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ABSTRACT: Seabird—fishery interactions are a common phenomenon of conservation concern.
Here, we highlight how light-level geolocators provide promising opportunities to study these
interactions. By examining raw light data, it is possible to detect encounters with artificial lights at
night, while conductivity data give insight on seabird behaviour during encounters. We used
geolocator data from 336 northern fulmars Fulmarus glacialis tracked from 12 colonies in the
North-East Atlantic and Barents Sea during the non-breeding season to (1) confirm that detections
of artificial lights correspond to encounters with fishing vessels by comparing overlap between
fishing effort and both the position of detections and the activity of birds during encounters, (2)
assess spatial differences in the number of encounters among wintering areas and (3) test whether
some individuals forage around fishing vessels more often than others. Most (88.1 %) of the tracks
encountered artificial light at least once, with 9.5 + 0.4 (SE) detections on average per 6 mo non-
breeding season. Encounters occurred more frequently where fishing effort was high, and birds
from some colonies had higher probabilities of encountering lights at night. During encounters,
fulmars spent more time foraging and less time resting, strongly suggesting that artificial lights
reflect the activity of birds around fishing vessels. Inter-individual variability in the probability of
encountering light was high (range: 0-68 encounters per 6 mo non-breeding season), meaning
that some individuals were more often associated with fishing vessels than others, independently
of their colony of origin. Our study highlights the potential of geolocators to study seabird—fishery
interactions at a large scale and a low cost.

KEY WORDS: Seabird-fishery interactions - Global location sensor - GLS - Fulmarus glacialis -
Activity budget - Discards - Management policy
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1. INTRODUCTION

Fishing activities affect the ecology of many marine
species (Humphries & Huettmann 2014, Diaz Pauli &
Sih 2017), including both target-fish populations
(Ivanova et al. 2020) and their predators, such as sea-
birds (Cianchetti-Benedetti et al. 2018). Seabird—
fishery interactions can affect seabirds through dif-
ferent degrees of reliance on fisheries in their forag-
ing strategies (Bearhop et al. 2001), distribution (Bar-
tumeus et al. 2010) and population dynamics (Oro et
al. 2004). These interactions can take various forms but
are often negative for seabirds. This applies notably
to bycatch, where the incidental capture of non-tar-
geted species (e.g. seabirds, marine mammals) can
severely impact seabird populations in many ecosys-
tems (Wagner & Boersma 2011). Moreover, bycatch is
often highly biased by sex and age (Gianuca et al.
2017), which can increase the impacts of bycatch on
seabird populations (Barbraud et al. 2012, Gianuca et
al. 2017). Seabird-fisheries interactions can also be
indirect through competition for food resources, as
the birds and fishers often exploit the same prey. This
competition can lead to declines in seabird popula-
tions (Crawford et al. 1985, Wagner & Boersma 2011,
Barbraud et al. 2018, Grémillet et al. 2018) or hinder
seabird foraging efficiency (Bertrand et al. 2012).
However, fisheries can also have positive effects on
seabirds, for instance when triggering an increase in
prey abundance if competitors or predators are fished
(Wagner & Boersma 2011, Jurinovic et al. 2019), or by
providing discards and offal (Le Bot et al. 2018).

Fishery discards (the proportion of catch that is not
retained on board, such as fish below legal landing
size, unmarketable species or species above quota
restrictions) have been a major ecological issue since
the intensification of fishing. In the North Atlantic,
gradual regulations and technological improvements
since the end of the 1980s (Kelleher 2005, Clark et
al. 2020) have encouraged a more sustainable fish-
ing industry, but some discarding still occurs (Wat-
son 2017, Weimerskirch et al. 2020). This includes
discarding of offal (organs and processing waste
that are removed from the catch and thrown back
into the sea) that represents an easily handled and
highly calorific source of food for seabirds (Tasker
2000). Many studies have tried to quantify the con-
sequences of seabirds feeding on fishery discards:
by assessing spatial overlap between seabirds and
fisheries (Cianchetti-Benedetti et al. 2018, Jurinovic
et al. 2019, Clark et al. 2020); making direct obser-
vations onboard fishing vessels (Yeh et al. 2013); or
using animal-borne cameras (Votier et al. 2013).

More recently, another technique has been used,
based on the raw light data recorded by light-level
geolocators (global location sensors, GLS)—small
data devices recording light to determine twice-
daily positions of birds during the non-breeding
season (Kruger et al. 2017). Given that nocturnal
fisheries typically use intense light sources on deck,
evidence of close encounters with these artificial
light sources is recorded by geolocators attached to
those individuals coming close to fishing boats at
night. These devices also record conductivity (indica-
ting contact with water) that can be used to infer
bird behaviour during encounters (hereafter referred
to as activity).

