
HAL Id: hal-04085131
https://hal.science/hal-04085131

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Weakening and Iterating Laws using String Diagrams
Alexandre Goy

To cite this version:
Alexandre Goy. Weakening and Iterating Laws using String Diagrams. MFPS XXXVIII, Jul 2022,
Ithaca, NY, United States. �10.46298/entics.10482�. �hal-04085131�

https://hal.science/hal-04085131
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Electronic Notes in Volume 1

Theoretical Informatics ENTICS Proceedings of

And Computer Science https://entics.episciences.org MFPS 2022

Weakening and Iterating Laws Using String Diagrams

Alexandre Goy1,2

LIP
ENS Lyon
France

Abstract

Distributive laws are a standard way of combining two monads, providing a compositional approach for reasoning about
computational effects in semantics. Situations where no such law exists can sometimes be handled by weakening the notion
of distributive law, still recovering a composite monad. A celebrated result from Eugenia Cheng shows that combining n
monads is possible by iterating more distributive laws, provided they satisfy a coherence condition called the Yang-Baxter
equation. Moreover, the order of composition does not matter, leading to a form of associativity.
The main contribution of this paper is to generalise the associativity of iterated composition to weak distributive laws in the
case of n = 3 monads. To this end, we use string-diagrammatic notation, which significantly helps make increasingly complex
proofs more readable. We also provide examples of new weak distributive laws arising from iteration.

Keywords: monad, distributive law, weak distributive law, iterated distributive law, Yang-Baxter equation, string diagram

1 Introduction

Monads have been very successful in computer science to model computational effects [29,32,37]. In this
context, being able to compose monads is of central importance. The primary framework for monad com-
position is undoubtedly Beck’s celebrated theory of distributive laws [1]. In practice, finding distributive
laws between monads is hard, although some recipes are known to build them [26,27]. In contrast, once a
law is found, it often contains a significant semantic content – thus, it is common to find papers entirely
dedicated to describing the construction and the consequences of a distributive law, see e.g. [21]. More
generally, monad composition is still a very active field in the computer science community nowadays, with
possible applications in coalgebra [34,22,40,5] or in the semantics of computation [14,30].

With the help of a distributive law, one can compose two monads. Composing more monads can be
performed by iterating [11], i.e., by using more distributive laws – yet, these must meet coherence axioms
called the Yang-Baxter equations. While distributive laws are the first step towards monad composition-
ality, iterated distributive laws are all the following steps.

Although category theory is a language of choice to work on compositionality properties, there is one
major obstacle in the field of distributive laws: monads may not always compose. And consequently,

1 The author thanks Ana Sokolova and Daniela Petrişan for numerous discussions and support, Ralph Sarkis for
bringing up the topic of string diagrams, and the anonymous reviewers for their helpful comments and suggestions.
This work has been supported by the French project ANR-20-CE48-0005 QuaReMe.
2 Email: alexandre.goy@pm.me

Published February 15, 2023 Proceedings Available Online at © A. Goy

10.46298/entics.10482 https://doi.org/10.46298/entics.proceedings.mfps38 cb Creative Commons

https://entics.episciences.org
mailto:alexandre.goy@pm.me
https://doi.org/10.46298/entics.10482
https://doi.org/10.46298/entics.proceedings.mfps38
https://creativecommons.org/licenses/by/4.0/

3–2 Weakening and Iterating Laws Using String Diagrams

distributive laws may not always exist. The literature exhibits many such negative results, called no-go
theorems [36,25,13,41,33,42]. A possible fix consists in weakening the notion of distributive law to recover
transformations that, even if not satisfying all the usual axioms, still enable some weak kind of monad
composition. This simple idea has received substantial coverage in the computer science community since
the paper of Garner [15]. Simplifying earlier work from [35,9,10], Garner proposed to delete the one axiom
that was obstructing, in many concrete cases, the existence of a law. Several papers followed on this
revived notion of weak distributive law [17,18,4,31]. In general, finding examples of weak distributive laws
remains difficult, and very few techniques are known to produce them. Moreover, for such a law to be
relevant, it needs to fit into the sweet spot where no distributive law can exist, but there is still enough
structure for a weak one. This situation arises in a handful of known cases, e.g., when distributing the
distribution monad over the powerset monad [17] or the powerset monad over itself [15,18].

Iterating weak distributive laws is a promising target: one would enable building new weak distributive
laws out of some existing ones at low cost. However, two factors are now interacting with the basic
theory of Beck. The proof of the iteration theorem [11, Appendix A], due to Eugenia Cheng, is not very
difficult per se, but, already for the simplest case of three monads, it contains large commutative diagrams
that are hard to comprehend in one glimpse. On the other hand, although weak distributive laws are
conceptually close to distributive laws, they make the framework grow in complexity. Manipulating weak
laws involves manipulating more natural transformations arising from splitting of idempotents, making
proofs less transparent. In short, iterating adds one layer of complexity, weakening adds another layer, and
computations become untractable using the traditional tools of category theory. For a similar situation,
consider the paper of Winter [38] whose main result is to prove a variation of Cheng’s theorem in the
case of three monads. In a nutshell, the variation consists in modifying the type of one of the laws from
TF ⇒ FT into TF ⇒ FST – with, of course, consequences for the coherence conditions. Despite this
seemingly mild modification, one of the required commutative diagrams becomes so large that finding
the appropriate tiling required Winter to use automation via a Prolog program, mainly because of the
explosion in the number of naturality squares. As he insists on, the main difficulty is about finding the
proof – verifying it remains straightforward.

In the present paper, we aim to illustrate yet another case where string diagrams bring conceptual
clarity and simplicity. Under the name string diagrams, there are many graphical calculi based on topo-
logical operations such as string bending, dragging, and sliding. Such frameworks have raised more and
more interest over the past years: we can mention, e.g., the book of Coecke and Kissinger [12] and the
line of work of Bonchi, Zanasi et al. [39,8,7,6,3,2]. String diagrams are nowadays recognised as a helpful
tool. Inside published papers, commutative diagrams have long been preferred, even when they are less
enlighting (see e.g. [35, Propositions 2.3, 3.3, and 4.1]). One of the aims of this paper is to emphasise
the following point: when it comes to concepts that rely on several complexity layers, such as iterating
plus weakening, string diagrams may even be required as a computation-assisting technology. The string
diagrams we will make use of are those introduced in the style of Hinze and Marsden [28,20,19]. These
were already used to produce new results within the theory of distributive laws by Zwart [41] and in the
author’s PhD thesis [16]. There seems to be also some work in progress concerning no-go theorems [24],
showing that string diagrams are imposing themselves in the area to visualise categorical transformations,
provide elegant proofs, and communicate ideas.

Contributions.
This paper contains contributions of two kinds: technical (laws) and practical (strings). On the

practical side, the paper introduces in Section 3 a convenient string-diagrammatic notation that helps
manipulate concepts at play. In particular, we introduce a new notation for idempotents of the form
κ : ST ⇒ ST in equation (12), which is central in the whole development. The main technical contribution
of the paper consists in generalising Cheng’s Theorem 4.1 to weak distributive laws in the case of n = 3
monads. For clarity, this result is split into three distinct statements: Theorem 4.3, Theorem 4.5, and
Theorem 4.6. Along the way, and building on a key technical tool which is Lemma 3.10, we derive several
results of the theory of weak distributive laws, some of them already presented in [16], some of them
unpublished. In Section 4.2, we also provide four families of examples where our main result applies:

Goy 3–3

trivial weak distributive laws, and generic distributive laws involving the exception monad, the reader
monad, and the writer monad. Finally, in Section 4.3, we give a new perspective on algebras for a monad
by identifying them as distributive laws (Proposition 4.16). In this vision, algebras for a distributive law
are identified as iterated distributive laws (Proposition 4.17).

Related Work.
The content of the present paper is partly based on the author’s PhD thesis [16], with a slightly different

perspective. In [16] the focus is put on the correspondence weak distributive laws - weak liftings - weak
extensions. In contrast, in the present paper, we instead follow the approach of [35, Section 2] consisting in
building the weak composite monad directly out of the weak distributive law. It has to be mentioned that
iterated distributive laws have already been studied from a string-diagrammatic perspective in a paper
from Hinze and Marsden [19].

2 Background

2.1 Preliminaries and Notation

Definitional equality is denoted by ,. We assume basic knowledge of category theory, including: category,
functor, natural transformation. Let C be a category and S, T be endofunctors on C. We use the Lie
bracket notation [S, T] as a shortcut for the type of natural transformations TS ⇒ ST . For example,
λ : [S, T] means that λ is a natural transformation of type TS ⇒ ST . This notation is convenient because
(a) laws λ : [S, T] are related to composite monads S ◦T and (b) the type TS ⇒ ST looks like a logical
version of the formal expression −TS + ST . Identity morphisms will be denoted by 1X : X → X, the
identity functor by 1: C → C, and the identity natural transformation on a functor F by 1F : F ⇒ F .

