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Abstract

This paper considers a one-dimensional wave equation on [0, 1], with dynamic boundary conditions of second order at z = 0
and x = 1, also referred to as Wentzell/Ventzel boundary conditions in the literature. In additions the wave is subjected
to constant disturbance in the domain and at the boundary. This model is inspired by a real experiment. By the means of
a proportional integral control, the regulation with exponential converge rate is obtained when the damping coefficient is a
nowhere-vanishing function of space. The analysis is based on the determination of appropriate Lyapunov functions and some
further analysis on an associated error system. The latter is proven to be exponentially stable towards an attractor. Numerical
simulations on the output regulation problem and additional results on related wave equations are also provided.

Key words: one-dimensional wave equation, Wentzel boundary conditions, regulation, output feedback control.

The wave equation is one of the classical partial differen-
tial equations. The actual reason is that the wave equa-
tion is the continuous pendant of Newton’s second law
of motion, i.e., where momentum is equal to the sum of
the forces. As a consequence, it is also linked with the
Euler-Lagrange framework, and therefore with the prin-
ciple of least action. For stationary systems, the energy
is conserved and the action (or Lagrangian) is station-
ary. Other physical phenomena are therefore associated
with the wave equation such that electromagnetic law,
and quantum phenomena with the Klein-Gordon equa-
tion.

In the control community, the wave equation has been
mainly used for the modelization, estimation, and con-
trol of mechanical vibration and deformation phenom-
ena. The regulation and control problem applied on the
one-dimensional wave equation with dynamic bound-
ary condition has attracted the attention of many re-
searchers in the control community: crane regulation [8],
[10], [14], and [6], hanging cable immersed in water [5],
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drilling torsional vibrations [38], [45] ,[1], [48], piezoelec-
tric control [24], and flexible structure [18]. There are
nowadays two main classes of issues : on the one hand,
longitudinal variation with for example overhead crane
and underwater cable, and, on the other hand, torsional
variation with drilling string dynamics. The difference
is on the control objective: one aims at controlling the
position in the first case, and instead the velocity in the
second case.

The behavior of the wave equation is strongly related to
its boundary conditions. In the case of classical bound-
ary condition (i.e., Dirichlet, Neumann, Robin) that is-
sue is well understood in the linear case and without
high-order terms. Particular terms at one boundary can
compensate for anti-damping terms at other boundaries
and even in the domain, for example, see [41], [40] and
[35]. Moreover, there are cases where even if the energy
of the one-dimensional linear wave equation decreases
along trajectories, it still does not decay exponentially
[23, Section 4].

The wave equation under consideration is subject to two
dynamic boundary conditions. This model results from
an identification problem associated with a laboratory
experiment [36].
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1 Problem statement.

The considered system is defined for ¢ > 0 and for = €
(0,1), by

3 .’E) (a(x)vm)m(tvx) - Q(m)vt(tvx) + f(m)v (

v (t, 1) = =frvz(t, 1) —vue(t, 1) + U(E) + fe, (1b
t,0) t (

(

t
= vz (t,0) — 11ve(t,0) + fac,
Ut((), ) = 1.

Here U (t) is the control input and we assume that

(hy) the function a : [0,1] — R% is in W*(0,1) and
that there exist a,a > 0 such that a < a(-) <@ a.e.
on [0, 1]. This function is associated with the mass
and elasticity of the wave and it is also linked with
the velocity.

(h2) The function ¢ : [0,1] — R, describing the in-
domain damping is in L>°(0,1) and satisfies ¢ <
q(-) <qa.e. on [0, 1] for some ¢,7 > 0.

(hs) The constants 81, 71, i1 are positive real numbers,
and v is real.

(hy) The source terms f(-) is in L*°(0, 1), and the real
constants f., foc are unknown and therefore they
cannot be used in the computation of the control
law U (t).

The regularity of a(-) stated in (h;) follows by classi-
cal arguments. In detail, for the computation, we need
a(-)vz(t,-) to be in H(0,1). To be more precise every-
thing will be the same as in the constant parameters
case if a(-)v,(t,-) and v, (t,-) have the same regular-
ity. To get strong solutions for (1), one needs to have
that v € H?(0,1). Next, it can be easily shown that
if a € Wh*° and ,v € H?(0,1) then a(-)v,(t,-) is in
H1(0,1). Note that this is just a sufficient condition for
the regularity. We refer the reader to [43, Chapter 21]
for more details about the regularity of a. In the sequel,
we also need quy(t, )% need to be integrable, this means
g € L>(0,1). For f we actually only need it to be inte-
grable, it holds nonetheless L>°(0,1) C L(0,1).

The objective of the paper is to regulate v (t,-) to the
constant reference value vi°f, by means of a proportional
integral (PI) control law using the measurement of the
velocity collocated with the actuation, v:(1,t), in other
words, the control U(t) can take the form

U(t) = —k(ve(t, 1)—’0{“)—]@/0 (vy(s,1)—vh)ds, (2)

where the constants k, k; have to be chosen. This can
be equivalently written as

{ U(t) = =k(vi(t,1) = 0i) — ki (£),  (3a)
N (t) = ve(t, 1) — U{Cf, 7,(0) = 0. (3b)

In the literature boundary conditions of the type (1b)-
(1c) can be recast as Wentzell’s boundary conditions
[15]. It involves a modification of the usual state space
which in our case requires the addition of two finite-
dimensional state variables, in a similar way as in [39],
[25], [10], [14] and [6]. When the wave equation is more
than a one-dimensional, the reader is referred to [15] and
[4] and references therein.

This type of control problem lies in robust output reg-
ulation. There has been an effort to extend the result
and method from linear finite dimensional systems, to
infinite dimensional systems. We refer the reader to [29],
[27], [28], more recently [47] and reference within all of
them. These papers establish general results for exam-
ple [47] deals with non-linear systems. However, they
are mostly based on either passivity, strong monoticity
or exponential decay properties. These properties often
remain to be proven as it is the case of the present pa-
per. In [44], the authors establish general result on the
PI control of infinite dimensional systems with the as-
sumption beforehand on the exponential stability of the
zero input system.

The impact of the in-domain damping ¢(x) can be an
issue for the decay rate, as we can have some overdamp-
ing phenomenon. Intuitively, the damping should help
the decay rate of the system. But as one can see in [17]
where a semi-linear wave equation is considered, the de-
cay rate of the non-damped system is finite time, the
addition of the damping degrade this performance to an
exponential decay rate. Note that for the present case
the in-domain damping is mandatory for the proof.