The intensity of interactions between seabirds and
fisheries varies among species and areas (Furness
2003, Kruger et al. 2017, Grémillet et al. 2019, Juri-
novic et al. 2019). It is important to understand how
such differences are affected by factors such as fish-
ing intensity (Clark et al. 2020) or discarding regula-
tions (Sturludottir 2018). Reduced discards, for exam-
ple, may benefit some seabird species through a
reduction of bycatch risk (Bicknell et al. 2013). In
addition, discards might be nutritionally inferior to
natural prey (Grémillet et al. 2008), so that stricter
discarding regulations would force the birds to con-
centrate their foraging efforts on more valuable food
sources. For generalist seabirds, reduced discards
may have negative effectsin the absence of alternative
sources of food (Bicknell et al. 2013). Reduced avail-
ability of discards may lead to prey switching, with
some species predating other seabirds, their chicks
and eggs (Regehr & Montevecchi 1997) or increasing
kleptoparasitism (Martinez-Abrain et al. 2003), which
can result in population-level impacts for affected
species (Heubeck et al. 1999, Votier et al. 2008).

Among seabirds, procellariforms are often attracted
to fisheries (Thompson 2006), and studies of these
seabird—fishery interactions (Cianchetti-Benedetti et
al. 2018, Weimerskirch et al. 2020) provide extensive
evidence of discard consumption (Phillips et al. 1999,
Sturludottir 2018). Previous studies using geolocators
on procellariforms suggest that conductivity data
provide reliable measures of activity during the non-
breeding season, with prolonged dry periods indica-
ting flight, prolonged wet periods indicating resting
on the sea surface, and rapidly alternating between
wet and dry indicating foraging (Gutowsky et al.
2014, Kruger et al. 2017).

In this study, we aimed to identify and quantify
encounters between fisheries and northern fulmars
Fulmarus glacialis in relation to broad-scale differ-
ences in fishing intensities within the North-East
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Atlantic and Barents Sea. Our objectives were to (1)
test the hypothesis that light detections correspond to
encounters with fishing vessels in our study system,
(2) assess whether birds change their activity when
encountering artificial lights, (3) look at spatial varia-
tions in the probability and duration of encounters
and (4) investigate the degree to which individuals
might specialise in foraging near fishing vessels dur-
ing the non-breeding season.

To achieve these aims, northern fulmars were
equipped with GLS in different colonies across the
North-East Atlantic and the Barents Sea. Previous
studies have shown that several procellariform spe-
cies, including northern fulmars, tend to overlap with
fisheries (Camphuysen & Garthe 1997, Copello &
Quintana 2009, Kruger et al. 2017) and are attracted
by artificial lights (Rodriguez & Rodriguez 2009, Troy
et al. 2013). If artificial light detections at night corre-
spond to encounters with fishing vessels, we pre-
dicted that there will be high overlap between the
positions of the detections and fishing effort (Kruger
et al. 2017). In addition, we predicted that, if they
take advantage of discards and offal from fishing
vessels, fulmars will spend more time foraging dur-
ing encounters (Camphuysen & Garthe 1997, Kriiger
et al. 2017). In contrast, if fulmars mostly follow boats
that are not fishing, without feeding on

discards, we predicted that they will Colony
i ; - ® Alkefiellet
spend more time flying (conductivity @ Bjornoya

of 0) during the encounters. As fishing

O Breidafjordur & Reykjanes

measures (Granadeiro et al. 2014, Patrick et al. 2015,
Tyson et al. 2015).

2. MATERIALS AND METHODS
2.1. Study species and logger deployment

A total of 336 northern fulmars from 13 colonies
(Fig. 1) were equipped with light-level geolocators
(GLS) between 2007 and 2018. Colonies used in this
study covered a large range of the overall fulmar dis-
tribution in the North-East Atlantic (Mallory et al.
2020). Icelandic colonies closer than 150 km to each
other were grouped due to their proximity (Breida-
fjordur and Reykjanes, Langanes, Skjalfandi and
Grimsey, Papey and Hélmanes). Birds were captured
at their nest during one breeding season, banded and
fitted with Migrate Technology (w65, c65, c65_super,
£100, ¢250, c330), BAS (mk13, mk14, mk18, mk15,
mk19, mk3, mk4, mk7) or Biotrack (mk4093, mk4083,
mk3006, mk3005) loggers mounted on a plastic ring
(see Table S1in the Supplement at www.int-res.com/
articles/suppl/meps13673_supp.pdf). Instrumented in-
dividuals were recaptured 1-5 yr later to recover the
GLS. Some individuals were equipped several times.