In the whole paper we assume that C is idempotent complete, that is, for every morphism k : X → X in
C such that k ◦ k = k, there are morphisms p : X → Y and i : Y → X such that i ◦ p = k and p ◦ i = 1Y . A
direct consequence is that for any functor F : C → C, every idempotent natural transformation κ : F ⇒ F
splits. Explicitly, there are a functor K and natural transformations π : F ⇒ K, ι : K ⇒ F such that
ι ◦ π = κ and π ◦ ι = 1K . All the forecoming examples live in the category Set of sets and functions,
which is idempotent complete. So are, e.g., toposes and the category of compact Hausdorff spaces [18].
We globally impose idempotent completeness to be able to split natural transformations denoted by κ in
the sequel – all our results remain valid by only asserting locally that these κ split.

2.2 Introducing String Diagrams

We strongly encourage the reader to refer to [20, Sections 2 and 3] for a thorough introduction to string
diagrams. In this short section, we will nonetheless provide a crash course in string diagrams, mainly to
fix notations.

The following example sums up all useful notation. On the left part, we provide several basic natural
transformations λ : TS ⇒ ST , ν : ST ⇒ U , ε : U ⇒ 1, η : 1 ⇒ T . On the right part, we provide
two equivalent string diagrams representing the same composite natural transformation ν ◦ λε ◦ ηSU =
ν ◦ λ ◦ ηS ◦ Sε : SU ⇒ U .

λ ν ε η

T S

S T

TS

U

U

T1

1

ν

λε

ηSU

=

ν

λ
ηS

Sε

U U

U US S

,, , , (1)

We use the following convention: diagrams are read from right to left and from bottom to top (note
that [20] rather uses top to bottom). A functor F : C → D, represented by a vertical string, delineates
two regions: the region on the right represents the category C, while the region on the left represents

3–4 Weakening and Iterating Laws Using String Diagrams

the category D. In what follows, we only study endofunctors in C 3 . Therefore all delineated regions
remain blank and represent the category C. The identity functor 1: C → C is not depicted. A natural
transformation α : F ⇒ G is depicted by a symbol between functor F (below) and functor G (above).
Using colours, we will define on-the-fly unambiguous symbols (typically, nodes) to distinguish between
different natural transformations – see equation (1) for a first example. The identity natural transformation
1F : F ⇒ F is a string with no symbol, i.e., it coincides with the representation of the functor F : C → C.

Let F , G, H, K be functors, and α : F ⇒ G, β : G ⇒ H, γ : H ⇒ K be natural transformations.
Composition of functors is denoted by GF and depicted by horizontal juxtaposition of strings. Vertical
composition of natural transformations is denoted by β ◦ α : F ⇒ H, defined by (β ◦ α)X , βX ◦ αX for
all objects X, and depicted by vertical glueing of string diagrams. Left (respectively right) composition
of a functor and a natural transformation is denoted by Hα : HF ⇒ HG (respectively αH : FH ⇒
GH), defined by (Hα)X , H(αX) (respectively (αH)X , αHX) for all objects X, and depicted by
horizontal juxtaposition of string diagrams. Horizontal composition of natural transformations is denoted
by γα : HF ⇒ KG, defined by γα , Kα ◦ γF = γG ◦ Hα, and depicted by horizontal juxtaposition of
string diagrams.

Each string diagram represents a natural transformation of some type. Two string diagrams of the
same type are identified up to continuous operations such as dragging nodes and bending strings (provided
it does not reverse the implicit bottom-up vertical direction). Discontinuous operations include sliding a
node past another on the same string, crossing two strings, and deleting or adding strings or nodes. Such
operations may be allowed punctually in the presence of a natural transformation that justifies them. For
instance, a natural transformation λ : [S, T], having type TS ⇒ ST , represents an ad hoc rule to cross the
two strings representing S and T . String-diagrammatic notation is coherent with the usual laws of category
theory in the sense that two identified string diagrams always denote the same natural transformation.

It is customary, as done in [20], to specify the types of the functors below and above each string
diagram. In this paper, only a few functors are in play, so that our colour code would be sufficient to infer
all types. For the sake of clarity, we opt for some redundancy by always indicating types.

3 A String-Diagrammatic Theory of Weak Distributive Laws

The present section introduces weak distributive laws in string-diagrammatic style, starting back from the
standard theory of monads and distributive laws.

3.1 Monads and Distributive Laws

Definition 3.1 A monad is a triple (T, ηT , µT) comprising a C-endofunctor T and two natural transfor-
mations, the unit ηT : 1 ⇒ T and the multiplication µT : TT ⇒ T , such that µT ◦ ηTT = 1T = µT ◦ TηT

(unitality) and µT ◦ µTT = µT ◦ TµT (associativity).

String diagrammatically, these data are denoted by

µT

unitality

= =ηT =

associativity

1T

T T T T T T T T

T T T T T T T TT TT T

, , , (2)

For the sake of readability, we may denote a monad (T, ηT , µT) simply by T . Let us give some examples
of monads in the category Set.

3 To be precise, we are using the standard formalism of string diagrams for monoidal categories [23] within the
category of C-endofunctors, where monoidal product is given by functor composition.

Goy 3–5

Example 3.2 The identity monad consists of the identity functor 1 with both the unit and the multipli-
cation being the identity natural transformation 1 ⇒ 1.

Example 3.3 The exception monad E is defined as follows. Let 1 = {∗} be a singleton set. For any set
X, let inlX : X → X +1 and inrX : 1 → X +1 be the canonical injections. The functor E maps a set X to
the set EX , X+1 and a function f : X → Y to Ef : X+1 → Y +1, defined by Ef(inlX(x)) , inlY (f(x))

and Ef(inrX(∗)) , inrY (∗). The unit is ηE , inl : 1 ⇒ E and the multiplication µE : EE ⇒ E is given by

merging exceptions, i.e., µEX(inlX+1(z)) , z for all z ∈ X + 1 and µEX(inrX+1(∗)) , inrX(∗).

Example 3.4 The reader monad R is defined as follows. Let A be a set of labels. The functor R maps
a set X to the set RX , XA and a function f : X → Y to Rf : XA → Y A, defined by Rf(h) , f ◦ h
for all h ∈ XA. The unit ηR : 1 ⇒ R produces a constant function ηRX(x) , (a 7→ x). The multiplication

µR : RR⇒ R duplicates the input, i.e., µRX(h) , (a 7→ h(a)(a)) for all h ∈ (XA)A.

Example 3.5 The writer monad W is defined as follows. Let (M, ·, e) be a monoid. The functor W

maps a set X to the set WX , M ×X and a function f : X → Y to Wf : M ×X →M × Y , defined by
Wf(m,x) , (m, f(x)). The unit ηW : 1 ⇒ W outputs the monoid unit ηWX (x) , (e, x). The multiplication

µW : WW ⇒W implements the monoid multiplication, i.e., µWX (m, (n, x)) , (m · n, x).

Example 3.6 The powerset monad P is defined as follows. The functor P maps a set X to the set of
its subsets PX and a function f : X → Y to its direct image Pf : PX → PY , defined by Pf(U) ,

{f(x) | x ∈ U} for all U ⊆ X. The unit ηP : 1 ⇒ P produces singletons ηPX(x) , {x}. The multiplication

µP : PP ⇒ P computes unions, i.e., µPX(U) ,
⋃

U for all U ∈ PPX.

Example 3.7 The distribution monad D is defined as follows. The functor D maps a set X to the set of
all finitely-supported probability distributions on X, i.e.,

DX ,

{

p : X → [0, 1] |
∑

x∈X

p(x) = 1, suppX(p) is finite

}

(3)

where suppX(p) = {x ∈ X | p(x) > 0}. For a p ∈ DX, we may use the formal sum notation p =
∑

x∈X px·x,

where px , p(x). A function f : X → Y is mapped to Df : DX → DY , defined by Df(
∑

x∈X px · x) ,
∑

x∈X px · f(x). The unit ηD : 1 ⇒ D produces Dirac distributions ηDX(x) , 1 · x. The multiplication

µD : DD ⇒ D is a weighted average, defined by µDX(q) ,
∑

p∈DX qppx · x for all q ∈ DDX.

