + 6β = 12n.
Par linéarité, il sut de voir que chacun de ces termes s'écrit comme une fraction rationnelle en j : Soit alors α et β tels que 4α + 6β = 12n et notons

p = α 3 et q = β 2 Puisque 12n = 4α + 6β, n = p + q, G α 4 G β 6 ∆ n = G 3p 4 G 2q 6 ∆ p+q = Ç G 3 4 ∆ å p Ç G 2 6 ∆ å q . Et g 2 est proportionnel à G 4 donc G 3 4 ∆ est proportionnel à j. De même, j -27 g 2 3 ∆ = 1 Donc G 2 6
∆ est un polynôme en j. La fonction f s'exprime comme une somme de polynômes en j.

Les séries d'Eisenstein et le discriminant, développement en série à l'inni

On va développer en série entière les fonctions G k en 0 par rapport à la variable q. Dans un premier temps, on va calculer leurs valeurs à l'inni et donc donner les valeurs prises par la fonction ζ sur les entiers pairs positifs. Introduisons d'abord la notation suivante : Dénition 53. On appelle nombres de Bernoulli et on note B k les nombres dénis par

x e x -1 = 1 - x 2 + ∞ k=1 (-1) k+1 B 2k x 2k (2k)! .
On ne donne ici leur valeur que pour k pair.

Dans ce qui va suivre, z désigne un élément de H. En particularisant cette égalite à x = 2iz, on obtient que

2iz e 2iz -1 + iz = 1 + ∞ k=1 (-1) 2k+1 B 2k 2 2k z 2k (2k)! .
On explicite le terme de gauche :

2iz e 2iz -1 + iz = 2iz + iz(e 2iz -1) e 2iz -1 = iz(1 + e 2iz ) e 2iz -1 = z. ie iz (e iz + e -iz ) e iz (e iz -e -iz ) = zcotan(z), donc zcotan(z) = 1 - ∞ k=1 B 2k 2 2k z 2k (2k)! .
On rappelle maintenant que si f et g sont deux fonctions méromorphes dérivables,

(f g) f g = f g + f g f g = f f + g g
L'opérateur qui à f assossie f f est appelé dérivée logarithmique, il transforme les produits en somme. On peut de plus l'appliquer à un produit inni (admis). On a la formule

sin(z) = z ∞ n=1 (1 - z 2 n 2 π 2 ).
De plus cotan(z) = sin (z) sin(z) , donc

cotan(z) = 1 z + ∞ n=1 -2z n 2 π 2 1 -z 2 n 2 π 2 .
On obtient

zcotan(z) = 1 + 2 ∞ n=1 z 2 z 2 -n 2 π 2 .
De plus, pour tout n,

z 2 z 2 -n 2 π 2 = - z 2 n 2 π 2 1 1 -( z nπ ) 2 = - z 2 n 2 π 2 ∞ k=0 z 2k n 2k π 2k = - ∞ k=1 z 2k n 2k π 2k . Finalement, zcotan(z) = 1 -2 ∞ n=1 ∞ k=1 z 2k n 2k π 2k .
Si on compare maintenant les deux valeurs obtenues pour zcotan(z), en sachant que la double série considérée converge absolument, on a

2 ∞ k=1 z 2k ∞ n=1 1 n 2k π 2k = ∞ k=1 B 2k-1 2 2k z 2k (2k)! .
Par unicité du développement en série entière on identie les termes,

∀k ≥ 1, ∞ n=1 1 n 2k π 2k = B 2k 2 2k (2k)! .
Proposition 54. Soit k un entier pair strictement positif,

ζ(k) = π k B k 2 k-1 k! .
Il faut maintenant expliciter la valeur de n∈Z 1 (n+z) k . On rappelle qu'on note q = e 2iπz , de cette façon :

πcotan(πz) = iπ e -2iπz (e 2i + 1) e -2iπz (e 2i -1) = iπ q + 1 q -1 = iπ q -1 + 2 q -1 = iπ - 2iπ 1 -q = iπ -2iπ ∞ n=1 q n .
De plus on a la formule

πcotan(πz) = 1 z + ∞ n=1 Å 1 z + n + 1 z + n ã , donc 1 z + ∞ n=1 Å 1 z + n + 1 z + n ã = iπ -2iπ ∞ n=1 q n .
Notons que cotan est holomorphe sur H, donc on peut dériver (k fois) terme à terme dans l'égalité précédente et on obtient, avec k pair strictement positif :

1 z k + ∞ n=1 Ç 1 (z + n) k + 1 (z + n) k å = (2iπ) k (k -1)! ∞ n=1 n k-1 q n
et on peut regrouper les termes pour obtenir

n∈Z 1 (z + n) k = (2iπ) k (k -1)! ∞ n=1 n k-1 q n .
Soit k ≥ 4 en entier pair, on peut maintenant calculer

G k (z) = (n,m)∈Z 2 \{0} 1 (nz + m) k
et comme on a vu, cette série converge absolument,

G k (z) = 2ζ(k) + n∈Z m∈Z 1 (nz + m) k G k (z) = 2ζ(k) + ∞ n=1 m∈Z 1 (nz + m) k + ∞ n=1 m∈Z 1 (-nz + m) k puis par le changement de variable z = -z G k (z) = 2ζ(k) + 2 ∞ n=1 m∈Z 1 (nz + m) k et le changement de variable z = nz G k (z) = 2ζ(k) + 2 (2iπ) k (k -1)! ∞ n=1 ∞ a=1 a k-1 q na .
Si on pose alors m = an, on voit que la valeur q m est prise dans la somme autant de fois qu'il y a de diviseurs de m et a est toujours un diviseur de m, donc