A Eynhallow @ Jarsteinen
Faroe Islands @ Langanes & S. & Grimsey
A Jan Mayen <& Papey & Hélmanes

effort and discard ban policies vary
between wintering areas (Kelleher
2005), we expected spatial variations

in the number and duration of encoun-

ters (Bodey et al. 2014). For example, gqo
fulmars might stay longer in the vicin- N
ity of fishing vessels that are discard-

ing larger quantities because of an in-
creased prey abundance (Tasker 2000,
Weimerskirch et al. 2000). Finally, from

a conservation perspective, while con- 45°
ductivity data provide input on fulmar
behaviour during encounters (e.g.

they might be more vulnerable to by- 40°
catch if they are foraging than if they

are only following vessels), it is also
important to know whether some in- 550
dividuals, or individuals from specific
colonies, encounter fishing vessels more

often than others do, as increased en-  30°

Atlantic Ocean

1000 km

counters can influence population vul-
nerability to bycatch, and this informa-
tion can be used to design conservation

40°W 30° 20° 10° 0°

Fig. 1. Boundaries of the 10 northern fulmar wintering areas and locations of

10°E  20°

the studied colonies. S.: Skjalfandi
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2.2. Processing of GLS data

We used a dataset based on 569 GLS deployments
(out of a total of 593) that provided light data for the
full deployment duration. Herein, a ‘track’ refers to a
time period of 1 yr, from one breeding season to the
next. Some individuals were equipped with a geolo-
cator for longer than 1 yr; therefore, 1 deployment
could record several successive annual tracks. The
number of tracks per individual was on average 2.3 +
0.1 SE (range 1-8 tracks ind.™).

We focused on the non-breeding season (October to
March) when birds are not central-place foragers and
are therefore less constrained in their movements. Ex-
cluding the summer was also relevant to include high-
latitude colonies that experience midnight sun, which
prevented the detection of artificial light encounters.

Loggers sampled light every 3 s, and recorded the
maximum value in each 5 or 10 min interval. Differ-
ent logger models recorded light differently. BAS
and Biotrack loggers recorded light values from 0
(night) to a threshold value of 64 (day), whereas
Migrate Technology loggers recorded light levels in
lux. Loggers also sampled conductivity every 3, 6 or
30 s, and recorded the number of wet samples in each
5 or 10 min bin between 0 (dry) and a maximum
value of 200, 50 or 20 (wet). Conductivity data were
standardized (from O to 1) to be comparable among
the logger types.

Positions were estimated using a threshold method,
where light data were used to first characterize local
times for sunrise and sunset, and from these, esti-
mate 2 positions per 24 h based on time of apparent
midnight and noon for longitudes, and length of
night and day for latitudes. Unrealistic positions were
removed as described by Brathen et al. (2021), using
speed, angle and zone filters. In addition, the deter-
mination of latitudes (but not longitudes) is inaccu-
rate during equinoxes when day length is similar
everywhere on the globe. Therefore, positions esti-
mated during the equinox periods (8 September to 20
October and 20 February to 3 April) were also re-
moved (Frederiksen et al. 2012, Brathen et al. 2021).
Finally, many locations could not be estimated when
the birds were situated within the polar night area.
These successive filters led to a heavily biased data-
set, owing to the non-random distributions of data
gaps (both in time, during the equinoxes, and in
space, in the areas affected by the polar night). To
alleviate this bias, all filtered-out locations were re-
estimated using an algorithm that interpolates miss-
ing locations between 2 known locations. Briefly, this
algorithm, building on a linear interpolation method

originally proposed by Technitis et al. (2015), uses
available additional information (e.g. light levels,
land masks, longitudes during the equinoxes) to de-
termine a plausible location for each timestamp at
which a location is missing. The technical details can
be found in Fauchald et al. (2019).

2.3. Encounter detection

To retain only periods of night in the raw light data-
set, we used time of sunrise and sunset (hereafter twi-
light events), obtained when calculating positions. To
avoid detecting potential remaining sunlight, we ap-
plied 2 corrections. Firstly, we removed light data
30 min around each twilight event. We then applied a
correction during the polar night period, as some twi-
light can occur around the solar noon. Consequently,
we removed all light data from the 60 min around the
estimated time of solar noon during the polar night.
Solar noon was estimated by using the solar noon
times 10 d before and after each polar night period.

We used a light intensity threshold method to detect
encounters of fulmars with artificial lights as de-
scribed by Kruiger et al. (2017). Since the light sensi-
tivity of different loggers varied (Fig. S1 in the Sup-
plement), we used 3 different thresholds. Biotrack
mk3006 and mk 3005, and BAS mk15, mk19, mk3,
mk4 and mk7 formed the 'Biotrack-high' group. For
these, we used the same threshold of 10 as in Kriiger
et al. (2017), then we adjusted the threshold for other
recording modes to have comparable data in terms of
number and duration of encounters. Therefore, we
used a threshold of 5 for the 'Biotrack-low' group (Bio-
track mk4093 and 4083, and BAS mk13, mk14 and
mk18) and 20 for Migrate Technology loggers.

To avoid overestimating the number of encounters,
we assessed whether 2 light detections belonged to
the same encounter by using the Bout-Ending Crite-
rion method in the R package ‘DiveMove' (Sibly et al.
1990, Luque & Guinet 2007). This method was origi-
nally designed for diving vertebrates (Sato et al.
2001) to detect whether successive dives belong to
the same dive bout (a succession of dives, preceded
and followed by longer breaks). We adapted the
method to calculate the amount of time under which
2 light peaks could be considered as belonging to the
same encounter (Text S1 in the Supplement).