Definition 3.8 Given two monads S, T on C, a distributive law is a λ : [S, T] such that the four following
axioms hold:

λ ◦ TηS = ηST (η+)

λ ◦ TµS = µST ◦ Sλ ◦ λS (µ+)

λ ◦ ηTS = SηT (η−)

λ ◦ µTS = SµT ◦ λT ◦ Tλ (µ−)

String diagrammatically, the monads S, T , and the distributive law λ : [S, T] are pictured as

µSηS1S µTηT1T λ

T T T

T T T T

TS

SSS

SSS

S

, , , , , , , (4)

3–6 Weakening and Iterating Laws Using String Diagrams

and the distributive law axioms are

(η+) (µ+)

== ==

(η−) (µ−)

S S S S S S S S

S S S S S S S S

T T T T T T T T

T T T T T T TT

(5)

Any distributive law λ : [S, T] yields a monad S ◦λ T , (ST, ηSηT , µSµT ◦ SλT), also denoted by S ◦T
when no confusion can arise, and pictured as

S ◦T ηS◦T µS◦T

S S S

S S

T T T

T T TS

, , , (6)

3.2 Weak Distributive Laws

Definition 3.9 Given two monads S, T on C, a weak distributive law is a λ : [S, T] such that the ax-
ioms (η+), (µ+) and (µ−) hold.

In this definition, the weakening comes from dropping the (η−) axiom, as done in [15]. There are other
possible weakenings that we briefly discuss in Remark 3.15. An interesting natural transformation emerges
from the structure of a weak distributive law. Consider

κ , ST TST STT ST
ηTST λT SµT

(7)

If λ were a distributive law, then κ would be the identity. In the weak case though, κ still is an
idempotent that is compatible with units and multiplications in the following sense.

Lemma 3.10 The natural transformation κ satisfies the following equations.

κ ◦ κ = κ (8)

κ ◦ λ = λ (9)

κ ◦ ηSηT = ηSηT (10)

κ ◦ µSµT ◦ SλT = µSµT ◦ SλT ◦ κκ (11)

As κ : ST ⇒ ST is an idempotent natural transformation and we assume C to be idempotent complete,
there are a C-endofunctor K and two natural transformations π : ST ⇒ K and ι : K ⇒ ST such that
ι ◦ π = κ and π ◦ ι = 1K . Using these, one can build a monad that is to be interpreted as a weak
composition of S and T , namely S •λ T = (K,π ◦ ηSηT , π ◦ µSµT ◦ SλT ◦ ιι), also denoted by S • T when
the context is clear. See Appendix A for a proof that this is indeed a monad. We now introduce some
string diagrammatic notation that will make computations practicable:

1K π ι ==, , ,

S S S

SS S

T

T T

T

T

T

KK

K K

K

K

K

K

(12)

Goy 3–7

String diagrammatically, the equations from Lemma 3.10 can be represented as below.

= = = =

S S S S S S S S

S S S S S S S S

T T T T T T T T

T T T T TT T T

(13)

The composite monad S • T is, in turn, as follows – compare with diagrams (6) for S ◦T :

1S•T ηS•T µS•T, , ,

K

K K K

K K

(14)

Example 3.11 Let γ : S ⇒ T be a monad morphism, that is, a natural such that γ ◦ ηS = ηT and
γ ◦ µS = µT ◦ γγ. Then ηSµT ◦ Tγ : [S, T] is a weak distributive law – and, in general, not a distributive
law. Such distributive laws are called trivial, because S •T = T [16, Proposition 2.12]. In diagrams:

γ = =

monad morphism axioms trivial weak
distributive law

S S S S S S

ST T T T T T

T

, (15)

We provide two concrete examples:

• The identity monad morphism 1P : P ⇒ P yields a trivial weak distributive law ηPµP : [P,P] defined
by U 7→ {

⋃

U} for any subset of subsets U .

• The support monad morphism supp : D ⇒ P yields a trivial weak distributive law ηDµP ◦P supp : [D,P]
defined by U 7→ 1 ·

⋃

p∈U suppX(p) for any subset of distributions U ∈ PDX.

Example 3.12 Given a monad T and a natural transformation α : T ⇒ T , one can view α as having type
[1, T] or [T, 1], where 1 is the identity monad described in Example 3.2. Table 1 describes how axioms
of distributive laws can then be satisfied by α. One can infer that α : [1, T] is a weak distributive law if

Table 1
Required axioms for the law α

axiom α : [1, T] α : [T, 1]

(η+) α = 1 α ◦ ηT = ηT

(η−) α ◦ ηT = ηT α = 1

(µ+) α = α ◦ α α ◦ µT = µT ◦ αα

(µ−) α ◦ µT = µT ◦ αα α = α ◦ α

and only if α is the identity, whereas α : [T, 1] is a weak distributive law exactly when α is an idempotent
monad morphism. For example, given any monad morphism γ : T ⇒ 1 (that is, a natural transformation
which is pointwise Eilenberg-Moore), the corresponding trivial weak distributive law is ηT ◦γ : [T, 1] which
is indeed an idempotent monad morphism. We provide two concrete examples:

3–8 Weakening and Iterating Laws Using String Diagrams

• The map proj2 : W ⇒ 1 from the writer monad, defined by proj2X(m,x) , x for any (m,x) ∈ WX, is a
monad morphism. Therefore ηW ◦ proj2 : [W, 1], defined by (m,x) 7→ (e, x), is a weak distributive law.

• Given any letter a ∈ A, the map â : R ⇒ 1 from the reader monad, defined by âX(h) , h(a) for
any h ∈ RX, is a monad morphism. Therefore ηR ◦ â : [R, 1], defined by h 7→ (b 7→ h(a)), is a weak
distributive law.

We provide two non-trivial examples of weak distributive laws, both of them arising from situations
when no distributive law of their type exists [25,36].

Example 3.13 The natural transformation λ : [P,D] defined for any distribution of subsets p =
∑

i pi ·Ui
by

λX(p) =

{

∑

i

piq
i | qi ∈ DX, supp(qi) ⊆ Ui

}

(16)

is the unique monotone weak distributive law of its type – see [17] for a detailed study.

Example 3.14 The natural transformation λ : [P,P] defined for any subset of subsets U by

λX(U) =
{

V ⊆
⋃

U | ∀U ∈ U , V ∩ U 6= ∅
}

(17)

is the unique monotone weak distributive law of its type – see [15,18] for more details.

One can see that the theory of weak distributive laws is very similar to Beck’s theory of distributive
laws [1]modulo the transformations π and ι. For example, if λ : [S, T] is a distributive law, then the classical
theory shows that SηT : S ⇒ S ◦λT and ηST : T ⇒ S ◦λT are monad morphisms. Similarly, if λ : [S, T] is
only weak, then π ◦SηT : S ⇒ S •λT and π ◦ ηST : T ⇒ S •λT are monad morphisms. Whenever the base
category is idempotent complete, as is assumed in this paper, the renowned correspondence distributive
laws - extensions - liftings also generalises (see [15]).

Remark 3.15 Deleting the (η−) axiom is one of the many ways of weakening the notion of distributive
law. In recent years, this approach has been very fruitful for computer science applications [17,18,16,4].
One may ask, symmetrically, what happens by deleting the (η+) axiom instead. This idea gives rise to the
notion of coweak distributive law developed by the author in [16]. Coweak distributive laws enjoy many
symmetries with respect to weak distributive laws, but no non-trivial examples of them are known. Yet
another way of weakening the notion of distributive law is the one of Street [35], who suggests keeping a
weakened version of both the (η+) and the (η−) axiom. The presentation of the present paper – including
the string diagrammatic approach – is greatly inspired by the one of Street-weak distributive laws in [35].
A broader, 2-categorical account of distributive law weakenings can be found in [9,10].

4 Iterating Laws

4.1 Adapting Cheng’s Theorem

In this section, we are interested in what happens when combining more laws. For the sake of simplicity,
we will only consider the case when three laws are in play. In the whole section, let R, S, T be monads

µSηS1S µTηT1T1R ηR µR, , , , , , , , ,

R

R R R

R R

S

S

S S

S S

T

T

T T

T T
(18)

and λ : [S, T], σ : [R,S], τ : [R,T] be natural transformations such that the following equation holds.

σT ◦ Sτ ◦ λR = Rλ ◦ τS ◦ Tσ (YB)

Goy 3–9

Equation (YB), known as the Yang-Baxter equation, intuitively states that these three natural transforma-
tions are coherent with each other. Diagrammatically, it means that when performing the three crossings
in a row, their order does not matter:

λ τσ =

Yang-Baxter

R R R R

R R R R

S S S S

SS S S

T T T T

T T TT

, , , (19)

The result of Cheng [11, Theorem 1.6] can be rephrased as follows in the case of three monads.

Theorem 4.1 (Cheng) Let R, S, T be monads and λ : [S, T], σ : [R,S], τ : [R,T] be distributive laws
satisfying the Yang-Baxter equation. Then

• Rλ ◦ τS : [R ◦S, T] is a distributive law,

• σT ◦ Sτ : [R,S ◦T] is a distributive law,

• these two laws generate the same monad, i.e., (R ◦S) ◦T = R ◦ (S ◦T).

The result can be generalised to weak distributive laws. Let us consider separately what happens for
the two possible composite laws. From now onwards, the natural transformations κ, π and ι from Section 3
will mention explicitly which law they relate to – e.g., given a weak distributive law λ : [S, T], they are
denoted by κλ, πλ and ιλ.