G k (z) = 2ζ(k) + 2 (2iπ) k (k -1)! ∞ m=1 d|m d k-1 q m .
On note σ i (n) = d|n d i et on récapitule :

Proposition 55. Soit k ≥ 4 un entier pair

G k (z) = 2ζ(k) + 2 (2iπ) k (k -1)! ∞ n=1 σ k-1 (n)q n .
On remarque maintenant que

E k := 1 2ζ(k) G k vérie E k (∞) = 1 et est donc de la forme E k (z) = 1 + γ k ∞ n=1 σ k-1 (n)q n . où γ k = 1 ζ(k) (2iπ) k (k -1)! = k! π k B k 2 k-1 (2iπ) k (k -1)! = (-1) k/2 2k B k .
La valeur numérique des E k va nous permettre d'obtenir des égalités étonnantes. Par exemple, E 4 E 4 est une forme modulaire de poids 8 et E 4 E 4 (∞) = 1, mais on sait par ailleurs que l'espace des formes modulaires de poids 8 est de dimension 1, il s'ensuit donc directement que E 4 E 4 = E 8 . Relevons donc quelques valeurs numériques :

E 4 = 1 + 240 ∞ n=1 σ 3 (n)q n , E 6 = 1 -504 ∞ n=1 σ 5 (n)q n , E 8 = 1 + 480 ∞ n=1 σ 7 (n)q n , E 10 = 1 -264 ∞ n=1 σ 9 (n)q n .
On déduit alors de l'égalité

E 4 E 4 = E 8 : 1+480 ∞ n=1 σ 7 (n)q n = 1 + 240 ∞ n=1 σ 3 (n)q n 2 = 1+480 ∞ n=1 σ 3 (n)q n +480.120 ∞ n=1 ∞ k=1 σ 3 (n)σ 3 (k)q n+k .
On veut donc réordonner cette somme sur les puissances de q. Pour un entier m donné, il y a m -2 façons de l'écrire n + k avec des entiers n et k strictement positifs, plus précisément, si on eectue le changement de variable m = n + k dans la série précédente, on obtient :

∞ n=1 σ 7 (n)q n = ∞ n=1 σ 3 (n)q n + 120 ∞ m=1 m-1 n=1 σ 3 (n)σ 3 (m -n)q m
et en identiant les termes du développement de Taylor, on a

σ 7 (n) = σ 3 (n) + 120 n-1 m=1 σ 3 (n)σ 3 (n -m) .
De façon similaire, E 4 E 6 = E 1 0 et on a 240=24.10, 504=24.21, 264=24.11 et 24.21.10=5040

11σ 9 (n) = 10σ 3 (n) -21σ 5 (n) -5040 n-1 m=1 σ 3 (n)σ 5 (n -m).

Le développement du discriminant ∆

Puisque l'on connait maintenant les valeurs de g 2 et g 3 , on connait également ∆, dont on donne le début du développement : ∆(z) = (2π) 12 (q -24q 2 + 252 -1472q 3 + ...) .

On note τ (n) ses coecients :

∆(z) = (2π) 12 n≥1 τ (n)q n
et on les appelle nombres de Ramanujan.

On se propose de démontrer une formule surprenante, dûe à Jacobi, Théorème 56. Soit z ∈ H,

∆(z) = (2π) 12 q ∞ n=1 (1 -q) 24 . Preuve . Notons F (z) = q ∞ n=1
(1-q) 24 , on remarque déjà d'une part que F est dénie en fonction de la variable q donc F (z + 1) = F (z) et d'autre part que F (∞) = 0. Puisqu'à proportion près, il n'existe qu'une seule forme parabolique, ∆, il sut de montrer que F est modulaire de poids 12, autrement dit que

F (- 1 z ) = z 12 F (z).
Soit z ∈ C, considérons les séries doubles

G 2 (z) = n∈Z m∈Z 1 (m + nz) 2 , G(z) = m∈Z n∈Z 1 (m + nz) 2 , H 2 (z) = n∈Z m∈Z 1 (m -1 + nz)(m + nz) , H(z) = m∈Z n∈Z 1 (m -1 + nz)(m + nz) .
Les sommes portent implicitement sur (n, m) = (0, 0). On commence par remarquer que les séries H et H 2 ne convergent pas absolument et convergent même vers des limites diérentes, on note d'abord que :

1 (m -1 + nz)(m + nz) = 1 (m -1 + nz) - 1 (m + nz) .
Ainsi, pour tout n,

m∈Z 1 (m -1 + nz)(m + nz) = m∈Z 1 (m -1 + nz) - 1 (m + nz) = 0 , donc H 2 = 0.
Le calcul de H est plus délicat. Soit N et M des entiers, on va étudier la double somme

H N,M := M m=-M N n=-N 1 (m -1 + nz) - 1 (m + nz) .
Puis en considérant successivement les limites sur N puis M , on obtiendra la somme de H.