The encounter detection process is summarized in
Fig. 2. The positions of encounters were mapped
using an azimuthal equidistant projection centred on
the centroid of all fulmar positions. Their density was
mapped into a raster where each cell is 200 km wide.
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This resolution was chosen based on the accuracy of
GLS data (Phillips et al. 2004). We focused on the
spatial rather than temporal variation because pre-
liminary analyses showed only little interannual vari-
ation in the location of wintering areas (Fig. S2).

2.4. Fishery data

We used open-access data available from the Global
Fishing Watch website (https://globalfishingwatch
.org/). These data provide the cumulative number of
fishing hours per pixel and per day on a 0.01° pixel
grid between 2012 and 2016. Data were merged into
a raster where each cell is 200 km wide to be com-
pared to the raster containing the density of encoun-
ters. Areas with high fishing intensity did not vary
from year to year (Fig. S3), as mentioned in other
studies (Guiet et al. 2019). We therefore pooled all
years together. We also pooled all fishing vessel types,
because our dataset contains mainly trawlers and

@ [ow 0ot |
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|nten5|ty
Polar night
correction
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fixed gears (Fig. S4). Fishing effort was calculated as
the sum of fishing hours per grid cell, and we in-
cluded all fishing gear types available in the dataset.

2.5. Spatial analyses and wintering area definition

To reduce the bias generated by varying numbers
of tracks among colonies, and by variation in night
duration (due to season and latitude), we applied a
weighting correction to each detection:

1 1

WD = X
P, xN,,

min(g) (1)
P, xN,,
where P, is the proportion of night-time per 24 h on
the date of the detection, N,, is the number of winter
tracks recorded in the colony from which the bird orig-
inated, and WD is the weighted value of the detection.
We used the method described by Cuthbert et al.
(2005) to calculate an overlap index quantifying the
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Fig. 2. Raw light data filtration and artificial light detection method: example for 1 individual encountering polar night. The

first 3 panels represent the maximum light intensity per hour along date (x-axis) and time (y-axis). Yellow dots at night repre-

sent artificial lights. Panel 2 shows the filtration of twilight around noon during the polar night. Panel 3 shows the filtration of

twilight before sunrise and after sunset events. Panels 4 and 5 represent the light intensity over time, showing an example of
detections and encounter for 1 individual
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spatial overlap between fulmar light detections and
fishing vessels. The index was obtained by multi-
plying 2 rasters, one representing the fishing effort
(sum of fishing hours), and the second representing
the density of light encounters calculated as the sum
of WD values in each cell. The weighting correction
of detection was used for mapping and overlap
index only.

Using QGIS v3.12.2 (https://qgis.org), we defined
wintering areas (Fig. 1) with different exposure lev-
els to fishing activities. These areas were based on
regions presented in the Large Marine Ecosystem
report of the Protection of the Arctic Marine Environ-
ment (PAME, working group of the Arctic Council)
(Skjoldal et al. 2013), to which we added 3 additional
regions in the south to cover the entire study area.

2.6. Assessing fulmar activity from
conductivity data

We used conductivity data to assess fulmar activity.
Conductivity measures whether the geolocator (on
the bird's leg) is in saltwater (‘wet') or not (‘dry’).
During the non-breeding season, a bird that was not
in contact with saltwater was assumed to be flying; if
the leg was constantly immersed, the bird was as-
sumed to be resting on the sea surface, and if it was
alternating between short wet and dry periods, the
bird was assumed to be foraging (Lecomte et al. 2010).

To analyse fulmar activity budgets, we aggre-
gated the conductivity data by individual and by en.
counter with artificial lights and calculated the pro-
portion of time spent in each type of activity. We
classified standardized conductivity values (see Sec-
tion 2.2) in 3 activity types, as described by Lecomte
et al. (2010): flying (conductivity <0.05), resting on
the water (>0.95) and actively foraging (intermedi-
ate values). For each individual, we randomly se-
lected control periods of the same duration as the
cumulative duration of all encounters for that indi-
vidual and in the same wintering area but for which
no encounter was detected.

2.7. Statistical analyses

We used R version 3.6.3 for all statistical analyses
(R Core Team 2020). All R code used for the analy-
ses is available at https://github.com/benjamindps/
Detections-of-seabird-fishery-interactions-using-
GLS. A generalized linear mixed-effects model
(GLMM) with a binomial distribution was used to test

whether the probability of encountering artificial
lights per night varied among wintering areas and
colonies. A second GLMM with a binomial distribu-
tion was used to test for differences in encounter
duration between colonies or wintering areas. More
specifically, we tested the effect of the wintering areas
and colonies on the probability of having short en-
counters (<10 min) versus long encounters (>10 min),
the median duration being 10 min. Three wintering
areas with very low numbers of detections had to be
removed for this model to ensure convergence (be-
tween 4 and 12 detections for Kara Sea, Labrador
Sea and Canadian Eastern Arctic, versus 90-1992
detections for the other wintering areas). All models
were built using the ‘lme4' package (Bates et al.
2015) in R, including individual ID as a random effect
to take the non-independence in the data into
account.