4.1.1 First Composite Law

Assume σ : [R,S] is a weak distributive law. We will derive which axioms on λ and τ are sufficient for

ϕ , T (R •S) TRS RTS RST (R •S)TT ισ τS Rλ πσT (20)

to be a (weak) distributive law. The natural ϕ : [R •S, T] can be depicted as follows, where H is short
notation for the functor R •S:

ϕ

H

H

,

T

T

(21)

The (η+) axiom for ϕ can be derived from equation (10) which states compatibility between units and the
idempotent, the (η+) axiom for τ , and the (η+) axiom for λ:

= = =
(10) τ (η+) λ (η+)

H H H HT T T T

T T T T

(22)

The (η−) axiom for ϕ can be derived from the (η−) axiom for τ , the (η−) axiom for λ, and the retract
equation π ◦ ι = 1R•S :

= = =
τ (η−) λ (η−) retract

T T T TH H H H

HHHH

(23)

The (µ+) axiom for ϕ can be derived from equation (11) which states compatibility between multiplications
and the idempotent, the retract equation π ◦ ι = 1R•S , the (µ+) axiom for both τ and λ, the Yang-Baxter

3–10 Weakening and Iterating Laws Using String Diagrams

equation, the retract equation again, and equation (11) again:

= = = = =

(11) (11)retract (YB)λ (µ+)
τ (µ+) retract

T T T T T T

TT T T T T

H

H H

H

H H

H

H H

H

H H

H

H H

H

H H
(24)

To prove the last axiom, we need a technical lemma.

Lemma 4.2 If λ’s axioms (η+) and (µ+) hold, and the Yang-Baxter equation holds, then the idempotent
κσ commutes with the natural Rλ ◦ τS in the sense that

κσT ◦Rλ ◦ τS = Rλ ◦ τS ◦ Tκσ (25)

Proof. Easy to see using string diagrams:

= == = =

κσ def λ (η+) (YB) λ (µ+) κσ def

R R R R R R

R R R R R R

S S S S S S

S S S S S S

T T T T T T

T T T T T T
(26)

✷

The (µ−) axiom for ϕ can then be derived from the retract equation π ◦ ι = 1R•S , the (µ−) axiom for
both τ and λ, and the lemma relying on λ’s axioms (η+) and (µ+).

= = =

retract
τ (µ−)
λ (µ−) Lemma 4.2

T T T T TT TT

T T T TH H H H

H H H H

(27)

Table 2 sums up which axioms of τ and λ are sufficient to make axioms hold for ϕ.

Table 2
Required axioms for the composite law ϕ

ϕ requires τ λ

(η+) (η+) (η+)

(η−) (η−) (η−)

(µ+) (µ+) (µ+)

(µ−) (µ−) (µ−), (η+), (µ+)

Using the information contained in Table 2, we get the following result.

Theorem 4.3 Let R, S, T be monads and λ : [S, T], σ : [R,S], τ : [R,T] be weak distributive laws satisfying

the Yang-Baxter equation. Then the composite ϕ , πσT ◦Rλ ◦ τS ◦ T ισ : [R •S, T] is a weak distributive
law. If, additionally, τ and λ are distributive laws, then ϕ is a distributive law.

Goy 3–11

4.1.2 Second Composite Law

One could also compose the laws the other way around. Assume λ : [S, T] is a weak distributive law.
Consider the natural transformation

ψ , (S •T)R STR SRT RST R(S •T)ιλR Sτ σT Rπλ (28)

The natural ψ : [R,S •T] can be depicted as follows, where K is short notation for the functor S •T :

ψ ,

R

R

K

K

(29)

Again, assuming some axioms of distributive laws for σ and τ , one can infer axioms for ψ. Using string
diagrams, one can easily see that the proofs are symmetrical from the ones in Section 4.1.1. As an instance,
recall that Lemma 4.2 was required to prove the (µ−) axiom for ϕ. Now, the following symmetrical result
is required to prove the (µ+) axiom for ψ:

Lemma 4.4 If τ ’s axioms (η−) and (µ−) hold, and the Yang-Baxter equation holds, then the idempotent

κλ commutes with the natural σT ◦ Sτ in the sense that

Rκλ ◦ σT ◦ Sτ = σT ◦ Sτ ◦ κλR (30)

Proof. Easy to see using string diagrams:

= == = =

κλ def τ (η−) (YB) κλ defτ (µ−)

R R R R R R

R R R R R R

S S S S S

S S S S S S

T T T T T T

TTTTTT

S

(31)
✷

Table 3 sums up which axioms of σ and τ are sufficient to make axioms hold for ψ.

Table 3
Required axioms for the composite law ψ

ψ requires σ τ

(η+) (η+) (η+)

(η−) (η−) (η−)

(µ+) (µ+) (µ+), (η−), (µ−)

(µ−) (µ−) (µ−)

Using the information contained in Table 3, we get the following result.

Theorem 4.5 Let R, S, T be monads, λ : [S, T], σ : [R,S] be weak distributive laws, and τ : [R,T] be a

distributive law, satisfying the Yang-Baxter equation. Then the composite ψ , Rπλ◦σT ◦Sτ ◦ιλR : [R,S•T]
is a weak distributive law. If, additionally, σ is a distributive law, then ψ is a distributive law.

3–12 Weakening and Iterating Laws Using String Diagrams

4.1.3 Associativity of Weak Iteration

According to the preceding paragraphs, provided the Yang-Baxter equation holds and enough axioms are
satisfied, there are two ways of obtaining a composite weak distributive law. The first one, described in
Section 4.1.1, yields by Theorem 4.3 a weak distributive law ϕ : [R •S, T] and thus a monad (R •S) •T .
The second one, described in Section 4.1.2, yields by Theorem 4.5 a weak distributive law ψ : [R,S •T] and
thus a monad R •(S •T). Contrary to Theorem 4.1, it is not obvious that even the underlying functors of
these two monads are the same. It turns out that they are, and that more broadly, one can identify these
two monads, allowing us to write unambiguously R •S •T .

Theorem 4.6 Let R, S, T be monads, λ : [S, T], σ : [R,S] be weak distributive laws and τ : [R,T] be a

distributive law, satisfying the Yang-Baxter equation. Then the weak distributive laws ϕ , πσT ◦Rλ ◦ τS ◦
T ισ : [R•S, T] and ψ , Rπλ◦σT ◦Sτ ◦ιλR : [R,S•T] generate the same monad, i.e., (R •S)•T = R•(S •T).

Proof. After some string-diagrammatic computations (see Appendix B), one can express the idempotents
κϕ and κψ as follows:

κϕ = πσT ◦Rκλ ◦ ισT = α ◦ β (32)

κψ = Rπλ ◦ κσT ◦Rιλ = β ◦ α (33)

where α , πσT ◦Rιλ and β , Rπλ ◦ ισT , as pictured below.

κψκϕ α β

H H

H H

K

K

K

K

R

R

R

R

T

T

T

T

= = , , (34)

Now let us split κϕ = ιϕ ◦πϕ with πϕ ◦ ιϕ = 1(R•S)•T . We show that this splitting generates also a splitting

for κψ. Indeed, one can choose ιψ , β ◦ ιϕ and πψ , πϕ ◦ α because

ιψ ◦ πψ = β ◦ ιϕ ◦ πϕ ◦ α = β ◦ κϕ ◦ α = β ◦ α ◦ β ◦ α = κψ ◦ κψ = κψ (35)

πψ ◦ ιψ = πϕ ◦ α ◦ β ◦ ιϕ = πϕ ◦ κϕ ◦ ιϕ = (πϕ ◦ ιϕ) ◦ (πϕ ◦ ιϕ) = 1(R•S)•T (36)

Hence the splitting of κψ is as follows:

R(S •T) R • (S •T) R(S •T)

(R •S)T (R •S) •T (R •S)T

πψ

α

κψ

ιψ

πϕ ιϕ

β (37)

Therefore, the functors (R •S) • T and R • (S •T) can be identified. We denote it by R •S •T (short
notation Ω) and picture it as follows:

Ω

Ω

1Ω , (38)

Moreover, one can separate the three functors – or merge the three functors – in any order up to an

Goy 3–13

idempotent, as shown in the following diagrams (proved in Appendix B):

= = = =

R R R R

R R R R

S S S S

S S S S

T T T T

T T T TΩ Ω Ω Ω

Ω Ω Ω Ω

(39)

Using these compatibility properties along with aforementioned properties of κ, it is then a matter of
lengthy but straightforward computations to show that units and multiplications of (R •S) •T and R •
(S •T) coincide (see Appendix B). ✷

4.2 Examples

In this section, we illustrate many cases where the results of the previous section can be applied by proving
the Yang-Baxter equation for some usual monads and (weak) distributive laws.