H N,M = N n=-N 1 (-M -1 + nz) - 1 (M + nz) = 1 z N n=-N 1 n -M +1 z - 1 M z + n = - 1 z N n=-N 1 M +1 z -n + 1 M z + n .
et on vient à peine de rencontrer ce type de somme, nalement :

F (z) F (z) = 2iπ 1 + 24 ∞ n=1 σ 1 (n)q n .
Rappelons que lors de la preuve sur le calcul des G k , on a utilisé la convergence absolue pour écrire :

G k (z) = 2ζ(k) + n∈Z m∈Z 1 (nz + m) k ,
cependant, passé cette étape, la convergence absolue n'est plus intervenue, on peut donc appliquer la conclusion à G 2 :

G 2 (z) = π 2 3 -8π 2 ∞ n=1 σ 1 (n)q n .
Ainsi,

F (z) F (z) = 6i π G 2 (z) . Si on note F 1 (z) = F (-1 z ) et F 2 (z) = z 12 F (z), F 1 (z) F 1 (z) = F (-1 z ) z 2 F (-1 z ) = 6i πz 2 G 2 (- 1 z ) , on a G 2 (-1 z ) = z 2 G(z) -2iπ z : F 1 (z) F 1 (z) = 6i πz 2 Å z 2 G 2 (z) - 2iπ z ã = 6i π G 2 (z) + 12 z = F (z) F (z) + 12 z et on a F 2 (z) F 2 (z) = 12z 11 z 12 + F (z) F (z) .

Mais alors

F 2 (z) F 2 (z) = F 1 (z) F 1 (z) . Donc F 2 (z)F 1 (z) -F 2 (z)F 1 (z) = 0, F 1 (z) F 2 (z) est constante et l'égalité F 1 (i) = F 2 (i) nous permet de conclure : F (- 1 z ) = z 12 F (z).
Les coecients τ (n) de ∆ vérient les propriétés surprenantes :

τ (n)(n)τ (m) = τ (nm) (si pgcd(n, m) = 1) τ (p n )τ (p)f = τ (p n+1 ) + p k-1 τ (p n-1 ) (p premier)
Et on va introduire de nouveaux objets dans la partie suivante pour le démontrer : les opérateurs de Hecke.

5 Opérateurs de Hecke et coecients des formes modulaires

Dénition et propriétés des opérateurs de Hecke

On rappelle que R désigne l'ensemble des réseaux de C. On considère maintenant X R le groupe libre engendré par R. Un élément de X R est de la forme

x = k≤n a k L k ,
où les a k sont des entiers et les L k des réseaux.

Remarque Le groupe X R est un ensemble abstrait, les sommes de réseaux ne correspondent pas à un sous ensemble de C. Cette abstraction va nous permettre de dénir les opérateurs de Hecke, puis on fera le lien avec les fonctions modulaires.

Dénition 57. On appelle correspondance sur X R tout homomorphisme T de X R dans luimême.

Remarque T est entièrement dénie par son image sur les éléments de R, en eet

T (x) = k≤n a k T (L k ) ,
du fait de sa nature de morphisme.

Soit n un entier strictement positif, on note T (n) la correspondance X R qui à un réseau L assossie la somme de ses sous-réseaux d'indice n. Avant de donner sa dénition formelle, on vérie que T (n) est bien dénie. C'est à ces deux familles d'opérateurs que l'on s'intéresse dans la suite. En tant qu'homomorphismes, on peut les composer : Proposition 59.

R a R b = R ab (a, b ∈ C * ) (1) 
R a T (n) = T (n)R a (n ≥ a ∈ C * ) (2) 
T (n)T (m) = T (nm) (si pgcd(n, m) = 1) (3) 
T (p n )T (p) = T (p n+1 ) + pT (p n-1 )R p (p premier) (4) 
Preuve . Faisons maintenant opérer R sur les fonction de réseaux. Pour ce faire on considère les fonctions de réseaux comme dénies sur X R en les prolongeant par Z-linéarité. Soit F une fonction de réseau de poids k, pour S ∈ R, SF est application de X R dans C et Z-linéaire, donc entièrement déterminée par son image sur les éléments de R et on pose, pour un réseau L, SF (L) = F (SL) .

T (p n )T (p)L = k a k L k T (p n+1 )L = k L k T (p n-1 )R p L = k p.c k L k Soit k, on note a = a k , c = c k et L" = L k . Il

De façon plus explicite, si on prend

x = k≤n a k L k ∈ X R , F (x) = k≤n a k F (L k ) . On constate notamment que R a F (L) = F (aL) = a -k F (L) et donc R a F = a -k F.

Rremarque On en déduit alors que

R a T (n)F = T (n)R a F = a-kT (n)F et donc que T (n)F est également de poids k. Des formules (3) et (4) découle T (n)T (m)F = T (nm)F (si pgcd(n, m) = 1) T (p n )T (p)F = T (p n+1 )F + p 1-k T (p n-1 )F (p premier) T (p n )T (p)F = T (p n+1 )F + pT (p n-1 )R p F = T (p n+1 )F + p 1-k T (p n-1 )F .
Il est maintenant tentant de faire opérer R sur les fonctions modulaires, cependant, la forme trop abstraite des opérateurs de Hecke, n'est, pour l'instant, pas adaptée aux fonctions complexes. Mais le lemme suivant va nous aider.