There are specific configurations of (1) that can be solved
using more intricate and general control law designs,
especially those tailored to address partial differential
equations coupled with ordinary differential equations
at the boundary. If disturbances are not considered, [11]
and its extension [12] can be employed. Additionally,
assuming that a(-) is constant allows the use of [37], [50],
or [49].

These five papers primarily employ an infinite-
dimensional backstepping approach, a development
closely associated with the influential work of Miroslav
Krstic [21]. Given that the wave equation can be ex-
pressed as a coupled heterodirectional hyperbolic par-
tial differential equation (PDE), the main strategy in
the aforementioned papers involves using backstepping
transformations to decouple or cascade the PDE. This
transforms the closed-loop system into a target sys-
tem, the stability of which is easier to analyze. Notably,
the uniqueness of the present paper lies in achieving
exponential stability without the need for decoupling,
thereby establishing new potential target systems for
backstepping based design.

The closest approach associated with the present paper



is [45] where the velocity regulation with a PI is consid-
ered. However, the controlled boundary condition con-
sidered in [45] is not a second order dynamic one, and
thus is different from the one considered in this paper.
Nevertheless, the boundary condition considered in [45]
implies the exponential stability even with small viscous
anti-damping at the boundary opposite to the actuation.
In the case under consideration, only viscous damping
at the opposite boundary is considered, and exponen-
tial stability is achieved. In [6] the wave equation is sub-
ject to two dynamic boundary conditions. The authors
establish asymptotic stability for the position stabiliza-
tion and that the decay rate is not exponential, and no
viscous terms are considered for the zero input system.
In [25], for the same model (as [6]) the exponential sta-
bility toward the origin is obtained but the control law
needs the knowledge of v,¢(1,t). This can be related to
the finite dimensional backstepping done in [14]. Studies
have been conducted concerning the potential absence of
exponential stabilization for wave-like equations, as evi-
denced by works such as [26], [31], and references therein.
In a broader context, investigations into this issue ex-
tend to more general setups, as seen in [16], [46], and
related references.

PI controllers have been successfully and recently used
in order to regulate linear and non-linear PDE, see [7],
[22]. An identification procedure has been presented in
[36] for the system (1) without source terms on exper-
imental data. This means that the considered problem
can be associated with an experimental setup. A first
study has been made on this system in [33] using clas-
sical form a Lyapunov functional but it failed to prove
the exponential stability. Only asymptotic stability was
established, by using the LaSalle invariance principle.

This paper provides a new term in the Lyapunov func-
tional and an associated methodology, for the present
setup. The proof of the exponential stability is given in
Section 3. In Section 4, this proof is compared with exist-
ing results. Next the proof of the robustness of the con-
trolled system is given in Section 5. Then in Section 6
we study, using the same approach, simpler cases where
one boundary condition is a Dirichlet one and this al-
lows us to establish the exponential stability of the zero
input system in the undisturbed case. The last part of
the paper deals with numerical simulations. The numer-
ical scheme is not derived from the usual approxima-
tion of space and time derivatives. We used the fact that
the wave equation can be derived from the Lagrangian
and the least action principle to approximate the sys-
tem space energy by a finite dimensional continuous time
Euler-Lagrange equation. The finite dimensional contin-
uous time system is then numerically solved by using
symplectic integrators. This suggested numerical scheme
is new up to the authors’ knowledge and provides an
interesting alternative compares to more standard dis-
cretization schemes.

Notations: If ] is an interval of real numbers, L?(I;R)
denotes (the class of equivalence of) square-integrable
functions from I to R. Moreover L2([0, 1]; R) is abusively
denoted L?(0,1). Furthermore H™ denotes the Sobolev
space W™2 i.e.,

we H' s uel? u e L? (4)

in which «/ denotes the derivative of w.

2 Main result

To achieve our objective, we perform a change of variable
in order to obtain an error variable u(-,-) and to prove
exponential decay of its partial derivatives.

The error variable u(-,-) is defined as follows, for every
(z,1) € [0,1] x [0, 00)

u(t,z) == v(t,z) — toi

: L ° ,Urcf 5
+A MQA[ 17a(x) + f(X)]dxd

@ ,Uref ‘ L s
e [ s ®)
1
mlt) = () = ot [ 1oiate) + f(o)ds
a eref .
- kilLlC(L(()i) [_'YI/Uief + fac} =< k; f : (6)
Note that, for every (z,t) € [0, 1] x [0, 00),
u(t,z) = v(t, ) — i + F(x), (7)
ue(t, ) = vy (t, z) — vt (8)

where we have gathered all the uncertainties in the func-
tion F(-) and it is immediate to deduce from (8) that
proving exponential decay of u; (in an appropriate sense)
is equivalent to prove it for v; — vi°f and hence to achieve
the desired control objective.

From now, we will therefore focus on the error variable
u(+, ). Direct computations yield that it is the solution
of the following system:

Ut — (a ) —q(x)ut,
(t, )

ut( ) )
(t,0)
(

I3

t

=()

—aqm (t) — azna(t)

||
A
N
A/—\G/-\
=

t - Bluw(ta 1);

() =
m2(t) =m (1), (9e
&1(t) = —méi(t) + pua(t,0), (of

e

ut(ov ) = U1 (07 1)1 ( g
72(0) = 12,0 51(0) = &o. (9h

g
ARG IR S

(0,) = uo,
1(

n ) 705



where a; := k + v and as := k;, and k is chosen such
that ay is positive.

Consider the following Hilbert spaces

Xy = HY((0,1);R) x L*((0,1);R) x R3,  (10)
X, :=H*((0,1);R) x H*((0,1);R) x R3.  (11)

The wave equation is associated with the following ab-
stract problem

{ X(t) + AX(t) = 0, (12a)
X(0) =X € Dom(A) C X, C Xy, (12b)

in which

—2
—(az1)" + gz
Vz € Dom(A), Az := |ajz3 + agzy + B2, (1) |, (13)

—23

Y125 — p121(0)

and
Dom(A) :={z € Xs; 22(1) = 23, 22(0) = z5}. (14)
Our well-posed result goes as follows.

Theorem 1 Considering assumption (hy) and (hs), the
abstract problem (12) is well-posed. In order words for
any initial data Xy € Dom(A), there exists a unique
solution to the abstract problem (12), such that for any
t >0, X(t) € Dom(A) C X, and

X € C%([0,00); Dom(A)) N CH([0,00); Xu),  (15)

X is the state space of weak solutions and the Hilbert
space considered and is defined in (10). X, is the state
space of strong solutions and is defined in (11).