4.2.1 Iterating with Trivial Weak Distributive Laws

When one of the three laws involved is trivial, the Yang-Baxter equation usually simplifies to a condition
relating the underlying monad morphism to the other laws. We mention the two following cases.

Proposition 4.7 Let τ : [R,T] be a weak distributive law.

• Let σ : [R,S] be a distributive law and λ , ηSµT ◦ Tγ : [S, T] be a trivial weak distributive law arising
from a monad morphism γ : S ⇒ T such that Rγ ◦ σ = τ ◦ γR. Then the Yang-Baxter equation is
satisfied.

• Let λ : [S, T] be a weak distributive law and σ , ηRµS ◦ Sγ : [R,S] be a trivial weak distributive law
arising from a monad morphism γ : R ⇒ S such that γT ◦ τ = λ ◦ γT . Then the Yang-Baxter equation
is satisfied.

4.2.2 Iterating with Exceptions

The exception monad E from Example 3.3 can be described by seeing inl : 1 ⇒ E and inr : 1 ⇒ E as natural
transformations, where 1 is the identity functor and 1 is the constant functor 1X , 1 = {∗}, 1f , 1{∗}. One
can then define a well-known generic distributive law relying directly on these two coproduct injections.

Example 4.8 For any Set monad T , there is a distributive law εT : [T,E] defined by

εT ◦ inlT = TηE (40)

εT ◦ inrT = ηTE ◦ inr (41)

Moreover, for monads S and T , the distributive laws εS and εT are coherent with each other in the
sense of the next proposition.

Proposition 4.9 Let λ : [S, T] be a natural transformation such that either the (η+) or the (η−) axiom
holds. Then the following Yang-Baxter equation holds:

λE ◦ TεS ◦ εTS = SεT ◦ εST ◦ Eλ (42)

Remark 4.10 The above proposition still holds true when E implements multiple exceptions. More
generally, it can be generalised to any category with binary coproducts and any exception monad of the
form EX = X + e, where e is an object of exceptions.

Consequently, by applying Theorem 4.6, given any weak distributive law [S, T], one can safely compose
the resulting monad with the exception monad E and get a monad S•T ◦E. We give two explicit examples.

3–14 Weakening and Iterating Laws Using String Diagrams

• Applying Theorem 4.5 to the weak distributive law λ : [P,D] from Example 3.13, we derive a new
weak distributive law λE ◦DεP : [P,D≤] between the powerset monad P and the subdistribution monad
D≤ = D ◦ E. The expression of this new law is as in (16).

• Remarking that P = P∗◦E where P∗ is the non-empty powerset monad, we identify the weak distributive
law λ : [P,P] from Example 3.14 as an iterated law built from εP , εP∗ , and a weak distributive law of
type [P,P∗] whose expression is as in (17).

4.2.3 Iterating with the Reader

Recall that A is a set of labels and the reader monad in Set is defined as RX = XA. For any a ∈ A, define
the function âX : RX → X by âX(h) = h(a).

Example 4.11 For any Set monad T , there is a distributive law ρT : [R,T] defined for any set X and any
z ∈ TRX by

ρTX(z) , a 7→ T âX(z) (43)

Moreover, for monads S and T , the distributive laws ρS and ρT are coherent with each other in the
sense of the next proposition.

Proposition 4.12 Let λ : [S, T] be a natural transformation. Then the following Yang-Baxter equation
holds:

ρST ◦ SρT ◦ λR = Rλ ◦ ρTS ◦ TρS (44)

Applying Theorem 4.6 with e.g. the weak λ : [P,D] from Example 3.13, we deduce that the monad
R ◦ P •D can be obtained either using the distributive law ψ = ρP•D : [R,P •D] or using the weak

distributive law ϕ , Rλ ◦ ρDP : [R ◦P,D] given by the expression

ϕX

∑

h∈(PX)A

ph · h

 = a 7→

∑

h∈(PX)A

phq
h | qh ∈ DX, supp(qh) ⊆ h(a)

(45)

4.2.4 Iterating with the Writer

Recall that M is a monoid and the writer monad in Set is defined as MX =M ×X. For any m ∈M , let
mX : X →M ×X be defined by mX(x) = (m,x).

Example 4.13 For any Set monad T , there is a distributive law ωT : [T,W] defined for any set X and
any (m, t) ∈WTX by

ωTX(m, t) , TmX(t) (46)

Moreover, for monads S and T , the distributive laws ωS and ωT are coherent with each other in the
sense of the next proposition.

Proposition 4.14 Let λ : [S, T] be a natural transformation. Then the following Yang-Baxter equation
holds:

λW ◦ TωS ◦ ωTS = SωT ◦ ωST ◦Wλ (47)

Applying Theorem 4.6 with e.g. the weak λ : [P,D] from Example 3.13, we deduce that the monad
P •D ◦W can be obtained either using the distributive law ϕ = ωP•D : [P •D,W] or using the weak

distributive law ψ , λW ◦ TωS : [P,D ◦W] given by the expression

ψX

∑

i,j

pi,j · (mi, Uj)

 =

∑

i,j

pi,jq
i,j | qi,j ∈ DWX, supp(qi,j) ⊆ {(mi, x) | x ∈ Uj}

(48)

Goy 3–15

4.3 Algebras as Distributive Laws, and Iterating them

In this short section we sketch how Eilenberg-Moore algebras are a particular kind of distributive laws,
and how in this view λ-algebras are precisely Yang-Baxter equations. Given a monad T , an Eilenberg-
Moore algebra – or T -algebra for short – is a pair (A, t) where A is an object of C and t : TA → A is a
morphism such that t ◦ ηTA = 1A (unitality) and t ◦ µTA = t ◦ T t (associativity). A morphism of T -algebras
f : (A, t) → (B,u) is a morphism f : A → B in C such that f ◦ t = u ◦ Tf . For any functor F : C → C,
an Eilenberg-Moore distributive law – or EM-law for short – is a natural transformation λ : [F, T] such
that the (η−) and (µ−) axioms are satisfied. Let S and T be two monads and λ : [S, T] be a natural
transformation. A λ-algebra is a triple (A, s, t) such that (A, s) is an S-algebra, (A, t) is a T -algebra, and
the following condition is satisfied:

s ◦ St ◦ λX = t ◦ Ts (λ-condition)

A morphism of λ-algebras is a simultaneous S-algebra and T -algebra morphism.
The following result is widely known:

Theorem 4.15 ([1,15]) Let λ : [S, T] be a natural transformation.

• If λ is a distributive law, then the categories of (S ◦λT)-algebras and λ-algebras are isomorphic.

• If λ is a weak distributive law, then the categories of (S •λT)-algebras and λ-algebras are isomorphic.

Let A be an object of C and let A : C → C be the constant functor AX , A, Af , 1A.

Proposition 4.16 Let t : TA → A be a morphism. The natural transformation [t] : [A,T] defined by
[t]X = t is an EM-law if and only if t is a T -algebra.

Proof. Naturality of [t] amounts to the obvious equation 1A ◦ t = t ◦ T (1A). The (η−) axiom of [t] is
equivalent to the equation [t]X ◦ ηTAX = AηTX for all objects X, which simplifies into the unitality axiom

t ◦ ηTA = 1A. The (µ−) axiom of [t] is equivalent to the equation AµTX ◦ [t]TX ◦ T [t]X = [t]X ◦ µTAX for all

objects X, which simplifies into the associativity axiom t ◦ T t = t ◦ µTA. ✷

Proposition 4.17 Let (A, s) be an S-algebra, (A, t) be a T -algebra, and λ : [S, T] be a natural transfor-
mation. Then (A, s, t) satisfies the (λ-condition) if and only if the Yang-Baxter equation holds between
[s] : [A,S], [t] : [A,T] and λ : [S, T].

Proof. The Yang-Baxter equation is [s]TX ◦ S[t]X ◦ λAX = AλX ◦ [t]SX ◦ T [s]X for all objects X, which
simplifies into the (λ-condition) s ◦ St ◦ λA = 1A ◦ t ◦ Ts. ✷

Therefore

• the functor λ-algebras → (S ◦λT)-algebras from Theorem 4.15 is a particular case of Theorem 4.1;

• the functor λ-algebras → (S •λT)-algebras from Theorem 4.15 is a particular case of Theorem 4.5.

Let us illustrate e.g. the second point. Let λ : [S, T] be a weak distributive law and (A, s, t) be a
λ-algebra. According to Propositions 4.16 and 4.17, we are in the presence of a Yang-Baxter equation
with one weak distributive law λ and two EM-laws [s] and [t]. By applying a mild variation of Theorem 4.5
– consisting in forgetting the monad structure of the functor R = A – we get an EM-law ψ = Aπλ ◦ [s]T ◦
S[t] ◦ ιλA : [A,S •λT]. That law satisfies ψX = s ◦ St ◦ ιλA for all objects X. Via Proposition 4.16, we get

that s ◦ St ◦ ιλA is an (S •λT)-algebra. As expected, this procedure amounts to the action of the functor

λ-algebras → (S •λT)-algebras, that is, (A, s, t) 7→ s ◦ St ◦ ιλA.