Lemme 61. Soit L un réseau et (ω 1 , ω 2 ) une base de L. Notons

S n = ®Ç a b 0 d å ∈ M n (Z), ad = n, a ≤ 1, 0 ≤ b < d Ṕour σ dans S n , on dénit L σ le réseau engendré par ω 1 = aω 1 + bω 2 et ω 2 = dω 2 .
L'application φ : L → L σ dénit une bijection de S n dans l'ensemble des réseaux d'indices n de L.

Preuve . On commence par remarquer que l'application est bien dénie car det(σ) = 0 donc la famille (aω 1 + bω 2 , dω 2 ) engendre bien un réseau, de plus on peut expliciter l'ensemble de ses classes modulo L :

{L + αω 1 + βω 2 , 0 ≤ α ≤ a, 0 ≤ β ≤ b} ,
on en compte bien n.

Prenons maintenant L un sous réseau d'indice n, il s'agit de montrer qu'on peut trouver une base de L de la forme requise. Posons

Y 1 = L/(L + Zω 2 ) et Y 2 = ω 2 Z/(L ∩ ω 2 Z)
Les images par les morphismes de projection de la base (ω 

0 → Y 2 → L/L → Y 1 → 0 où les morphismes sont simplement [x] → [x] qui sont bien dénis car L ∩ ω 2 Z ⊂ L ⊂ L + ω 2 Z. Soit x, y ∈ ω 2 Z,supposons L + x = L + y, on a alors (L + x) ∩ ω 2 Z = (L + y) ∩ ω 2 Z et comme x, y ∈ ω 2 Z (L ∩ ω 2 Z) + x = (L ∩ ω 2 Z) + y Donc Y 2 s'injecte bien dans L/L et du fait de L ⊂ L + ω 2 Z, on montre aussi la surjectivité de L/L → Y 1 .
Pour nir, l'image de l'injection est ω 2 Z/L , qui est bien le noyau de la surjection. La suite est exacte, on en déduit ad

= n. Comme [ω 2 ] est d'ordre d dans Y 2 , on en déduit dω 2 ∈ L ∩ ω 2 Z donc en particulier dω 2 ∈ L . L/ω 2 Z s'indentie naturellement à ω 1 Z donc il existe ω 1 tel que ω 1 ≡ aω 1 mod(ω 1 Z) Soit alors b tel que ω 1 ≡ bω 2 mod(ω 2 Z) , On a ω 1 ≡ bω 2 mod(L ∩ ω 2 Z).
De ce fait b est unique modulo d et comme l'image de (ω 1 , ω 2 ) dans L/L engendre L/L , c'est bien une base de L . On peut donc assossier tout sous-réseau L d'indice n un élément de S n , on note ψ l'application ainsi obtenue. Observons que l'image par φ de la matrice 

L/(L + Zω 2 ) ≈ ω 1 Z/aω 1 Z qui est bien d'ordre a. ω 2 Z/(L ∩ ω 2 Z) ≈ ω 2 Z/bω 2 Z d'ordre d. Enn, on a ω 1 ≡ bω 2 mod(ω 2 Z), donc ψ • φ = id .
On peut maintenant écrire, pour un réseau L de base (ω 1 , ω 2 ),

T (n)F (L) = a b 0 d ∈Sn F (aω 1 + bω 2 , dω 2 ).
On rappelle que la fonction modulaire f assossié est simplement z → F (z, 1) et on pose

T (n)f (z) = n k-1 T (n)F (z, 1).
Ainsi, l'action des T (n) sur une fonction modulaire de poids k se traduit par Cette expression a bien un sens car On voit que d n'intervient plus explicitement dans la somme et qu'on peut simplement voir a comme un diviseur de n. On pose également s = am , pour une valeur donnée, s intervient dans la somme autant de fois qu'il admet de diviseurs. En rentrant n k-1 dans la somme, cela donne Si maintenant f est une forme modulaire, N = 0 donc γ(m) = 0 pour m < 0, donc f est holomorphe à l'inni, T (n)f est un forme modulaire. Si en plus f est parabolique, c(0) = 0 donc γ(0) = 0 et T (n)f est une forme parabolique. On formule cela de la façon suivante : Soit ω ∈ L, il s'agit de savoir dans combien de réseaux L il est contenu.

T (n)f (z) =
Si ω ∈ pL, comme on l'a vu, tous les réseaux L contiennent tous pL donc ω est présent p + 1 fois dans la somme de T (p)G k (L).

Si ω / ∈ pL, ω est inclus dans au moins un réseau L . Pour voir cela écrivons ω = (a, b) dans une base donnée de L.Si a n'est pas congru à 0 modulo p, soit 0 ≤ s < p tel que b ≡ sa mod(p) (on peut trouver un tel nombre car Z/pZ est un corps). Ainsi il existe k tel que b = sa + kp et on a Si maintenant a = kp, dans ce cas Remarque Le raisonement précédent nous a demandé de permuter les termes de la série T (p)G k (L), pour s'assurer que cela n'altère pas sa convergence et sa valeur, on a utilisé une fois de plus la convergence absolue de G k .

Pour n quelconque, on a vu que T (n) était un polynôme en les T (p) et R p , donc G k est bien fonction propre de tous les T (n). Rappelons maintenant que

E k (z) = 1 + γ k ∞ n=1 σ k-1 (n)q n , où γ k = (-1) k/2 2k B k .
Puisque σ k-1 (1) = 1, on voit que la fonction normalisée de G k est

(-1) k/2 B k 2k E k
et les valeurs propres sont les σ k-1 (n).