We then investigated the changes in fulmar
behaviour when encountering artificial lights using
activity data. Each individual (n = 293; 3 loggers
failed to record conductivity) was characterized by
activity data (proportion spent flying, foraging or
resting) during encounters and during a randomly
selected control period (i.e. when no light was
detected; see Section 2.6 for details). No test was
appropriate for comparing activity when encounter-
ing artificial lights and in control groups (e.g. distri-
bution of the data was not symmetrical around the
median as required for non-parametric Wilcoxon
signed-rank tests, and/or the distribution of the dif-
ferences between paired data was not normal as
required for paired t-tests), and we therefore based
our discussion on bootstrap confidence intervals
(CIs). We calculated the 95% CIs of the mean pro-
portion of time spent in each activity (flying, forag-
ing, resting) during encounters and in the control
group using non-parametric bootstraps (‘boot’ and
‘boot.ci’ functions in the 'boot’ package, Davison &
Hinkley 1997, Canty & Ripley 2020). Non-overlap-
ping CIs between the encounter and control groups
were interpreted as significant differences. Results
were exactly the same using Wilcoxon or t-tests,
and we are therefore confident that our results and
conclusions are robust.

Finally, to test whether the probability of encoun-
tering artificial light was consistent within indivi-
duals and within colonies, a repeatability test was
performed using the ‘rpt’ function of the 'rptR’
package (Stoffel et al. 2017). Repeatability was cal-
culated as:

R= —~C (2)
Ve + Vg
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where Vj; is the among-individual (or among-
colony) variance component, and V4 is the within-
individual (or within-colony) variance component
when modelling the log-transformed (to fit normal
distribution) number of encounters per 6 mo non-
breeding period with individual and colony as
random effects.

3. RESULTS

Loggers detected artificial light at night at
least once in the period October—-March in 657
tracks by 296 individuals (note that activity data
were only available for 293 individuals), out of a
total of 751 tracks by 336 individuals (Table 1A).
For these birds, the average number of encoun-
ters per track was 9.5 + 0.4 (SE) (Fig. S5) with a
mean duration of 35.6 + 0.7 min (Fig. S6).

3.1. Overlap between light encounters
and fishing effort

Four wintering areas (Barents Sea, North Sea,
Norwegian Sea and Iceland) contained most of the
light detections (86.1 % after weighting with Eq. 1),
with the Barents Sea representing the highest pro-
portion of detections (31.3 %, Table 1B, Fig. 3A,B).
In contrast, there were very few detections in the
Atlantic Ocean (6.3 %), Canadian Eastern Arctic
(0.1%) and Labrador Sea (0.2 %).

The fishing effort (defined as the sum of fish-
ing hours per grid cell) was higher in Iceland,
the Barents Sea, the North Sea (Fig. 3C). Apply-
ing the overlap index (Fig. 3D) confirmed that
recorded light detections during the night
spatially overlapped with the fishing effort.
Again, this overlap was the strongest around
Iceland, in the Barents Sea and the North Sea.
Regarding the Norwegian Sea, we observed a
low fishing effort combined with a moderate
number of encounters, which led to a low over-
lap index.

3.2. Bird activity during light detections

We observed marked shifts in fulmar activity
during light encounters (Fig. 4). Fulmars in-
creased their time spent foraging by 37% and
decreased their time spent resting and flying by
30 and 7 %, respectively (Fig. 4).

(B) Number of encounters in each wintering area.

Table 1. (A) Summary of the deployments and encounters per northern fulmar colony (see Fig. 1 for abbreviations).

Weighted detection (WD) represents the value of a given light detection after the weighting process (Eq. 1)

Colony

Langanes Papey Jan Faroe Eynhallow Jarsteinen Alkefjellet Bjerneya Total
& H. Mayen Islands

Breida-
fjordur & R. & S. & G.

751

90
38

32
13

26
14

318
127
29
9.1
2430
4502.9

127 11 102 28
11 46

51

17

Number of tracks

336

19

Number of individuals

94
12.5

33
26.0

Tracks without detections
% with no detections
Number of encounters

Sum of WD
% of WD

34.6

14.3

6.9
729
5849.3

36.4

47.1

5760
41535.5

113 394 1479
4639.7 4821.8

6712.6

68
3235.1

418 34
2674.9

6159.9

95
2933.3

100

11.6

11.2

16.2

10.8

7.8

14.1

6.4

14.8

7.1

Wintering area

Labrador Atlantic  Greenland Iceland Faroe North Norwegian Barents Kara Total
Plateau

Canadian
E. Arctic

Sea Sea Sea

Sea

Sea

Ocean

Sea

5750
121825
41176
100

4
541

1992
15415
12868

31.3

1023
20582

7916

19.2

1789
31714

90
3181

351
14 541

253
7894
2404

5.8

231
25435

12
1280
61.5

0.1

Number of encounters

1242

Number of bird nights

Sum of WD
% of WD

17
0.04

8299
20.2

1.4

573

6359
15.4

2602
6.3

6.5
0.2
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Fig. 3. Light detections at night overlap with fishing effort. (A) Positions of light detections. Each point represents 1 detec-

tion. The colour gradient represents the density of fulmar positions during the non-breeding season. (B) Raster of light de-

tections after weighting (WD: weighted detection, i.e. the value of a given light detection after the weighting process). (C)