In addition, for all initial data Xy € X,,, there exists a
weak solution X(t) € X, to the abstract problem (12)
given by

X(t) = S(1) X, (16)

in which S is the Cy-semigroup generated by the un-
bounded operator A. Moreover, it holds

X € C°([0,00); Xo). (17)
The proof is based on finding a transformation such that

the abstract problem is associated with a linear maxi-
mal monotone operator. Then the conclusion is drawn

by using the Hille-Yosida theorem. The part on weak
solutions holds true from the fact that Dom(.A) is dense
in X, and therefore S(t) defined a strongly continu-
ous map from X, to X,. Details are provided in Ap-
pendix A. The state is

n(t), n2(t), &1(t)] € Dom(A) C X, (18)
We define the energy E,, of a solution of (9) as vVt > 0

1
E.(t) = %/0 (ug(t, )% + a(x)ug(t,2)?) dz.  (19)

Note that this energy is invariant by translations with
constants, i.e., F, = F, if u — v is a constant func-
tion. Moreover, the absolutely continuous function
u(-,1) —m2(-) is constant along a trajectory of (9) and
equal to u, where

Uy = UQ(l) — 7’]2(0). (20)
Our objective is to establish the exponential stability of
the trajectory with respect to the following attractor

S:={z€ Xy, z21(:-) =d,d € R, 23(-) =0,
z3 = O, 24 = O, Z5 = O} (21)

This attractor is the kernel of the following functional

D(X(t)) ::/Ol[uf(t,x) +ul(t,z)|dx
+ i (8) + m3(t) + €L (1), (22)
indeed it holds
I'z)=0&z€S. (23)
We establish the following result.

Theorem 2 Consider the 1D wave equation (9) with the
assumptions (h1), (ha), (hs), and with ae, a; > 0. Then,
there exist a positive constant p, and a positive constant
M such that, for every weak solution X, it holds,

L(X(t)) < MT(X(0))e " (24)

and the system is exponentially stable towards the attrac-
tor S.

In addition it holds that maxgeo 1] |u(t, ) — u.| tends
exponentially to zero as t tends to infinity, with a decay
rate larger than or equal to p.



Theorem 3 Under assumption (h1)-(hz), and for any
k; = as > 0 and B1, u1 > 0, the conclusion on Theorem 2
still holds if

—Biko
2
o > 2a(D) + K1k2, (25)
—H1R2
26
"> 2a(0) + K1k, (26)
where
1o laslle= | 7@
= — = 2
K1 Q(3a+ 5 T3) (27)
2
Ko é(l + = 9 +h§1) (28)

Remark 1 The link between oy and v is defined right
below (9). This theorem means in particular that (24)
holds in a robust way and the regulation can even admit
small anti-damping at the uncontrolled boundary for cer-
tain value of u1, a(+), and q(+).

3 Proof of Theorem 2

This proof follows a standard strategy: the result is first
established for strong solutions by the determination of
Lyapunov functions verifying an appropriate differential
inequality, and then it is extended to weak solutions by
a classical density argument. Hence, in the sequel, solu-
tions of (9) are all assumed to be strong.

We start with the time derivative of F,, along a strong
solution. It holds for ¢t > 0

E, = _/0 qu? dx + a(1)ny (t)ug(t, 1)
— a(0)&1(t)uy(¢,0). (29)
One also has, for ¢ > 0, after using (9d) and (9e)
a(1)
B
+ axma(t))
d ra(l)
=~ (5 0RO + (1)
a(l)ay
p1

Similarly, one also has, for ¢ > 0, after using (9f)

a0 000 = e 0 (60 + )

- _i(‘;i?l)g%(t)) - “(?L)l”lg%(t). (31)

a(Dm (e (8, 1) = == (0) (1 (8) + cm (1)

;i (¢)- (30)

Define for t > 0

F(X(t)) := Eyu(t )+% 2

Then, by gathering (29), (30) and (31), one deduces that,
for t > 0,

a(0)
i(t) + ﬂff(t) (32)

i(F—i— all)az ng(t)) = —/01 qu? dx

dt 231
“g”ﬁw “ﬂﬁﬁ@. (33)

To conclude on the exponential stability we also need a
negative term in u2 and n3. We next consider an extra
term which will be added in the candidate Lyapunov
function in the sequel. From (20) it holds that

N2(t) = u(t, 1) —us, t>0. (34)
Set

&(t) == u(t,0) —uy, ¢>0. (35)

One has, for ¢t > 0, that

%(/( utdw /ut / U — Uy )Ust
/ut / (u— uy) aum);,;—/0 q(u — us)uy
/uf [ ([ S wrac)

a(1)nauq(t,1) — ( )&2ua(t,0). (36)
Using (9d) and (9f), one deduces after computations sim-

ilar to those performed to get (30) and (31), that, for
t>0,

—aans (t) + ni(t)

n2uz(t7 1) = ﬂl
_ %( Gzt >+ﬁlm(t)n2(t))’ (37)
G)  d B8 +EME®)
—&oug(t,0) = o %( u12 ) (38)

We next define for ¢ > 0

(u — uy)? da

W(X(t) = /Ol(u — w)ug d + /01

AU (%20) + om0

O (Mg +a0a0). (39)

~— NI



Gathering (36), (37) and (38), it holds for ¢ > 0

W= [ auz—“%)j”n%w |
a(l) , (0)

a(0) o
5 N (t) + I& (t). (40)

+

We finally define the candidate Lyapunov function V'
used for proving Theorem 2, which is positive definite
for some constant ¢ such that /2¢g > £ > 0 by

a(l)ag

V(W) =F(X(0) + "

+ (W (X(t)), >0. (41)

Putting together (32) and (39), it holds for ¢ > 0,
V(X (1) =Eu(t)

1
n e/o ((u —w)us + %(u - u*)Q) dz

N 6;(611) (n% + aon? + 0(2n0m + am%))
0
n (;in) (gf + 0(2&:61 + 7153))' (42)

and similarly, putting together (33) and (40), it holds
fort >0,

1 1
V:—/(g—ﬁ)u?dx—ﬁ/ au? dx
0 2 0

- % ((041 —Ont + 0425775)
a(0)(v1 —4) .o
- Tﬁr (43)

The purpose of V defined in (42) compared with F is
to make negative terms in u2 and 73 appear. Next we
compare the functional V' to the functional I' defined in
(22).