Maintenant que l'on a clarié les relations arithmétiques entre les coecients d'une forme modulaire, on s'intéresse naturellement à leur taille .

Ordre de grandeur des coecients

Traitons dans un premier temps le cas des fonctions G k , le n eme coecient de E k est

(-1) k/2 2k B k σ k-1 (n).
Pour commencer on a bien sûr

σ k-1 (n) ≥ n k-1 .
Il faut maintenant observer le comportement de σ k-1 (n) n k-1 quand n tend vers +∞ :

σ k-1 (n) n k-1 = d|n 1 d k-1 ≤ d≥1 1 d k-1 = ζ(k -1).
De plus ici, k -1 ≥ 3 et on sait que la fonction ζ converge sur le demi-plan {s ∈ C, Re(s) > 1} donc le quotient σ k-1 (n) n k-1 est borné. On peut même écrire :

n k-1 ≤ σ k-1 (n) ≤ ζ(k -1)n k-1 .
Pour nir, l'inégalité

γ k n k-1 ≤ γ k σ k-1 (n) ≤ γ k ζ(k -1)n k-1
donne l'ordre de grandeur précis des coecients de E k , à une constante près on obtient aussi l'ordre de grandeur de ceux de G k On rappelle, ensuite que M k = M 0 k + C.G k , par conséquent connaitre l'ordre de grandeur des formes paraboliques nous fournirait l'ordre de grandeur de toutes les formes modulaires de poids k, le théorème suivant, dû à Hecke, nous le donne. Théorème 68. Soit f une forme parabolique de poids k, si on note a n ses coecients de Fourier, on a

a n = O(n k/2 )
Preuve . Pour alléger les notations, on va montrer que si f est une fonction parabolique de poids 2k, a n = O(n k ).

Puisque f est parabolique, on a que f (z) q est borné lorsque q tend vers 0. On peut traduire cette condition en disant que 

f (z) q = |f ( 

On rappelle que

  F est compact, si f n'admet pas de pôles elle est continue et donc admet un maximum sur F, f est alors une fonction entière bornée, elle est constante. Théorème 6. Une fonction elliptique f possède un nombre ni de pôles dans un domaine fondamental F et z∈F Res(f, z) = 0.

  que son inverse N s'exprime aussi avec des coecients entiers, de plus :

  az + b cz + d = z, ∀z ∈ H On obtient immédiatement d = 0, puis b = 0 et ad = 1 mais comme ad -bc = 1, on a (a, d) = ±(1, 1) donc g = ±I. En conséquence on considère le groupe Γ = SL 2 (Z)/{±I}, qui agit dèlement sur H.

  et G le sous-groupe de Γ engendré par T = : z → z + 1, la traslation de 1 vers la droite et z → -1 z l'inversion, qui est une involution.On peut observer ci-dessus D, ainsi que son images par certains éléments de G.

|cz+d| 2 .

 2 Il s'agit d'abord de montrer que l'ensemble {(c, d) ∈ Z, |cz + d| ≤ 1} est ni. Im(z) > 0 et |Im(cz + d)| = c|Im(z)| or si |Im(cz + d)| > 1 alors |cz + d| > 1, donc il n'existe qu'un nombre ni de c qui peuvent vérier c|Im(z)| ≤ 1. Soit un tel c, |d| -|cz| ≤ |cz + d| donc il existe un nombre ni de d vériant |cz + d| ≤ 1. On en conclut que cet ensemble est ni. Dès lors il admet un minimum, il existe

  , p), on obtient bien la formule souhaitée, en sachant que ρ et ρ 2 sont dans une même orbite et donc ord(f, ρ) = ord(f, ρ 2 ).
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 32 'est vrai pour λg par dénition. Pour ∆h, il faut voir que h est combinaison linéaire d'éléments de la forme G α 4 G β 6 , 4α + 6β = k et la multiplication par ∆ = g donne à ∆h la propriété que l'on souhaite.

  [z] = -[ω] donc ℘ (z) = -℘ (ω), d'où ℘ (z) = -℘ (z) D'où ℘ (z) = 0, mais d'après la proposition 15, on a 2z ∈ L mais alors [-z + 2z] = [-z], i.e [z] = [-z], donc [z] = [ω].

  Théorème 47. (d'addition, forme géométrique) Trois points distincts a, b et c et distincts de O de la courbe elliptique X sont alignés si et seulement si a + b + c = O. Preuve . Soient a, b et c trois points comme dans l'énoncé, on note [u], [v] et [z] leurs antécédents par Φ, remarquons qu'ils ne sont pas nuls (autrement dit leurs représentants ne sont pas dans L) et distincts. On peut donc réécrire