5 Discussion and Future Work

5.1 Advocating String Diagrams

One of the aims of this paper is to advocate string diagrams for proof research and communication. Let
us provide two more examples that support our position.

3–16 Weakening and Iterating Laws Using String Diagrams

5.1.1 Cheng’s theorem

Let us begin with Cheng’s result [11, Theorem 1.6], proved in [11, Appendix A]. The largest commutative
diagram occurring in the proof for the initialisation case with 3 monads comprises 12 elementary commu-
tative polygons, out of which 9 are naturality squares. Therefore, there are only 3 significant steps in the
underlying proof. In an equivalent string-diagrammatic representation of the proof, these three steps are
remarkably well identified:

= = =

τ (µ−) σ (µ−) (YB)
S S S S S S S S

S S S ST T T T

T TT T T T T

R R R R

R R RRT

(49)

That computation (more precisely, its symmetric) has been generalised to weak distributive laws in the
present paper: compare diagrams (49) and (24).

5.1.2 Winter’s theorem

Another striking example arises from [38]. As already mentioned in the introduction, the proof of [38,
Theorem 5] required a Prolog program to find a convenient tiling of the largest required commutative
diagram, depicted in [38, Appendix A]. That diagram comprises 13 + 10 = 23 elementary commutative
polygons, out of which 15 are naturality squares. Therefore, there are only 8 significant steps in the
underlying proof. An equivalent string-diagrammatic formalisation of the diagram in question is presented
in Appendix C. As expected, it contains only 8 steps, and the computation can be carried out in one
single line. Winter’s proof research was obfuscated by what Hinze and Marsden call bookkeeping [20], i.e.,
administrative operations devoid of significant mathematical content.

5.2 Conclusion

This paper generalises iteration to weak distributive laws using the graphical calculus of string diagrams.
It is an additional step in developing the theory of weak distributive laws, as is our line of research
in [17,18,16]. The paper revolves around one main theoretical result, split in Theorems 4.3, 4.5 and 4.6,
and provides several examples. A possible extension would be to derive – in the style of Section 4.2 – a
generic Yang-Baxter equation stating compatibility of monotone laws. Monotone laws are a certain class
of laws of type [P, T] and often carry significant semantic content. This direction is particularly interesting,
as all known non-trivial examples of weak distributive laws are based on monotone laws. One may also
ask whether the existence of a composite law entails the Yang-Baxter equation – this question has been
positively solved by Winter in the case of distributive laws [38, Proposition 11].

As hinted in Section 4.3, our results easily adapt to EM-laws (and their duals, called Kleisli-laws), i.e.,
distributive laws between a monad and a functor. This paves the way for applications of iterated laws in
coalgebra theory – as already attempted in [38] – where both EM-laws and Kleisli-laws are ubiquitous.
Another possible follow-up to the vision developed in Section 4.3 is to weaken algebras. Indeed, as some
EM-laws turn out to be algebras, some weak EM-laws turn out to be so-called semialgebras (as defined
in [15]). Dually, coweak Kleisli-laws probably correspond to an interesting class of free algebras. Clarifying
the whole picture will most likely enhance the still underdeveloped theory of coweak distributive laws.

Iteration of standard distributive laws has been heavily exploited in the context of categories-as-
monads [39,8,7,6]. Phrasing our results in a 2-categorical setting, as did Cheng for iterated distributive
laws [11], would enable new case studies to arise in that area.

On another level, our key message is to advocate string diagrams to deal with categorical proofs in
contexts where traditional equational or commutative-diagrammatic proofs become unreadable. String
diagrams are often more convenient in such proofs, as they allow to take a step further by hiding part of

Goy 3–17

the complexity in the graphical formalism. Nevertheless, they also have limitations. In the main result of
Cheng [11, Theorem 1.6], iteration is performed not only for three monads but for any finite number n
of monads: the n = 3 case does only initialise an induction. Generalising the n = 3 result to weak laws
becomes reachable using string diagrams – though some diagrams in the proof of Theorem 4.6 already
have substantial size. Even with a string-diagrammatic approach, generalizing further to n monads may
require tedious proofs. Our opinion is that ingenious string-diagrammatic reasoning significantly pushes
back the – fuzzy and subjective – boundary between proofs that are intelligible and those that are not.

References

[1] Beck, J., Distributive laws, in: B. Eckmann, editor, Seminar on Triples and Categorical Homology Theory, pages 119–140,
Springer Berlin Heidelberg, Berlin, Heidelberg (1969), ISBN 978-3-540-36091-9.
https://doi.org/10.1007/BFb0083084

[2] Bonchi, F., F. Gadducci, A. Kissinger, P. Sobocinski and F. Zanasi, String diagram rewrite theory I: rewriting with
frobenius structure, J. ACM 69, pages 14:1–14:58 (2022).
https://doi.org/10.1145/3502719

[3] Bonchi, F., R. Piedeleu, P. Sobocinski and F. Zanasi, Bialgebraic foundations for the operational semantics of string
diagrams, Inf. Comput. 281, page 104767 (2021).
https://doi.org/10.1016/j.ic.2021.104767

[4] Bonchi, F. and A. Santamaria, Combining semilattices and semimodules, in: S. Kiefer and C. Tasson, editors, Foundations
of Software Science and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 102–123, Springer (2021).
https://doi.org/10.1007/978-3-030-71995-1_6

[5] Bonchi, F., A. Silva and A. Sokolova, Distribution Bisimilarity via the Power of Convex Algebras, Logical Methods in
Computer Science Volume 17, Issue 3 (2021).
https://doi.org/10.46298/lmcs-17(3:10)2021

[6] Bonchi, F., P. Sobocinski and F. Zanasi, Deconstructing Lawvere with distributive laws, J. Log. Algebraic Methods
Program. 95, pages 128–146 (2018).
https://doi.org/10.1016/j.jlamp.2017.12.002

[7] Bonchi, F., P. Sobociński and F. Zanasi, Interacting Hopf algebras, Journal of Pure and Applied Algebra 221, pages
144–184 (2017), ISSN 0022-4049.
https://doi.org/10.1016/j.jpaa.2016.06.002

[8] Bonchi, F. and F. Zanasi, Bialgebraic semantics for logic programming, Log. Methods Comput. Sci. 11 (2015).
https://doi.org/10.2168/LMCS-11(1:14)2015

[9] Böhm, G., The weak theory of monads, Advances in Mathematics 225, pages 1–32 (2010), ISSN 0001-8708.
https://doi.org/10.1016/j.aim.2010.02.015

[10] Böhm, G., S. Lack and R. Street, On the 2-categories of weak distributive laws, Communications in Algebra 39, pages
4567–4583 (2011).
https://doi.org/10.1080/00927872.2011.616436

[11] Cheng, E., Iterated distributive laws, Mathematical Proceedings of the Cambridge Philosophical Society 150, page 459–487
(2011).
https://doi.org/10.1017/S0305004110000599

[12] Coecke, B. and A. Kissinger, Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic
Reasoning, Cambridge University Press (2017).
https://doi.org/10.1017/9781316219317

[13] Dahlqvist, F. and R. Neves, Compositional semantics for new paradigms: probabilistic, hybrid and beyond, arXiv preprint
arXiv:1804.04145 (2018).
https://doi.org/10.48550/arXiv.1804.04145

https://doi.org/10.1007/BFb0083084
https://doi.org/10.1145/3502719
https://doi.org/10.1016/j.ic.2021.104767
https://doi.org/10.1007/978-3-030-71995-1_6
https://doi.org/10.46298/lmcs-17(3:10)2021
https://doi.org/10.1016/j.jlamp.2017.12.002
https://doi.org/10.1016/j.jpaa.2016.06.002
https://doi.org/10.2168/LMCS-11(1:14)2015
https://doi.org/10.1016/j.aim.2010.02.015
https://doi.org/10.1080/00927872.2011.616436
https://doi.org/10.1017/S0305004110000599
https://doi.org/10.1017/9781316219317
https://doi.org/10.48550/arXiv.1804.04145

3–18 Weakening and Iterating Laws Using String Diagrams

[14] Dahlqvist, F., L. Parlant and A. Silva, Layer by layer – combining monads, in: B. Fischer and T. Uustalu, editors,
Theoretical Aspects of Computing – ICTAC 2018, pages 153–172, Springer International Publishing, Cham (2018), ISBN
978-3-030-02508-3.
https://doi.org/10.1007/978-3-030-02508-3_9

[15] Garner, R., The Vietoris monad and weak distributive laws, Applied Categorical Structures 28, pages 339–354 (2020),
ISSN 0927-2852.
https://doi.org/10.1007/s10485-019-09582-w

[16] Goy, A., On the compositionality of monads via weak distributive laws, Ph.D. thesis, Université Paris-Saclay, Gif-sur-
Yvette, France (2021).