Proposition 1 With the notations above, and " defined
in (22), there exist £ > 0 and two positive constants
¢,C,p > 0 such that for every strong solution X(t) of
(9), one gets, fort >0,

Remark 2 Using oy and ag as tuning parameters one
can show that a necessary condition for

V(X(t) < ~Col (X (D). (46)

1s that
Cp < min{=1, a,/2 _aaOm -y
47V apy +a(0)”

This upper bound is deduced from the next inequalities
extracted from (43) and the condition for V to be definite

positive.
V2> ¢ (48)
g 0> Cp (49)
la > Cp (50)
1

Moreover as ¢ and C does not depend on q. It holds for
the decay rate p

p—30. (52)

The suggested approach allows us only to conclude for
stability when ¢ = 0, and in this case we can stop at (33).
Nevertheless following [33] or [6] we could use LaSalle’s
imwvariance principle to establish asymptotic stability. If
in addition as = 0, in the case of no integrator the system
falls as a one-dimensional particular case of [4, Theorem
1.2/, and therefore the decay rate is at least logarithmic.

PROOF. Using (20) and (32) one can observe that for
every t > 0 and x € [0,1] it holds

|u(t7 .7;) - u*|2 < 2|u(t’ 3?) - u(t’ 1)|2 —+ 277%@)
1
< 2/ ul(t, ) dx + 203 (t)
0

< gEu@) +23(8), (53)

As an immediate consequence, one gets that, for ¢ > 0,

/Ol(u —u,)?de < gEu(t) + 2n3 (1), (54)
G0) < SB0) +230). (5))

The proof of (44) relies now on the combination of (42),
(54) and (55), several completions of squares and the
Cauchy-Schwartz inequality. As for the argument of
(45), it is obtained similarly by using (43), (54) and (55),

Relying on Proposition 1, we complete the proof of The-
orem 2.



From (44) and (45), it follows that V < —pV hence
yielding exponential decrease of V' at the rate p and the
similar conclusion holds for I', thanks to (45). All items
of Theorem 2 are proven after using (53).

4 Discussion on the proof of the Theorem 2

There exist cases where the linear one-dimensional wave
does not decay exponentially. For example, the solution
u of the system

g (t, ) = uge(t, ), €RT x(0,1), (56a)
u(t,0) =0, (56b)
ug(t,1) = —ug (¢, 1) — uy(t, 1), (56¢)

does not decrease exponentially towards the origin, see
[23, Section 4]. It follows a ¢! sharp decay rate. The
addition/suppression of one term can make the decay
rate drastically different, for example

ug(t,x) = (aug).(t,x), €RY x(0,1), (57a)
ug(t,0) = ug(t,0), (57b)
upe(t, 1) = —ug (6, 1) —ue(t,1) — u(t, 1)

— ug(t, 1), (57¢)
is exponentially stable [25], whereas

ug(t, ) = (aug)(t, ), €RT x(0,1), (58a)
Ut (t, O) = Uy (t, 0), (58b)
up(t,1) = —ug (8, 1) —ug(t, 1) —u(t, 1), (58c¢)

is not exponentially stable, see [6]. However the solution
of (57) need to be more regular, see [25]. The energy of
the following two systems

g (t, ) = uze(t, ), €RT x(0,1), (59a)
Uz (t,0) = w (¢, 0), (59Db)
Uy (t,1) = —uy(t, 1), (59c¢)

and

Utt(tvx) = Umc(ta ‘T)’ € RJF X (07 1)a (603)
Uy (t,0) = w (¢, 0), (60Db)
ug (8, 1) = —ug(t, 1) — u(t, 1), (60c)

are exponentially decreasing [34]. Typically, for both pre-
vious cases, the exponential decrease and stability can
be obtained via Energy/Lyapunov approach using cross
terms in the following form.

/1(1 + x)upugde, (61)
0

which can make negative term as u2 and u? appear for
the Energy /Lyapunov functional derivative. This pervi-
ous term implies boundary terms in the following form

[ui + uf] l:o R

(62)
in the case of (59b)-(59¢) or (60b)-(60c) we can manage
to handle this term. However, this is problematic when
considering both boundary conditions as (9d) and (9f).
Indeed, even when ay = 0, we do not arrive to cope with
the term u2 both in 0 and 1. This incapacity to handle
the term u2 with both dynamic boundary conditions is
properly shown in [33] with more general form of wu,u;
cross terms, and considering a large family of reforma-
tion as hyperbolic PDE for example.

In particular the term (62) can be also taken care of if we
have damped position terms (u) on the domain. Indeed
in this case, this term enable us to use cross terms like

/O o, (63)

The exponential stability of the linear wave equation at
the origin with both dynamic boundary condition and
damped in velocity and position everywhere is estab-
lished in [32, Chapter 9]. We stress that the paper deals
with velocity regulation which has been transformed to
velocity exponential stability. The term (63) is close to
the one we suggest

/Ol(u — Uy )ug, (64)

This mostly corresponds to the beforehand knowledge
of the limit value of w for the system. This can be made
because the integrator part of the system captures the
distance between the state and the attractor. In our case
this term can be added because ¢ is strictly positive, see
(36).

5 Proof on Theorem 3

We start from the proof of Theorem 2, in (43), then we
compute the derivative of the following cross term, using
integration by parts

SE

/0 "1 2w ) = a(lud(t1) ' a(0)2 (,0)
' 1—2x)> M
+/0 2a+ Yuz

0+ &,
+ /1 ui dx / (1 —2z)qugu; de. (65)

B) X
0



The above cross term can be used to make negative terms

in n? and &2 appear at the cost of positive terms in u?
d 2

and us.

Consider that (3] < ,/a then

1
Gy =V, + 62/ (1 - 22)uzuy de, (66)
0

is positive.

Gathering (43) and (65), and using the Young’s inequal-
ity, the derivative of G, along the trajectory is

e}

IN

1
q q

- /Ol(ea ~ ty(2a+ P20 _22x))l) ~ 23)u da

(-0 + 2) - (R0 By
- DWas (67

The exponential stability still holds if the following in-
equalities hold

g—e—eg(1+g)>o, (68)
ég—£2(3a+%/+g) >0, (69)
Qa(l)(Oq — E) + B1€s > 0, (70)
2a(0)(y1 — €) + p1 2 > 0. (71)

A sufficient condition for the four previous inequalities
to hold is

by < Ko, (72)

> K1K2, (73)

2a(1)(a1 — Iﬂ;‘ig) + Bike > 0, (74)
2a(0)(y1 — K1Kk2) + p1k2 > 0. (75)

where k7 and k9 are defined in (27)-(28). This concludes
the proof.