  Lemme 58. Soit L un réseau, n ∈ N*, il existe un nombre ni de sous-réseaux de L d'indice n. Dans le cas où n est premier, il en existe exactement n + 1.Cette partie étant pricicipalement algébrique, dans la suite on identie régulièrement un réseau à Z 2 , et donc on écrit les éléments d'un réseau sous la forme d'un couple (a, b).Preuve . Soit L un tel sous-réseau, puisque L est d'indice n :L + (n, 0) = L et L + (0, n) = L .Donc (n, 0) et (0, n) sont dans L et ils engendrent nL, donc nL ⊂ L . On peut donc considérer l'application ψ : L → L /nL , Cette application dénit une bijection entre les sous-réseaux de L d'indice n et les sous-groupes de L/nL d'ordre n, qui est isomorphe à (Z/nZ) 2 . Or un groupe ni a un nombre ni de sous-groupes, ce qui démontre la première assertion.Supposons maintenant n premier et remarquons que les éléments de la forme (1, k), k ∈ Z/nZ et (0, 1) engendrent des groupes d'ordre n distincts.De plus si on considère un groupe engendré par un élément (a, b), si a est non nul, il existe k entier tel que k.(a, b) = (1, k.b), donc ce groupe est égal à l'un des précédents. Enn si a = 0, (a, b) = b.(0, 1). On compte bien n + 1 sous-groupes d'ordre n. Ainsi, on peut correctement dénir T (n)L = (L:L )=n L .On dénit également, pour a ∈ C*, la correspondance R a L = aL .

  L" : On a une bijection entre les sous-réseaux d'indice m et les sous groupes d'ordre m de G := L/L". Puisque n et m sont premiers entre eux, les sous groupes H = {x ∈ G, ord(x)|n} et K = {x ∈ G, ord(x)|m} sont d'intersection triviale et puisqu'il existe a et b tels que an + bm, si x ∈ G, x = anx + bmx, donc H + K = G. H et K sont d'ordres respectifs n et m et si on considère F un sous-groupe d'ordre m, l'ordre de l'un de ses éléments divise m, donc F = K, K est donc le seul groupe d'ordre m. Il existe donc un et un seul sous-réseau L d'indice m de L contenant L". On conclut en soulignant que L" est d'indice n dans L . Pour la (4), on note premièrement qu'elle est homogène : pour un réseau L, T (p n )T (p)L et T (p n+1 )L sont bien des sommes de sous-réseaux d'indice p + 1 de L, de même pour T (p n-1 )R p L car pL est d'indice p 2 . Notons alors L k les réseaux d'indice p + 1 de L, ainsi :

  de base (ω 1 , ω 2 ), donc L , donc φ • ψ = id. Pour conclure il faut vérier que ψ • φ = id, soit Ç a b 0 d å dans S n et L le réseau ayant pour base (ω 1 , ω 2 ),

∈∈∈ 1 ad=n

 1 SL 2 (Z), f ( ez + f gz + h ) = (gz + h) k f (z ) ,donc z → f ( az+b d ) est bien modulaire de poids k pour tout S n , en conclusion, comme T (n)f est une combinaison linéaire de fonctions faiblement modulaires de poids k : Proposition 62. T (n)f est une fonction faiblement modulaire, si de plus f est holomorphe sur H, il en est de même pour T (n)f . La seconde armation provient simplement du fait que, si de plus f est holomorphe sur H, elle est holomorphe en tout point de la forme az+b d , z ∈ H, S n .On peut également observer queT (p n )T (p)f (z) = p (n+1)(k-1) Ä T (p n+1 )F (z, 1) + p 1-k T (p n-1 )F (z, 1) ä = p (n+1)(k-1) Ç 1 p (n+1)(k-1) T (p n+1 )f (z) + p 1-k p (n-1)(k-1) T (p n-1 )f (z) å = T (p n+1 )f (z) + p k-1 T (p n-1 )f (z)et on retrouveT (n)T (m)f = T (nm)f (si pgcd(n, m) = 1) T (p n )T (p)f = T (p n+1 )f + p k-1 T (p n-1 )f (p premier)5.2 Action des opérateurs de Hecke sur les formes modulairesOn veut maintenant connaitre l'action des T (n) sur les coecients fonctions modulaires, soit donc f une fonction modulaire dont le développement de Laurent à l'inni estf (z) = m∈Z c(m)q m , avec N ∈ Z tel que ∀m < N, c(m) = 0. T (n)f (z) = n k-Donc la somme qui portait sur Z ne porte plus que sur les multiples de d etT (n)f (z) = n k-1En l'écrivant comme suit :T (n)f (z) = n k-

2 )

 2 Il reste à voir que le développement est ni à gauche, pour cela rappelons que le changement de variable qu'on a eectué au nal ests = am d et pour tout a, d a ≥ 1, ad = n, puisque m = 0 pour m ≤ N , pour s < nN , donc T (n)f est bien méromorphe à l'inni.Proposition 63. La fonction T (n)f est modulaire de poids k, son développement de Laurent à l'inni est de la forme On constate directement que γ(0) = σ k-1 c(0) et γ(1) = c(n).

Proposition 64 .

 64 R opère sur les espaces M k et M 0 k . Cette action de R, va nous permettre d'en apprendre beaucoup sur les coecients d'une forme modulaire, pour cela, introduisons la notion suivante Dénition 65. Soit n un entier strictement positif et f une forme modulaire, on dit que f est fonction propre de T(n) si il existe λ(n) tel que T (n)f = λ(n)f λ(n) est naturellement appelée valeur propre associée. Soit f une forme modulaire non nulle de poids strictement positif, supposons que f est fonction propre T (n) pour tout n.Les fonctions G k sont également fonctions propres des T (n), montrons-le d'abord pour p premier. Considérons d'abord G k comme une fonction de réseaux :

  (a, b) = a.(1, s) + k(0, p) .