Raster of the fishing effort (sum of the fishing hours per grid cell) recorded between 2012 and 2016. (D) Overlap between

vessel density and light detections at night. Raster cells are 200 km wide. Azimuthal equidistant projection centred on the
centroid of all fulmar positions

3.3. Spatial variations

Fulmars had, on average, a 0.04 (4 %) probability of
encountering artificial lights per night (i.e. 4788 nights
with at least 1 light encounter for a total of 121 825
individual-nights). Independent of the total night
duration, this probability varied among colonies and
among wintering areas (Table 2A, Fig. 5). More spe-
cifically, birds from Bjgrnegya (average probability of
0.09), Alkefjellet (0.06) and Eynhallow (0.04) had the
highest probabilities of encountering light at night,
while birds from the Faroe Islands (0.01), Langanes/
Skjalfandi/Grimsey (0.02) and Papey/Hélmanes (0.02)
had the lowest probabilities (Fig. 5A). There were
also differences in the probabilities of birds en-
countering artificial lights in the different wintering
areas (Table 2A). The highest encounter probability
was found in the Barents Sea (0.07; Fig. 5B) and the
lowest in the Atlantic Ocean, Labrador Sea and
Canadian Eastern Arctic (0.01; Fig. 5B). The proba-

bility of having short (<10 min) or long (>10 min)
encounters with artificial lights did not vary among
colonies or wintering areas (Table 2B).

3.4. Consistency of the probability of encountering
artificial lights at night

The frequency distribution of the number of
encounters per non-breeding season (Fig. S5) shows
that most tracks had a small number of detections,
while some tracks had higher numbers (range: 0-68
encounters per 6 mo non-breeding season). The re-
peatability test revealed that 23.2 + 9.7% (mean =
SE) of the variation in the number of encounters per
non-breeding season can be explained by the colony
and 36.4 + 5.7% by the individual, independent of
their colony (both likelihood ratio tests: p <0.001).
These repeatability values suggest that birds from
some colonies were more likely to encounter artificial
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Fig. 4. Night activity budgets of 293 northern fulmars during
encounters with artificial lights and in ‘control’ periods (i.e.
with no light encounters). Activities are defined based on
global location sensor (GLS) conductivity data and the pro-
portion of time spent wet (flying if <5 %, resting if >95 %, ac-
tive foraging otherwise; see Section 2 for details). Symbols
represent the mean + CI % of time spent in each activity

lights at night, and that, independent of their colony,
some birds were also more likely to encounter lights.

4. DISCUSSION

A previous study at a single South Atlantic colony
(Kriger et al. 2017) highlighted the potential for
using light data from GLS to detect nocturnal sea-
bird-fishery interactions. Applying this same method
to a multi-colony international study, we demon-
strate how this low-cost technique can provide
important insights into seabird—fisheries interactions
across large-scale areas such as the North-East
Atlantic. The clear overlap between light detections
and fishing effort (Fig. 3D) matches the areas where
fishing is the most intense in Europe (i.e. the North
and Barents Seas and Iceland). This overlap, in addi-
tion to the increased foraging activity during encoun-
ters, strongly suggests that the detection of artificial
light by bird-borne light-loggers can be used to
investigate interactions between seabirds and fish-
eries in our system.

Table 2. Model selection for (A) the probability of encountering artificial light
per night and (B) the probability that light encounters at night last < or >10
minutes. Np: number of model parameters; Dev: deviance; AIC: Akaike's in-
formation criterion; AAIC: difference in AIC between a given model and the
model with lowest AIC; colony: breeding colony of each individual; WArea:
wintering area; night duration: total duration of the night; class: type of GLS
logger (see Section 2 for details). Bird identity was included in all models as a
random effect. For (A), the total sample size (number of individual-nights) was
121825 from 336 individuals. For (B), the total sample size (number of encoun-
ters) was 5729 from 296 individuals encountering artificial lights. Three win-
tering areas with very few observations were removed from this analysis to
allow model convergence (see Section 2.7 for details)

Model Np Dev AIC AAIC
(A) Probability of encountering artificial light per night

Colony + WArea + Night duration 20 36211.9 36251.9 0.0
WArea + Night duration 12 36311.5 36335.5 83.6
Colony + Night duration 11 36354.1 36376.1 124.2
Night duration 3 36743.5 36479.5 227.6
Colony + WArea 19 37 066.9 37104.9 853.0
WArea 11 37178.9 37200.9 949.0
Colony 10 37264.4 372844  1032.5
1 (intercept only) 2 37392.2 37396.2  1144.3
(B) Probability that light encounters at night last < or >10 min