6 Exponential stability for the zero input sys-
tem with no disturbance.

In the following we investigate and establish results on
associated problems. We first start with a wave equa-
tion subject to a Dirichlet’s boundary conditions and a
2nd order dynamic boundary condition. The second sys-
tem we add an integral action to the dynamics boundary
condition. The third and last system consist of a wave
equation with both 2nd order dynamics boundary con-
ditions, and correspond to the zero input system with
no disturbance.

Proposition 2 Consider the following 1D wave equa-
tion

uy — (aug)y = —qug, (t,x) € R x (0,1), (76a)
ue(t, 1) =y (¢), (76Db)
m(t) = —arm (t) — Brus(t, 1), (76¢)
u(t,0) =0, ¢>0, (76d)
u(0,) =wuo, u(0,:) =uy1, on(0,1), (76e)
71(0) = 10. (76f)

where a(-), q(+) are respecting (hy)-(h2), and with o and
81 are strictly positive.

The state of this system is
Xz(t) :[u(tv ')7 ut(t7 ')7 m (t)] € DOTTL(A2)7 (77)

where Az is the unbounded operator associated with (76).
The domain is defined as

Dom(Az) = {z € Xa,, 21(0) =0, 22(1) = 23}, (78)

where Xo 5 is the space of strong solutions, and Xz ,, is
the space of weak solutions defined as

Xy =H?*x H' xR, (79)
Xy, = H' x L? x R. (80)

Finally, consider

1
To(Ra(t)) = / (W (t,2) + 2 (t,2))dx
). (81)

Then, there exist a positive constant p and a positive
constant M such that for every weak solution X, it holds

FQ(XQ(t)) g MFQ(XQ(O))G_pt. (82)

And the system is exponentially stable towards the origin
Of X2,w .

In addition, it holds that maxgeo, 17 |u(t, z)| tends expo-
nentially to zero as t tends to infinity, with a decay rate
larger than or equal to p.

The following system is when we consider an integral
part at the dynamic boundary for (76).

Proposition 3 Consider the following 1D wave equa-



tion,
e — (aUg)e = —qug, (t,x) € RT x (0,1), (83a)
ue(t, 1) = m(¢), (83b)
m(t) = —aam(t) — aana(t) — frus(t, 1), (83c)
na2(t) = m (), (83d)
u(t,0) =0, ¢>0, (83e)
w(0,-) =wug, u(0,) =uy, on(0,1), (83f)
m(0) =no, n2(0) = m20- (83g)

where a(-), q(-) are respecting (h1)-(ha), and with oy, as
and 1 are strictly positive.

For x € [0,1], define

v(z) :=Cy /Ox £7 (84)

a(s)
a(l)az . (1). (85)

02 = *
a(l)a2 fol % + 51

The state of this system is

X3(t) = [u(t7 ')7 ut(t7 ')7 nl(t)7
12(t)] € Dom(As), (86)

where Ag is the unbounded operator associated with (83).
The domain is defined as

Dom(As) = {z € X35, 21(0) =0, 22(1) = 23}, (87)

where X3 s is the space of strong solutions, and X3, is
the space of weak solutions defined as

X3, =H?x H' x R? (88)
X3, = H' x L? x R?%. (89)

Finally, consider

1
L3(X5(1)) :/0 ((u(t,z) — v(2))? +ui (t, )
+ul(t, x))dx

() + (a(t) — 12

) O

Then, there exists a positive constant p and a positive
constant M such that for every weak solution Xs, it holds

L3(X3(t)) < MT3(X3(0))e™"". (91)

And the system is exponentially stable towards the at-
tractor defined as ker (I's(+)).

In additions, it holds that max,¢[o 1) |u(t, ) —v(z)| tends
exponentially to zero as t tends to infinity, with a decay
rate larger than or equal to p.

Now we consider the case where s = 0 in (9). This
system has been studied in a more general and multidi-
mensional setup in [4], the author establishes with lessen
hypothesis logarithmic decay rates.

Proposition 4 Consider the following 1D wave equa-
tion,

uy — (atg)y = —qug, (t,2) € RT x (0,1), (92a)
ut(tv 1) =M (t)a (92b)
ut(tv 0) = 61 (t)v (92C)
m(t) = —aam(t) — Prug(t, 1), (92d)
§1(t) = —mé&(t) + prug(t,0), (92e)
w(0,:) =wug, u(0,-)=u; on(0,1), (92f)
m(0) =no, &1(0) = &o. (92¢g)

where a(-), q(+) are respecting (h1)-(hs), and with oy, 81,
v1 and @1 are positive. The state of this system is

Xa(t) =[ult,-); ue(t;-), m(t), & (1)) € Dom(As), (93)

where Ay is the unbounded operator associated with (92).
The domain is defined as

Dom(A4) = {z € X353
22(0) = 24, 22(1) = 23}’ (94)

where X3 5 is the space of strong solutions, and X3 .,
is the space of weak solutions, both defined in (88)-(89)
Finally, consider
1
La((0) = [ (63 t,0) + i t,0))ds
0
+ i (1) + EE(0). (95)

Then, there exists a positive constant p and a positive
constant M such that, for every weak solution Xy, it holds

Ta(Xa(t)) < MT4(Xs(0))e "t (96)

And the system is exponentially stable towards the at-
tractor Sy defined by

S4 = {Z e Xgﬁw, Zl() = d,d e R, 22() = 0,
23 =0, z4 = 0}. (97)

which is the kernel of T4(+).

In addition, there exists u. so that max,¢jo,1] |u(t, ) —u.|
tends exponentially to zero ast tends to infinity.
PROOF.

We start by proving Proposition 2. As before, the ar-
gument is based on an appropriate Lyapunov function



V,, = F, + (W, where ( is a positive constant to be cho-
sen and

F,(t) ::%/O (uf + au?) dz + % 7 (98)
W (t) ::/O Ul d$+%/o qu? dx
a(1) a(l)a
+ Wnlu(t, 1)+ 53, u(t, 1)2. (99)

One gets, using integration by parts, (76c¢), and (76d)

1
- a(l)a
F(t) ;:—/ (qu?) dx — W) L2, (100)
0 B1
. 1 1
W (t) ::/ u? dx—/ auﬁdz+@n%. (101)
0 0 b1
Therefore

) 1 1
Vu:—/ (q—ﬁ)ufdm—ﬁ/ au? dx
0

a(l)
- W(a 1= Ont (102)

The conclusion follows by taking ¢ > 0 small enough and
noting that, thanks to the Dirichlet boundary condition
(83e), for every t > 0 and z € [0, 1]

u(t, 2)* = Ju(t, z) — u(t, 0)|*

1
< [ () de < 2B, < 2R, (103)
0

One proceeds by establishing an analog to Proposition 1
where I' and V' are replaced by I's and V,, in order first

to obtain that V,, < —pV,, for some positive constant p
independent of the state and finally to conclude as in the
final part of the argument of Theorem 2.