[17] Goy, A. and D. Petrişan, Combining probabilistic and non-deterministic choice via weak distributive laws, in: Proceedings
of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, page 454–464, Association for
Computing Machinery, New York, NY, USA (2020), ISBN 9781450371049.
https://doi.org/10.1145/3373718.3394795

[18] Goy, A., D. Petrişan and M. Aiguier, Powerset-like monads weakly distribute over themselves in toposes and compact
Hausdorff spaces, in: Proceedings of the 48th International Colloquium on Automata, Languages, and Programming, ICALP
’21, Association for Computing Machinery (2021).
https://doi.org/10.4230/LIPIcs.ICALP.2021.132

[19] Hinze, R. and D. Marsden, Dragging proofs out of pictures, in: S. Lindley, C. McBride, P. W. Trinder and D. Sannella,
editors, A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th
Birthday, volume 9600 of Lecture Notes in Computer Science, pages 152–168, Springer (2016).
https://doi.org/10.1007/978-3-319-30936-1_8

[20] Hinze, R. and D. Marsden, Equational reasoning with lollipops, forks, cups, caps, snakes, and speedometers, J. Log.
Algebraic Methods Program. 85, pages 931–951 (2016).
https://doi.org/10.1016/j.jlamp.2015.12.004

[21] Jacobs, B., From multisets over distributions to distributions over multisets, in: 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), pages 1–13 (2021).
https://doi.org/10.1109/LICS52264.2021.9470678

[22] Jacobs, B., A. Silva and A. Sokolova, Trace semantics via determinization, Journal of Computer and System Sciences
81, pages 859–879 (2015), ISSN 0022-0000. 11th International Workshop on Coalgebraic Methods in Computer Science,
CMCS 2012 (Selected Papers).
https://doi.org/10.1016/j.jcss.2014.12.005

[23] Joyal, A. and R. Street, The geometry of tensor calculus, I, Advances in Mathematics 88, pages 55–112 (1991), ISSN
0001-8708.
https://doi.org/10.1016/0001-8708(91)90003-P

[24] Karamlou, A. and N. Shah, No-go theorems for mixed distributive laws: extended abstract, in: CMCS short contributions,
Munich, Germany (2022).

[25] Klin, B. and J. Salamanca, Iterated covariant powerset is not a monad, Electronic Notes in Theoretical Computer
Science 341, pages 261–276 (2018), ISSN 1571-0661. Proceedings of the Thirty-Fourth Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXXIV).
https://doi.org/10.1016/j.entcs.2018.11.013

[26] Manes, E. and P. Mulry, Monad compositions. i: General constructions and recursive distributive laws, Theory and
Applications of Categories [electronic only] 18, pages 172–208 (2007).

[27] Manes, E. and P. Mulry, Monad compositions ii: Kleisli strength, Mathematical Structures in Computer Science 18, page
613–643 (2008).
https://doi.org/10.1017/S0960129508006695

[28] Marsden, D., Category theory using string diagrams, arXiv preprint arXiv:1401.7220 (2014).
https://doi.org/10.48550/arXiv.1401.7220

[29] Moggi, E., Notions of computation and monads, Information and Computation 93, pages 55–92 (1991), ISSN 0890-5401.
Selections from 1989 IEEE Symposium on Logic in Computer Science.
https://doi.org/10.1016/0890-5401(91)90052-4

[30] Parlant, L., Monad Composition via Preservation of Algebras, Ph.D. thesis, UCL (University College London) (2020).
https://discovery.ucl.ac.uk/id/eprint/10112228/1/Thesis_Louis_Parlant_UCL_upload.pdf

https://doi.org/10.1007/978-3-030-02508-3_9
https://doi.org/10.1007/s10485-019-09582-w
https://doi.org/10.1145/3373718.3394795
https://doi.org/10.4230/LIPIcs.ICALP.2021.132
https://doi.org/10.1007/978-3-319-30936-1_8
https://doi.org/10.1016/j.jlamp.2015.12.004
https://doi.org/10.1109/LICS52264.2021.9470678
https://doi.org/10.1016/j.jcss.2014.12.005
https://doi.org/10.1016/0001-8708(91)90003-P
https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1017/S0960129508006695
https://doi.org/10.48550/arXiv.1401.7220
https://doi.org/10.1016/0890-5401(91)90052-4
https://discovery.ucl.ac.uk/id/eprint/10112228/1/Thesis_Louis_Parlant_UCL_upload.pdf

Goy 3–19

[31] Petrisan, D. and R. Sarkis, Semialgebras and weak distributive laws, in: A. Sokolova, editor, Proceedings 37th Conference
on Mathematical Foundations of Programming Semantics, MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th August
- 2nd September, 2021, volume 351 of EPTCS, pages 218–241 (2021).
https://doi.org/10.4204/EPTCS.351.14

[32] Plotkin, G. and J. Power, Notions of computation determine monads, in: M. Nielsen and U. Engberg, editors, Foundations
of Software Science and Computation Structures, pages 342–356, Springer Berlin Heidelberg, Berlin, Heidelberg (2002),
ISBN 978-3-540-45931-6.
https://doi.org/10.1007/3-540-45931-6_24

[33] Salamanca Téllez, J., Lattices do not distribute over powerset, Algebra universalis 81, page 49 (2020).
https://doi.org/10.1007/s00012-020-00680-8

[34] Silva, A., F. Bonchi, M. M. Bonsangue and J. J. M. M. Rutten, Generalizing the powerset construction, coalgebraically, in:
K. Lodaya and M. Mahajan, editors, IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2010), volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 272–283,
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010), ISBN 978-3-939897-23-1, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272

[35] Street, R., Weak distributive laws., Theory and Applications of Categories [electronic only] 22, pages 313–320 (2009).
http://eudml.org/doc/233565

[36] Varacca, D. and G. Winskel, Distributing probability over non-determinism, Mathematical Structures in Computer Science
16, page 87–113 (2006).
https://doi.org/10.1017/S0960129505005074

[37] Wadler, P., Monads for functional programming, in: J. Jeuring and E. Meijer, editors, Advanced Functional Programming,
First International Spring School on Advanced Functional Programming Techniques, B̊astad, Sweden, May 24-30, 1995,
Tutorial Text, volume 925 of Lecture Notes in Computer Science, pages 24–52, Springer (1995).
https://doi.org/10.1007/3-540-59451-5_2

[38] Winter, J., Product rules and distributive laws, in: I. Hasuo, editor, Coalgebraic Methods in Computer Science - 13th
IFIP WG 1.3 International Workshop, CMCS 2016, Colocated with ETAPS 2016, Eindhoven, The Netherlands, April
2-3, 2016, Revised Selected Papers, volume 9608 of Lecture Notes in Computer Science, pages 114–135, Springer (2016).
https://doi.org/10.1007/978-3-319-40370-0_8

[39] Zanasi, F., Interacting Hopf Algebras- the Theory of Linear Systems. (Interacting Hopf Algebras - la théorie des systèmes

linéaires), Ph.D. thesis, École normale supérieure de Lyon, France (2015).
https://tel.archives-ouvertes.fr/tel-01218015

[40] Zetzsche, S., G. van Heerdt, A. Silva and M. Sammartino, Canonical automata via distributive law homomorphisms, in:
A. Sokolova, editor, Proceedings 37th Conference on Mathematical Foundations of Programming Semantics, MFPS 2021,
Hybrid: Salzburg, Austria and Online, 30th August - 2nd September, 2021, volume 351 of EPTCS, pages 296–313 (2021).
https://doi.org/10.4204/EPTCS.351.18

[41] Zwart, M., On the non-compositionality of monads via distributive laws, Ph.D. thesis, Oxford (2020).
http://www.cs.ox.ac.uk/files/12453/MaaikeZwartDPhilThesis.pdf

[42] Zwart, M. and D. Marsden, No-go theorems for distributive laws, Log. Methods Comput. Sci. 18 (2022).
https://doi.org/10.46298/lmcs-18(1:13)2022

A Proofs of Section 3

In this section we prove that S •λ T is indeed a monad. To prove the first unitality axiom, i.e., that
µS•T ◦ ηS•TK = 1K , we need equation (10), the equation ι ◦ π = κ, the retract equation π ◦ ι = 1K , ηS

unitality and the retract equation again.