  (a, b) = k(p, 0) + b(0, 1) Et d'après le lemme 61, on a exprimé (a, b) dans la base d'un réseau L . Supposons maintenant par l'absurde qu'il existe L 1 et L 2 distincts contenant tous les deux ω. L" := L 1 ∩ L 2 est alors un sous-groupe d'indice plus grand que p dans L 1 et L 2 , qui de plus contient ω donc n'est pas contenu dans pL. Par un raisonnement analogue à celui de la preuve de (4), on montre que L 1 /pL = L 2 /pL et on obtient la contradiction L 1 = L 2 . L'élément ω est donc contenu dans un unique L , on peut alors écrire T (p)G k (L) (L:L )=p ω∈L \{0} 1 ω k = G k (L) + pG k (pL) = (1 + p 1-k )G k (L) .

  Pour z dans H, on particularise le résultat :G k (z) = G k (z, 1) = (1 + p 1-k G k (z, 1) = (1 + p 1-k G k (z).

  z)| e 2πIm(z) est borné. Notons φ = z → |f (z)|Im(z) -k , soit g =

=

  |cz + d| 2k f (z) Im(z) |cz + d| 2k = φ(z).Par conséquent φ est invariante par SL 2 (Z). Par ailleurs puisque | f (z) q | est bornée au voisinage de l'inni et k ≤ 2 donc lim z→∞ φ(z) = 0.

  on prend (ω 2 , ω 1 ). En fait on s'assure juste que la base est directe . On peut dénir une surjection M → R. Il va s'agir maitenant d' aner M et R pour obtenir une bijection.Soit L un réseau, (ω 1 , ω 2 ) et (ω 1 , ω 2 ) deux bases de L dans M. Par dénition de L, on peut écrire ω 1

  (M/C * )/SL 2 (Z). On a donc construit une injection de R/C * dans (M/C * )/SL 2 (Z). De même on peut injecter (M/C * )/SL 2 (Z) dans R/C * . Puisque M/C * s'identie à H, on a construit une bijection entre R/C * et H/SL 2 (Z).

  1. D contient un représentant de chaque classe modulo Γ. 2. Soit z dans D, si il existe g dans Γ tel que g.z est dans D, alors |z| = 1 ou |Re(z)| = 1 2 . Théorème 22. Γ est engendré par S et T.

	Autrement dit, Γ = G.

  1 6 = a+b 1 2 +c 1 3 avec a, b et c positifs donc f est nécessairement nulle. Pour le point 2. observons déjà que si f est parabolique, ord(f, ∞) ≥ 1, on a nécessairement k ≥ 12. Il n'y a donc pas de forme parabolique non nulle de poids inferieur à 12. Et puisqu'on a

  Remarque La formule k 12 nous permet également d'obtenir quelques informations sur les fonctions G k , notamment que G 4 admet ses 2 seuls zéros en ρ et ρ 2 qui sont d'ordre 1 et que G 6 s'annule uniquement en i à l'ordre 1. On déduit du théorème deux corollaires importants : Corollaire 29. dim(M k ) =

	  	k 12 si k ≡ 2 (mod 12)
	 	

k 12 + 1 sinon ( . désigne la partie entière) Preuve . La démonstration s'eectue par récurrence à pas six . Le résultat est vrai pour k pair dans [0, 12].

  La formule (1) est évidente. Pour la (2), soit L un réseau, L et aL ont le même nombre de sous-réseaux, il sut donc de remarquer que si L est un sous-réseau de L d'indice n, aL est un sous-réseau d'indice n de aL. Pour la (3), observons que T (n)T (m)L est bien une somme de réseaux d'indice nm, mais il faut s'assurer que tous les réseaux d'indice nm de L y gurent une et une seule fois. Soit L" un sous-réseau d'indice nm, montrons qu'il existe un seul sous-réseau L d'indice m de L qui contient

  faut montrer que 'est a fortiori pas un sous-réseau d'indice p -1 de pL, donc c=0. Il faut donc montrer que a = 1. Par dénition a est le nombre de sous-réseaux L d'indice p dans L qui contiennent L" et comme on l'a vu un tel réseau contient pL, on note π : L → L/pL le morphisme de projection. Rappelons qu'un p-groupe contient forcément un sous-groupe d'ordre p, donc qu'il existe au moins un réseau L d'indice p dans L qui contient L". Soit L 1 et L 2 deux réseaux vériant ces propriétés, comme L" n'est pas inclus dans pL, son image par π n'est pas triviale, et donc π(L) est d'ordre au moins p, mais il est contenu dans π(L 1 ), qui n'est autre que L 1 /pL, donc d'ordre p. Dès lors on obtient L 1 /pL = π(L) = L 2 /pL et donc L 1 = L 2 , en conclusion a=1 et on a bien a = 1 + pc .-L" est inclus pL, Dans ce cas on obtient directement que c = 1. De plus un sous-réseau L d'incice p contient pL, mais il contient donc L". Le réseau L" est donc inclus dans tous les sous-réseau d'incice p, le lemme précédent nous assure qu'il y en a exactement p + 1, donc a = 1 + p et comme c = 1,a = 1 + pc .Notons R l'ensemble contenant les correspondances que l'on a déni précédemment auquel on adjoint le morphisme trivial. De (4) on déduit que pour p premier, T (p n ) est simplement un polynôme en T (p) et R p , sachant en plus qu'un entier n strictement positif se décompose en produit de nombres premiers, la formule (3) nous montre que les T(n) sont des polynômes en les T (p) et R p sur les p premiers. La formule (2) nous assure que Les R a et T (n) commutent, et (3) que les T (p) commutent entre eux pour p premier, ce qui est alors valable pour tous les T (n). Pour pouvoir munir Rd'une structure d'anneau, on lui ajoute le morphisme trivial. Résumons : Proposition 60. R est commutatif et engendré par les T (p), p premier et les R a .