We next turn to the proof of Proposition 3. Using the
notations of the proposition, we set

w(t,z) : = u(t,z) —v(x),

N p1C
M2(t) : = na(t) + oMoy’

t>0, x€][0,1],

t>0. (104)

It is a matter of elementary computations to check that
w is the solution of (83) with different and corresponding
initial conditions with the Dirichlet boundary condition
at x = 0 (since v(0) = 0) and the boundary condition
given by

m(t) = —aini(t) — aeia(t) — frwe(t, 1), (105)
i2(t) = (t)- (106)

It holds

w,(1) = w(t, 1) — 7o (t)

=u,(1) — (1)-@%%2
U ds 1C2
:u*(l)fcg(/o gj@+aﬂ(1)6;2)0' (107)

We have essentially reduced the problem to only deal
with solutions of (92) with the Dirichlet boundary con-
dition at x = 0, with the additional constraint that
wx(1) = 0. In that case, we consider the candidate Lya-
punov function V,, = F,, + {W,, where ¢ is a positive
constant to be chosen and

1
Fu(t):= %/ (w} + aw?) dx
0
1
+ %(nf + asiy), (108)

1 1

= 1

Wi (t) ::/ Wwy dx—l—f/ qu?* dx
0 2.Jo

1
+ % (%7}3 + 771772) (109)

One gets

. 1 1
f/u:—/(q—ﬁ)wtzdx—é/ aw? dx
0 0

_ab)
B

a(l)az

B,

where we have repeatedly used the equality w(¢,1) =
7j2(t). By following what has been done previously, the
conclusion follows.

(1 — ) — ¢ (110)

We finally prove Proposition 4. As before the argument
is based on an appropriate Lyapunov function V,, defined
later. We first consider F' given in (32) and note that for
t > 0 it holds

S 2 x_a(l)al 2 0(0)71 o
P = Aqtd St - . ()

We next compute along solutions of (92) the following
time derivative

%( /0 1 (1t 2) — u(t. 1)) (t.2) d) =
+ /01 u? dr — /01 q(u(t,z) — u(t,1))u(t,z) dx
n (u(u 1) — ult, 0))a(0)um(t, 0)
- /01 au? dz—m /01 ug(t, ) de. (112)



In the above equation, we use (92e) to get rid of u,(¢,0)
and, to obtain for ¢ > 0 that

(u(t 1) = u(t,0) ) ua(t,0) =

+ (u(t,1) - u(t,O))fl—L%&

- %((u(t, 1) — u(t,O))%)
&1 &

= (m =)+ o (u(t, 1) — u(t, 0)). (113)
Setting for £ > 0
Gu(t): = /0 1 (u(t,x) —ult, 1)>ut(t, z) dz
- @(2351 (u(t, 1) — ult, 0)), (114)

we deduce from the above that along with solutions of
(92) that

1 1
Y u2 _ au’ 1’*% —
Gui/o 2z /0 24 o (m — &)
1
. <0/>7€ (u(t, 1) = u(t,0)) /0 w(t,z) de

- /01 q(u(t,x) — uf(t, 1)>ut dzx. (115)

We finally recall that there exists a positive constant
C,, (independent of the solutions of (92)) such that, for
t>0,

1
/ |ue| de+ max |u(t, z) — u(t, 1)]
0 z€l0,1]

1
g/ (] + Jua]) dz
0

< CoBy2(1). (116)
We now choose V,, = F+4G,, for ¢ > 0 small enough. Us-
ing repeatedly the Cauchy-Schwarz inequality, and (116)
in (111) and (115), one gets for € and ¢ small enough
that (44) and (45) hold true, from which one deduces
Ttem(i) of Proposition 4.

Finally, to get Item(i7) of Proposition 4, first notice that
u(t,1) admits a limit u. as ¢ tends to infinity since, for
every t,t' > 0 it holds u(¢,1) — u(t',1) = ftt, n1 and 7
decreases to zero exponentially. The conclusion follows
now by using (116).

Remark 3 In the proofs of all our results, one could use
the function G,, (especially the integral term) to obtain
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the exponential decrease of E, and some of the compo-
nents of the Wentzell’s boundary conditions. However,
this does not allow one to determine the limit u, for the
solution w in terms of initial conditions. In particular,
we are not able to characterize u, in Proposition /.

Note also that

1

u(t,x) —u(t,1) = 7/ uy (t, s)ds. (117)

x

This can be related with the means of u, and therefore
we have extended our Lyapunov function with a space
moving evaluation of the mean of the force/torque. Indeed
Uy 1S associated with the torque or the force in mechanical
setup.

7 Numerical schemes and simulations.

There exist several ways to compute numerical approxi-
mation of the solution of evolution problems associated
with partial differential equation, [42]. In the case un-
der consideration, spectral methods lead to an estima-
tion of the base function at each time step due to the
dynamics boundary condition. This requires an impor-
tant computing power. As we have only one dimension
in space finite-element methods reduce to finite differ-
ence methods with (possibly unequal) spacial step. Fi-
nite different methods can be delicate to design in or-
der to ensure at the same time numerical stability and
good approximation. Note that there also exist specific
schemes based on Riemann invariants [2]. These last
schemes have good numerical property, but their exten-
sion to dynamic boundary conditions is not obvious.

In this paper, we suggest a new approach, which pro-
vides numerical scheme stability and therefore achieves
structural stability. It is based on the discretization of
the Lagrangian associated with the wave equation. This
approach leads to a special finite difference scheme. As
previously said the wave equation in its stationary form
can be associated with a Lagrangian. For the case un-
der consideration (1), (in the stationary case where v =
U(t) = fo =71 = fac = 0), this Lagrangian is given by

L(o(t, ) = / SR(t,2) — a(e)od(t,)d

1 a(1) 2 a(0) 2
+ —(—=Fw(t, 1)" + —=v(¢,0)7). 118

5o+ S 2uw 0. (1)
Following the strategy in [20] and the least action princi-
ple, the dynamics of the system is associated with a sta-
tionary action. The action for any time interval is given
as

I(v) = /t ' L(v(t,-))dt. (119)

i



A stationary action means that the first variation is equal
to zero

0I(v,dv) =0, (120)
where the first variation is defined as
6I(v,60) = 61(v 4 dv) — 61(v) + O(||ov]?).  (121)