1 (intercept only) 2 7828.9 7832.9 0.0
Class 4 7826.6 7834.6 1.7
WArea 8 7820.2 7836.2 3.3
WArea + Class 10 7817.4 7837.4 4.5
Colony 10 7826.0 7846.0 13.1
Colony + Class 12 7822.9 7846.9 14.0
Colony + WArea + Class 18 7814 .4 7850.4 17.5

While detecting abnormal lights in
the raw light data is a straightforward
process, one limitation is that the
nature of the light source is not
known. In our study system, we were
challenged by the presence of polar
night at high latitudes. It could happen
that no clear sunrise and sunset were
detected, and that crepuscular light
still appeared in the raw light data.
This was fixed by filtering light data
around the solar noon. For studies out-
side polar areas, any detection of day-
light period (if some sunrise and sun-
set events are missed while processing
the data) can be fixed by filtering
detections that have the same duration
as the daylight. Regarding artificial
lights, we cannot exclude that we de-
tected light sources other than fishing
boats, either from other commercial
vessels or offshore oil platforms, both
of which also attract seabirds (Wiese et
al. 2001, Ronconi et al. 2015). This
could, for example, be the case in the
Norwegian Sea, where we found a sig-
nificant number of light detections
despite a low level of fishing effort
(Fig. 3). Likewise, some of the detec-
tions in the North Sea may come from
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Fig. 5. Variation in the probability of encountering artificial light at night. Observed mean + SE probability (A) per northern
fulmar colony and (B) per wintering area. See Fig. 1 for full colony and area names

ships other than fishing vessels, as ship traffic is
heavier there than in other wintering areas (Jalka-
nen et al. 2016), yet the overlap between detections
and fishing effort remained quite high, supporting
the hypothesis that fulmars mostly encountered fish-
ing vessels. In the English Channel and the Celtic
Sea (i.e the southeast part of the North Sea wintering
area in the present study), the overlap was very low
despite a high vessel density (i.e. high fishing effort
and ship traffic; Jalkanen et al. 2016), most likely
due to few of the tracked birds using these areas
(Fig. 3A). At sea, fulmars might also encounter lights
from wind turbine fields, although we did not find
any evidence in the literature that the lights of wind
turbine fields attract seabirds. Finally, other artificial
light sources might come from coastal areas. During
the non-breeding season, fulmars are mostly on the
open seas, but sometimes visit their colonies; how-
ever, none of their colonies were affected by light
pollution, and the activity data did not reflect colony
visits (= conductivity of 0). We are therefore confi-
dent that potential coastal light encounters are negli-
gible and more generally that the artificial lights
encountered are a good proxy of the encounters with
fishing vessels, as supported by the activity data. To
further validate our technique, it is interesting to note
that lights can be used to detect fishing boats at a
very different scale: satellites are now used to moni-
tor fishing activities at nighttime by detecting the
lights of fishing boats, in particular those that do not
broadcast their positions (Waluda et al. 2002, Park et
al. 2020, Li et al. 2021).

The description of the encounters highlighted the
fact that in wintering areas with different levels of

fishing effort, the duration of such events may not
change (there was no effect on the probability that
encounters last more or less than 10 min), although
their probability of occurring increased in wintering
areas with higher fishing effort. Attraction of sea-
birds to fisheries in relatively small geographical areas
has previously been demonstrated (Garcia-Barcelona
et al. 2010), but to our knowledge, these interactions
have not previously been assessed at as large a spa-
tial scale as covered in the present study (i.e. the
whole North-East Atlantic).

Not all of the colonies studied had the same expo-
sure to fisheries. Colonies in which birds are the most
likely to interact with fisheries were the ones located
near fishing hotspots, respectively the North Sea for
Eynhallow and the Barents Sea for Bjerneya and
Alkefjellet. There were also important inter-individ-
ual variations which accounted for more than 59 % in
the probability of encountering fishing vessels (com-
bining repeatability at individual and colony levels,
which is consistent with other studies (Patrick et al.
2015, Gianuca et al. 2017, Kriiger et al. 2017). The
tendency for some individual fulmars to be more
closely associated with fishing boats than others has
also been demonstrated through analysis of higher-
resolution GPS tracking and fisheries data in Scottish
waters (Pirotta et al. 2018). This variation is likely
to be partly related to sex and age class (Votier et
al. 2013, Jimenez et al. 2016, Gianuca et al. 2017,
Kriger et al. 2017). In terms of conservation, a sex-
biased bycatch mortality can lead to changes in sex
ratios and therefore a decline of the effective popu-
lation size (Weimerskirch et al. 2005, Donald 2007).
In a meta-analysis of global patterns of bycatch,
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Gianuca et al. (2017) found that mortality was
skewed towards adults, further exacerbating delete-
rious effects on seabird populations. However, North
Atlantic studies tend to be under-represented in
Gianuca et al. (2017) and other bycatch studies (see
Pott & Wiedenfeld 2017). Studies that have been con-
ducted in this region have highlighted that fulmars
are commonly caught in a range of different fisheries
(Anderson et al. 2011, Fangel et al. 2017, Beerum et
al. 2019). Currently, the extent of these biases and
the scale of threats are hard to estimate due to in-
sufficient data on bycatch, although it is one of the
greatest threats to seabirds (Croxall et al. 2012).
Light-based assessments of interactions with ves-
sels can now be integrated into individual-based
demographic studies to further evaluate the basis
and consequences of observed individual variation in
interactions.