	a = 1 + pc
	Pour ce faire, distinguons deux cas :
	-L" n'est pas inclus dans pL,
	L" n

  1 , ω 2 ) sont les générateurs de Y 1 et Y 2 , mais on voit directement que l'image de ω 2 est triviale dans Y 1 et celle de ω 1 triviale dans Y 2 , ce sont donc des groupes monogènes, et L + ω 2 Z et L ∩ ω 2 Z sont d'indice ni dans L et ω 2 Z. Y 1 et Y 2 sont alors cycliques, on note a et d leurs ordres respectifs. Observons maintenant la suite

On va préciser et justier cette dénition : Le réseau L est un sous-groupe de C, il agit donc sur C dèlement par translation. On peut dès lors remarquer que F contient des représentants de chaque classes d'orbites. C'est même le plus petit fermé (à translation près) qui vérie cette propriété. En eet si l'on retire deux côtés adjacents à ∂F, il contient un unique représentant de chaque classe, cependant il est plus commode de considérer F, car il est compact.
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, on retrouve alors de façon innatendue ∆ qu'on avait construit pour des raisons très diérentes. Bien que les constantes g 2 et g 3 aient été ajustées pour que ces objets coïncident, cela témoigne encore une fois du lien qui existe entre fonctions elliptiques et formes modulaires.

ad=n,a≥1 m∈dZd -k+1 c(m)q azm d en posant m = m d on a T (n)f (z) = n k-1 ad=n,a≥1 m ∈Z d -k+1 c(m d)q am

Preuve . Il s'agit de montrer que

sont des bijections réciproques. Soit (z 1 , z 2 ) ∈ C 2 , on a bien

et puisque

P 1 (C) ou droite projective complexe est simplement le compactié de C, autrement dit la sphère S 2 mais il est quand même commode pour ce qui suit de le décrire de façon analogue :

Proposition 39. le plan projectif P 2 (C) est l'union disjointe de P 1 (C) et de A 2 (C).

Preuve . Considérons

Cette application est visiblement injective et à valeur dans P 2 (C) \ A 2 (C) de plus un élément de

On dit que P 2 (C) est le plan ane auquel on rajoute une droite projective à l'inni (sous-entendu plan et droites complexes donc de dimensions réelles respectives 4 et 2).

Dénition 40. Soit P ∈ C[X 1 , ...X n ] P est dit homogène s'il existe un entier d positif tel que

On note maintenant H M la limite de H N,M sur n, et en regroupant les termes adjacents de la série on obtient :

En observant que par le changement de variable n = -n,

On a

Par ailleurs,

Puisque F est sous forme de produit, il est naturel de considérer sa dérivée logarithmique :

Remarque Cette supposition peut sembler trop restrictive à première vue, mais on va rapidement s'apercevoir que la plupart des formes modulaires que l'on a rencontré jusqu'à maintenant vérient cette propriété.

Le coecient de

f n'est pas constante car les seules fonctions modulaires constantes sont de poids nul, il existe alors n tel que c(n) = 0 et donc c(1) = 0. On peut alors considérer la fonction 1 c(1) f , qu'on appelle fonction normalisée de f . Supposons donc que f soit normalisée, c'est-à-dire que l'on a c(1) = 1, on a

Soit alors n et m premiers entre eux et p un nombre premier,

Puis,

Récapitulons :

Théorème 66. Soit f une fonction modulaire non-nulle de poids k > 0, fonction propre de tous les T (n) et normalisée, en notant c(n) ses coecients de Fourier :

Essayons alors d'appliquer ce résultat aux formes modulaires que l'on connait. Le cas de ∆ est très simple, on rappelle que l'espace des formes paraboliques de poids 12 est de dimension 1, ainsi pour tout n, T (n)∆, qui comme on l'a vu est bien parabolique de poids 12, est proportionnel à ∆ ! Ce qui signie précisément que ∆ est fonction propre de T (n). On se souvient que

En sachant que τ (1) = 1, on a mis en évidence que sa fonction normalisée est simplement

Comme promis, on a démontré que Proposition 67.

En particulier on a lim

La fonction φ est donc majorée sur

Soit l tel que k > l > 0 et l < Soit n > 1, considérons la fonction g = z → f (z)q n-1 , en écrivant son développement de Laurent à l'inni, on observe que g admet un pôle à l'inni, et son résidu y est a n . Soit y susament petit tel que g n'est qu'un seul pôle dans l'interieur du cercle

En intégrant le long de C y dans le sens trigonométrique et en appliquant la formule des résidus on a

Cy f (z)q n-1 . On a donc donné l'ordre de grandeur de toutes les formes modulaires et ceci conclut notre bref tour d'horizon du paysage modulaire.

On peut alors majorer