Computation gives the following stationary system

v — (avg)e =0, (x,t) in RT x (0,1), (122a)
’Utt(t, 1) = _Blvx(t, 1), (122b)
Utt (ta O) = M1V (t7 O) (1220)

This is the stationary part of (1), as usual the less ac-
tion principle, the dissipation and the input are added
afterward to obtain exactly (1). Now consider a discrete
version of (118)

LN
La(va(t)[]) = 3 [0a(t)[i]?
i—1
i (Ud(t)[i] —va(t)[i — 1])2
7%(%(15)[2‘ + 1] —wva(®)[i — 1] 2
3 dz; + dxisq
5 AN + 5 O0R. (123)

The integral part in v2 has approximated using Simp-
son’s 1/3 rule. The derivation of the Euler-Lagrange
equation can then be done by a symbolic numerical com-
putation. This gives an autonomous stationary linear fi-
nite dimensional system:

Bita(t) = Ava(t), (124)
with o(A) € iR. It holds
E =diag | & dy ... deyoy & (125)

Then we add dissipation with a positive symmetric ma-
trix R, source term (disturbance and action) and obser-
vation,

{ Eiig(t) = Ava(t) = Rialt) + BU() + fur, (1262)
y(t) = Cig(t). (126h)
with

Sl i b e (127)
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which represents the disturbance, and with

R=diag|v g ... gv—1 "/1} : (128)

The control U(t) is computed through
{ () = y(t) = Yref, (129a)
U(t) = —kinu(t) = kp(y(t) — grer).  (129b)

As the main idea of this discretization scheme is to have
a good approximation of the energy, we suggest going
on with this idea using symplectic integrator scheme,
see [13] and references within. These methods, like the
Crank-Nicolson method have the property preserve the
energy as time evolves. It is known that for a system
which has an eigenvalue in iR explicit schemes are un-
stable, and implicit schemes are exponentially stable see
[13]. As our system has structurally the zero eigenvalue,
symplectic numerical discretization schemes tend to give
better behaviors approximation.

The idea of a symplectic scheme is to combine an implicit
scheme together with an explicit one. This leads to

Ud[k’ + 1] Z’Ud[k‘] + At @d[k + 1}, (130)
Ei)d[k: + 1] ZE@d[k] + At A’Ud[k] — At Ri)d[k’ + 1]
+ At BU[k] + Atf. (131)

The second line is implicit, but R in our case is a diagonal
matrix and so the associated inverse matrix is easily
computed

dalk + 1] =(1 + AtET R) ™Y (0g]k] + At B~ Avg[k]
+ At ET'BUK] + AtE7f). (132)

There are several key points to note in this last equation.
First, the term (1 + E~'AtR)~! correspond to a con-
traction map in the case where R is positive, and there-
fore is associated with dissipation terms. Second, in the
case where R represent anti-dissipation term, there exist
discretized steps % where the numerical shame is unde-
fined. Third, where R = 0, these equations are two-step
explicit ones. The value selected for the numerical simu-
lation for the output regulation problem is summarized
in Table 1.

The Figure 1 illustrates the behavior of the output reg-
ulation problem, we observe that boundary velocities of
the system goes exponentially towards the constant ref-
erence. In Figure 2 the time response of the regulation
problem objectives are depicted. The in-domain velocity
converges in L? norm towards the reference. The con-
trol law associated with these time responses are given
in Figure 3. It is not clear how to select the control gain
to provide rapidity and robustness. Getting an urge in-
tegrator gain in order to have the control go faster to-
wards its steady state may cause some heavy oscillation.
However, as proven the exponential stability still holds.



Symbol value ‘ Symbol  value
N 199 fe -1
a(z) sin(2z) + 2 fac 1
q(x) 01 + 122 kp 10
f(z) sin(2nx) ki = ae 20
B1 20 vief 5
11 20 vg[] 0
v 1 #al0: N] 0
%! 1 At 0.001

Table 1
Parameter values for the simulation.

The time response of the wave equation velocity is drawn
as a surface in a 3d perspective in Figure 4. There is
first some important oscillation, with traveling wave go-
ing back and forth from the boundary, then the oscilla-
tion rapidly goes smaller, and finally the velocity goes
smoothly towards the reference. The time response of
the position is given in Figure 5. The impact of the con-
stant disturbance are more visible in this graph. The os-
cillations observed in Figure 5 are mainly due to the dis-
turbance which needs a particular distribution of the po-
sition along the space. Once this particular distribution
is obtained, the constant disturbance is compensated by
the integrator. The last figure, Figure 6 depicts v, (t, )
it allows to observe the effect of the disturbance and the
in-domain damping. The smooth convergence of the ve-
locity can be compared with the behavior of v,(t, -).

———————— 0,
10.0 4 v:(0, )
ve(1,t)
> 7.5 A
1%
o
o B L -
g 20
0.0 A L
0 2 4 6 8 10 12 14
time ¢
Fig. 1. The boundary velocities times responses.

8 Conclusion

This paper presents the first systematic Lypunov anal-
ysis for a 1-dimensional damped wave equation subject
to various dynamic (or Wentzell) boundary conditions,
in the case where the damping is everywhere active. As
a particular case, we also provide a regulation law for a
wave equation (with dynamic boundary conditions) by
the means of a PI control. The control law achieved ex-
ponential decay rate towards the constant reference, and
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--== 0, (0,8) — vpe!
v (1,t) —vp!

/Om(vt(z,t) — v:cf)dz

5.0 1

2.5 1

objective

10.0 12.5 15.0

7.5

0.0 2.5 5.0
time ¢
Fig. 2. The objectives times responses.
100 +
80 1
" 60
40
20 1
0 2 4 6 8 10 12 14
Fig. 3. The control law time response.
10
8
6 =
4 x
2 ¥
0
-2
-4

Fig. 4. The distributed velocity ©(¢, ) time response.

the rejection of constant disturbance. The possible re-
jection of the disturbance by the integral action can be
explained by the interne model principle. The numeri-
cal simulation shows the behavior of the closed-loop sys-
tem with unknown disturbance. Future work will be to
use some of the exponential decay system study in the
appendix as the target system for infinite-dimensional
backstepping control design. There is also a great inter-
est towards considering non-linear terms. For example,
what is happening when the damping is non-linear like in
[17], or even can we generalize towards non-linear waves



v(x, t)

Fig. 5. The distributed position v(t, z) time response.

X
Fig. 6. The distributed v, (¢, ) time response.
as
a(xr)u

Utt = (\/T—ui)z — q(@)us.