Even though we successfully identified a seabird-
fishery overlap, it does not obviously mean that ful-
mars took advantage of fishing vessels to feed. Con-
ductivity data helped us to highlight these inter-
actions. Depending on the species and the studied
area, some previous results indicated changes in be-
haviour during fishery encounters (Nel et al. 2002),
while others did not (Grémillet et al. 2019). As we
expected, fulmars showed behavioural changes dur-
ing their interactions with fishing vessels. These
modifications were specific to the encounter period
and coincided, in every studied wintering area, with
more time spent foraging around the boat and less
time spent resting on the water. This is in line with
onboard observations of fulmars (Hedd et al. 2016)
and previous results on procellariforms (Nel et al.
2002).

Fulmars are attracted to fishing vessels (Skov &
Durinck 2000), with specific high concentrations of
individuals around fisheries (Wahl & Heinemann
1979). Pirotta et al. (2018) recently quantified the
extent to which individual fulmars associated with
vessels during the breeding season, when higher-
resolution GPS tracking data can be obtained. Our
study is the first to provide colony-specific estimates
of variation in the number of encounters between
northern fulmars and fisheries during the non-breed-
ing season at an individual scale (i.e. 9.5 + 0.4 SE
encounters per 6 mo of non-breeding season, varying
from 0 to 68). Using the same method on another pro-
cellariform, Kriiger et al. (2017) found that the num-
ber of nights with fishing vessel encounters was in
the same order of magnitude (between 20 and 30 for
the whole year) in the South Atlantic Ocean, where
fishing effort is high and there is no discard ban pol-

icy. Moreover, this raises questions concerning the
prevalence of discards and offal in fulmar diet. In
gannets, only 42 % of the foraging behaviour around
fishing vessels could be considered as direct foraging
on fishery offal (Votier et al. 2013). In our study, al-
though we could only detect the interactions occur-
ring at night, their number remained relatively low.
Thus, it seems likely that offal and discards represent
a low proportion of fulmar diet during the non-breed-
ing season according to our results. This is highly
contrasting with diet studies conducted during the
breeding season on birds captured both at the colony
and at sea, where up to 72 and 40 % of the diet, re-
spectively, consisted of fishery discards (Lilliendahl &
Solmundsson 1997, Phillips et al. 1999). Additionally,
fishery discards available to seabirds also fluctuate
over longer time scales; in the North Sea, the number
of seabirds that could be supported by fishery dis-
cards has declined by 39% between 1990 (peak of
fishery discards) and 2010 (Sherley et al. 2020). Fur-
ther investigations would be needed to study the sea-
sonal and interannual variations in the importance of
discards in fulmar diet.

In the present study, we analysed only night data
and indirect measurements of fulmar behaviour due
to methodological constraints. We suggest that future
studies should combine GLS light data with other
sources of information like direct onboard observa-
tions of fulmar interactions with fisheries, which
could provide information about bycatch mortality
and any related biases that are crucial for conserva-
tion. Comparing day and night encounter probabili-
ties could be useful to evaluate the role of artificial
lights in attracting fulmars. Some seabird species
that nest in burrows are actively attracted by artifi-
cial lights at night (Montevecchi 2006), but this is less
common for birds nesting on the ground, including
fulmars. In addition, knowing that procellariforms have
well-developed olfaction and may use this sense
rather than vision to search for food (Nevitt 2000), it
is possible that they are more attracted by the fishing
activity itself than by the light. Diet analyses would
also help to assess potential differences in the re-
liance on fisheries among different wintering areas
and between seasons. More recent methods to obtain
dietary information, such as stable isotopes, DNA
metabarcoding or fatty-acid analyses, could also be
useful and have proven to be efficient in recon-
structing the amount of discards eaten by seabirds
(Mariano-Jelicich et al. 2017, Mclnnes et al. 2017,
Conners et al. 2018). The nature of observed individ-
ual variation should also be explored further in rela-
tion to management policies that are typically only
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considered at larger population scales (Croxall et al.
2012, Gianuca et al. 2017). Finally, the activity shift
observed during encounters that led to foraging
around fisheries could have fitness consequences that
remain to be investigated.

In conclusion, we found that fulmars encountered
fisheries at night during the non-breeding season.
The probability of encounter was highly variable be-
tween individuals but was higher in wintering areas
with intense fishing effort. Fulmars tended to forage
more and rest less during these periods. We provided
a useful methodological framework to study seabird—
fishery interactions at larger scale, which is crucial to
understand and compare the consequences of man-
agement policies for entire seabird populations.
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