= = = = =

K K K K K K

K K K K K K

(A.1)

https://doi.org/10.4204/EPTCS.351.14
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/s00012-020-00680-8
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
http://eudml.org/doc/233565
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/978-3-319-40370-0_8
https://tel.archives-ouvertes.fr/tel-01218015
https://doi.org/10.4204/EPTCS.351.18
http://www.cs.ox.ac.uk/files/12453/MaaikeZwartDPhilThesis.pdf
https://doi.org/10.46298/lmcs-18(1:13)2022

3–20 Weakening and Iterating Laws Using String Diagrams

To prove the second unitality axiom, i.e., that µS•T ◦ KηS•T = 1K , we need equation (10), λ (η+)
axiom, unitality of both ηS and ηT , and the retract equation.

= = = =

K K K K K

KKKKK

(A.2)

As for distributive laws, it is possible to prove, using only the (µ+) and (µ−) axioms, that θ ,

µSµT ◦ SλT is associative, i.e., θ ◦ STθ = θ ◦ θST . To prove the associativity axiom of S •T , i.e., that
µS•T ◦ KµS•T = µS•T ◦ µS•TK, we need equation (11), the retract equation, θ associativity, the retract
equation again, and equation (11) again.

= = = = =

K K K K K K

KK K KKK KKK KKK KKK K KK

(A.3)

B Proofs of Section 4

In this section we provide the missing details from the proof sketch of Theorem 4.6.

B.1 Expressions of κϕ and κψ

First, let us justify the expressions of κϕ and κψ in equations (32) and (33). Recall that the definition
of the idempotent derived from a weak distributive law λ : [S, T] is given in equation (7) and in the third
diagram of (12).

Computing κϕ is easy by using the definition of the idempotent κϕ, the (η−) diagram for τ and the
definition of the idempotent κλ.

κϕ = = =

H H H

H H H

T T T

T T T

(B.1)

Computing κψ is longer because it contains the composite multiplication µS•T . We use the definition
of κψ, Lemma 4.4, the retract equation, equation (10), the (η−) axiom for τ , definitions of κσ and κλ, and
the retract equation again.

κψ = = = = = = =

K K K K K K K

KKKKKKK

R R R R R R R

RRRRRRR

(B.2)

Goy 3–21

B.2 Separate and Merge the Triple Functor

Let us prove the four equations displayed in (39), which we recall here:

= = = =

(S1) (S2)

(M1) (M2)

Ω Ω Ω Ω

Ω Ω Ω ΩR R R R

R R R R

S S S S

S S S S

T T T T

T T T T
(B.3)

For once we may restate and prove these properties using plain equational reasoning – they will nonetheless
be applied in string-diagrammatic form in the next section. Equationally, the properties are as follows:

Rιλ ◦ ιψ = Rκλ ◦ ισT ◦ ιϕ (S1)

ισT ◦ ιϕ = κσT ◦Rιλ ◦ ιψ (S2)

πψ ◦Rπλ = πϕ ◦ πσT ◦Rκλ (M1)

πϕ ◦ πσT = πψ ◦Rπλ ◦ κσT (M2)

To prove (S1) and (M1), recall that we defined ιψ = β ◦ ιϕ and πψ = πϕ ◦ α, where α = πσT ◦ Rιλ and
β = Rπλ ◦ ισT . Hence

Rιλ ◦ ιψ = Rιλ ◦ β ◦ ιϕ (B.4)

= Rιλ ◦Rπλ ◦ ισT ◦ ιϕ (B.5)

= Rκλ ◦ ισT ◦ ιϕ (B.6)

and

πψ ◦Rπλ = πϕ ◦ α ◦Rπλ (B.7)

= πϕ ◦ πσT ◦Rιλ ◦Rπλ (B.8)

= πϕ ◦ πσT ◦Rκλ (B.9)

To prove (S2) and (M2), notice that ιϕ = κϕ ◦ ιϕ = α ◦ β ◦ ιϕ = α ◦ ιψ, and similarly πϕ = πψ ◦ β. Hence

ισT ◦ ιϕ = ισT ◦ α ◦ ιψ (B.10)

= ισT ◦ πσT ◦Rιλ ◦ ιψ (B.11)

= κσT ◦Rιλ ◦ ιψ (B.12)

and

πϕ ◦ πσT = πψ ◦ β ◦ πσT (B.13)

= πψ ◦Rπλ ◦ ισT ◦ πσT (B.14)

= πψ ◦Rπλ ◦ κσT (B.15)

B.3 Units and Multiplications Coincide

At this point, we already know that the weak distributive laws ϕ : [R •S, T] and ψ : [R,S •T] generate
respectively a monad (R •S) •T and a monad R •(S •T) whose underlying functors coincide. It remains
to prove that the units and multiplications coincide. Let us begin with units.

3–22 Weakening and Iterating Laws Using String Diagrams

According to the general theory of weak distributive laws from Section 3, the units of the monads
generated by ϕ : [R •S, T] and ψ : [R,S •T] are respectively:

η(R•S)•T = ηR•(S•T) =

Ω Ω

(B.16)

To prove that these are equal, we just need to use equation (10) for κλ, and equation (M1).

= =

Ω Ω Ω

(B.17)

The situation is more intricated for multiplications. According to the general theory of weak distributive
laws from Section 3, the multiplications of the monads generated by ϕ : [R •S, T] and ψ : [R,S • T] are
respectively:

=µR•(S•T)µ(R•S)•T =

Ω Ω

Ω Ω Ω Ω

(B.18)

To prove that these are equal, we will manipulate separately both of them until their string-
diagrammatic representations coincide. The first multiplication can be transformed as follows, using
equation (M2), equation (11), the retract equation, Lemma (4.2) and the retract equation again.

= = = = =

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
(B.19)

The second multiplication, in turn, transforms as follows, using equation (S1), Lemma (4.4), the retract

Goy 3–23

equation, equation (11) and the retract equation again.

= = = = =

Ω Ω Ω Ω Ω Ω

Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω
(B.20)

Hence both multiplications are equal. This achieves the proof that (R •S) •T and R •(S •T) coincide as
monads.

C Proofs of Section 5

In this section we restate one implication of [38, Theorem 5] and prove it using string diagrams.

Definition C.1 Let F be a functor, S and T be monads, and S◦T be their composite monad with respect
to some distributive law of type [S, T]. A Winter-law is a natural transformation λ : TF ⇒ FST such that

λ ◦ ηTF = FηS◦T (η∗)

λ ◦ µTF = FµS◦T ◦ λST ◦ Tλ (µ∗)

Theorem C.2 (Winter’s theorem converse implication) Let F be a functor, S and T be monads,
λ0 : [S, T] be a distributive law, λ1 : TF ⇒ FST be a Winter-law and λ2 : [F, S] be an EM-law. Assume
the following coherence axiom is satisfied:

FµST ◦ FSλ0 ◦ λ1S ◦ Tλ2 = FµST ◦ λ2ST ◦ Sλ1 ◦ λ0F (coh)

Let

λ̂ , STF SFST FSST FST
Sλ1 λ2ST FµST

(C.1)

Then λ̂ : [F, S ◦T] is an EM-law.

Proof. First, we express all available data using string diagrams.

1F 1T ηT µTηS µS1S, , , , , ,,

F

F

S

S

S S

S S

T

T

T T

T T

(C.2)

λ0 λ2λ1, , ,

F

F

F

F

S

S

S

S

T

T

T

T

S

(C.3)

3–24 Weakening and Iterating Laws Using String Diagrams

Axioms specific to Winter’s framework are displayed below:

=

(η∗)

=

(µ∗)

=

(coh)

F F F F F F

F F F F F F

S S S S S S

S S

T T T T T T

T T T T T T

(C.4)

By definition, the natural transformation λ̂ is as follows:

λ̂ ,

F

F

S

S

T

T

(C.5)

The (η−) axiom for λ̂ can be proved using λ2 (η−) axiom, ηS unitality and λ1 (η∗) axiom.

= = =

F F F F

F F F F

S S S ST T T T

(C.6)

The (µ−) axiom for λ̂ can be proved using λ1 (µ∗) axiom, λ2 (µ−) axiom, µS associativity twice, equa-
tion (coh), µS associativity twice again, and λ0 (µ+) axiom.

= = = = = =

F F F F F F F

F F F F F F F

S S S S S S S

S S S S S S S S S S S S S S

T T T T T T T

T T T T T T T T T T T T T T
(C.7)

✷

	1 Introduction
	2 Background
	2.1 Preliminaries and Notation
	2.2 Introducing String Diagrams

	3 A String-Diagrammatic Theory of Weak Distributive Laws
	3.1 Monads and Distributive Laws
	3.2 Weak Distributive Laws

	4 Iterating Laws
	4.1 Adapting Cheng's Theorem
	4.2 Examples
	4.3 Algebras as Distributive Laws, and Iterating them

	5 Discussion and Future Work
	5.1 Advocating String Diagrams
	5.2 Conclusion

	References
	A Proofs of Section 3
	B Proofs of Section 4
	B.1 Expressions of and
	B.2 Separate and Merge the Triple Functor
	B.3 Units and Multiplications Coincide

	C Proofs of Section 5