Moreover for practical applications there is great inter-
est studying the wave equation with dynamics bound-
ary condition but with a non-linear friction term at the
boundary opposite to the control, typically LuGre fric-
tion term.
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A  Proof of Theorem 1

The proof follows the same lines as the ones exposed in
[36]. The idea of the proof is to decompose the operator
A defined in (13) into a maximal monotone part and a
remaining part. We should be able to cancel the remain-
ing part with a bijective change of variable. Finally, we
conclude using the following theorem.



Theorem 4 (Hille-Yosida [3, Theorem 7.4 ]) Let
A be a mazximal operator on the Hilbert space H then for
every Xo € D(A) there exists a unique solution X to
the following abstract problem.

dX
E(t) +AX(t) =0, (A.1la)
X(0) = Xo. (A.1b)
with
X € C'([0,00); H) N C([0,00); D(A)). (A.2)
Now consider the following operator
~ ., -
—(az]) + 22+ 21
Vz € D(G), Gz = By 21(1) , (A.3)
0
—p121(0)
and the following matrix
0o 0o 0 0 0]
1—qg+1 0 0 O
B=10 0 —a1 —as 0 (A4)
0 0 1 0 O
0o 0 0 0 —m]

The domain of G is equal to the domain of A. One gets
A=G+ B. (A.5)

G is a monotone part, this is established in the following
lemma and B is a bounded operator.

Lemma 5 The unbounded linear operator G defined in
(A.3) is a mazimal monotone operator on X, defined in

(11).

PROOF. Considering the following scalar product on
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Xuw

1
(2, q) =/ (z1V + 22¢2 + azyV')da+
0
a(1)

a(0)
——23q3 + 24q4 + T 2545,
1

b1 )
(2, Gz) = / [—2122 + 22(—(az]) + 22 + 21)
0

—a(r)z125]dx + a(1)2z321(1)
= a(0)2521(0),

(A.6)

(A7)

using integration by parts and the fact that z € D(A),
one obtains

1
(z, Gz) :/ zadx > 0. (A.8)
0

Thus the operator G is monotone (see [3, Chapter 7 on
Page 181]) on the Hilbert X,,. In addition, if we establish
that

R(I+G) = X,, (A.9)
then the operator G is maximal monotone (see [3, Chap-
ter 7 on Page 181]), R stands for the range of the oper-
ator. Let y € X,,, we have to solve

z€D(A), z+Gz=y, (A.10)
which means that

21 — 22 =Y1, (All)
20 — (azy) + 29 + 21 =ya, (A.12)
23+ Bz1(1) =ys, (A.13)
24+ 0 =yq, (A.14)
25 — p121(0) =ys, (A.15)

using the fact that z € D(A) one gets
32’1 — (azi)' = 2y1 -+ Y2, (AIG)
Br21(1) + z21(1) = (ys +y1 (1)), (A.17)
—11121(0) 4+ 21(0) = (y5 + %1(0)). (A.18)

This is a classical stationary problem (e.g., see [3]) with
Robin’s boundaries conditions, using standard result (as
done in [3, Example 6, On Page 226] ) one gets that as
2y1 +y2 € L*(0,1), (A.16)-(A.18) has a unique solution
z1 € H?(0,1). Now one can check that the element z =
(21, 22, 23, 24, 25) with

z1 is the solution to (A.16)-(A.18), (A.19a)
2 =21 — Y1, (A.19Db)
z3 = y3 —a(1)z1(1), (A.19¢)
z4 = yaza = ys + a(0)21(0), (A.19d)

satisfies (A.11)-(A.15). Moreover using (A.16)-(A.18) on
(A.19) one gets that z satisfying (A.19) is in D(A).



Now, we are ready to state the proof of the well posedness
of (12). Note that the fact that G is maximal monotone

implies that D(A) is dense in X,, (i.e., D(A) = X,,).
Using the bijective change of variable
Ze(t) = 2(t)eP?, (A.20)

z is the solution to (12) is equivalent to, z. € D(A) is
the solution to

%ze(t) + Gz (t) =0, (A.21a)
2¢(0) = 2o, (A.21Db)

where B is defined in (A.4) and G is defined in (A.3).

From Lemma 5, using Theorem 4 on (A.21), and the
change of variable (A.20), one establishes (i). Using ar-
gument of density of D(A) in X,,, and Cp-semigroup
theory one obtains the regularity of weak solutions.

Note that we refer the reader to [19], [30] for the notion
weak solutions. Moreover part of the proof are inspired
from [6] and [9] which in turn originates from [39].

B Additional materials

This section pertains to additional materials that are
not included in the accepted version of the paper and
includes links to online resources.

The first line of A is

_ a0 _ _ 2aidwy  _ag  __ 2aidxy
6dxy 3(dxy+dxs)?? 6dzi’ 3(dxi+dz2)?’ -

} (B.1)

The second line is

_ag _ _ag _ _a1 _ a2dzi _ __ 2a3dz>
6dx1’  6dr;  6dxe 6dz3 3(dzot+dzs)?’
aq agdzl 2a2d$2
6dzo 6dx2 ’ 3(drotdzs)?’ ] (B.2)

The é-line for ¢ € [3, N — 2] for column ¢ — 2 at i + 2 is

a;—1dx;_2+a;_2dxi 1

6da:?71 ?

2a;_odxi_2
3(dw;—o+dz;—1)%’

2a;_2dxi_o aj—1dri_s+a;_osdxr;_1

B(dzi,ngda:i,l)z 6d1;371
_a,-dxi71+a,;,1dxi o 2a;dx;
6dx? 3(dw;+dwiy1)?’
aidri_1+a;_1dx; 2a;dx;
+ 6d$3 ) 3(dazi+dzi+1)2 (B.S)
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and zero elsewhere. The N — 1 line

aN_1dTN_2

2an_—2dTN_2 aN-—2
I 3
6dzd, _, 7’

°°9 3(dCEN_2+d:EN_1)2’ 6drn_1

__ 2an-_2dzN_>2 _ an-2  an-1dzN_>2
3(d:EN_2+d:EN_1)2 6drn_1 Gda:?\,71
_andrn-1 andrn_1
6da:?v ) de?\, :| (B4)
The N line
2an_1drN_1 andry_1
°°9 3(d37N71+d37N)2 6dz?\] )
2an_1drN_1 andrn_1
3(dwN,1+dJ;N)2 GdIf\, :| (B5)
The reader will find an online environ-
ment for the numerical simulation at

https://colab.research.google.com/drive/
1m6uhaur3eySqQ6eyjKf6SXxHXxXhSsWd?usp=sharing
and a git-hub depot of the numerical simulation at
https://github.com/christoautom/wave_1d.



