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Abstract Due to their flexibility Gaussian processes are a well-known Bayesian framework for
nonparametric function estimation. Integrating inequality constraints, such as monotonicity, con-
vexity, and boundedness, into Gaussian process models significantly improves prediction accuracy
and yields more realistic credible intervals in various real-world data applications. The Gaussian
process approximation, originally proposed in [22] is considered. It satisfies interpolation conditions
and handles a wide range of inequality constraints everywhere. Our contribution in this paper is
threefold. First, we extend this approach to handle noisy observations and multiple, more general
convex and non-convex constraints. Second, we propose new basis functions in order to extend the
smoothness of sample paths to differentiability of class Cp, for any p ≥ 1. Third, we examine its
behavior in specific scenarios such as monotonicity with flat regions and boundedness near lower
and/or upper bounds. In that case, we show that, unlike the Maximum a posteriori (MAP) esti-
mate, the mean a posteriori (mAP) estimate fails to capture flat regions. To address this issue, we
propose incorporating multiple constraints, such as monotonicity with bounded slope constraints.
According to the theoretical convergence and based on a variety of numerical experiments, the
MAP estimate behaves well and outperforms the mAP estimate in terms of prediction accuracy.
The performance of the proposed approach is confirmed through real-world data studies.

Keywords Gaussian processes; multiple constraints; convex and non-convex constraints; flat region;
MAP estimate; HMC sampler.

1 Introduction

Gaussian processes (GPs) are a well-known nonparametric Bayesian framework for function estima-
tion. They are widely used in many fields, such as computer science, physics, biology, engineering,
and finance [33]. GP models are based on defining a prior distribution over function spaces. In
general, a GP is characterized by its mean and covariance functions. The flexibility of GPs is
attributed to their covariance function, which enables incorporating prior information, such as
smoothness, stationarity, sparsity, and derivative constraints [10, 33].

Unconstrained GP models perform poorly in terms of prediction accuracy and yield unrealistic
confidence intervals when applied to physical systems that satisfy inequality constraints such as
monotonicity, boundedness, and convexity, see for example, [13, 18, 20, 34, 41]. Several real-world
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cases where the data suggest that the underlying function satisfies specific inequality constraints
are presented in physics [44] and econometrics [5, 8, 9, 11].

Including inequality constraints into a GP model improves its prediction accuracy and provides
more realistic confidence intervals [6, 13, 20, 19, 35, 40, 45]. Recently, the authors in [38] provide
an overview and survey of various strategies for incorporating shape constraints into a GP. In
the present paper, the GP approximation proposed in [22] is considered, where various inequality
constraints such as monotonicity, convexity, and boundedness are satisfied everywhere. To the
best of our knowledge, it is the only model in the literature capable of dealing with a variety of
shape constraints (either alone, together, or sequentially). The main idea is to approximate the
samples of the parent GP by representing them in a finite-dimensional space of functions using
an appropriate basis expansion. These basis functions possess attractive properties not necessary
shared by other basis such as Bernstein polynomials [12], regression splines [4, 27], and restricted
splines [37]. Various restrictions like monotonicity, convexity, and boundedness are equivalently
translated into linear inequality constraints on the basis coefficients. The performance of this
approach has been demonstrated through several real-world data applications [8, 9, 26, 42, 44].
The asymptotic properties have been investigated in [1, 15]. The generalization of the well-known
Kimeldorf-Wahba correspondence [17] between Bayesian estimation on stochastic processes and
splines for the constrained cases has been established.

In the present paper, our contributions are threefold. First, we extend this approach to handle
both noisy observations and multiple and more general convex and non-convex constraints (such as
boundedness within a non-convex set). Second, we propose new basis functions in order to extend
the smoothness of the sample paths to differentiability of class Cp, for any p ≥ 1. Third, the
behavior of this approach is investigated in challenging situations, such as monotonicity with flat
regions or boundedness where the underlying function is close to the lower or upper bounds. In
that case and based on both theoretical and numerical results, the Maximum a posteriori (MAP)
estimate behaves well and outperforms the mean a posterior (mAP) estimate (i.e., the mean of the
posterior distribution) in terms of prediction accuracy. This is because the posterior distribution
approximated by the efficient Hamiltonian Monte Carlo (HMC) sampler fails to capture the flat
regions. To address this issue, we propose adding multiple constraints, such as monotonicity with
bounded slope constraints. This leads to correction of the posterior distribution’s behavior and the
convergence of the mAP estimate towards the MAP estimate.

This article is structured as follows. In Sect. 2, GP regression is briefly reviewed. In Sect. 3,
following the finite-dimensional GP approximation from [22], we propose a general formulation for
linear inequality constraints that is capable of handling both convex and non-convex constraints.
Section 4 presents the new basis functions in order to generalize the smoothness of sample paths to
differentiability of class Cp, p ≥ 1. Additionally, the asymptotic properties of the MAP estimate are
investigated. Section 5 demonstrates the efficiency of the proposed framework through applications
using real-world data.

2 Gaussian process regression review

A GP, namely (Z(x))x∈Rd , is characterized by its mean function µ and covariance function k, i.e.,
Z ∼ GP(µ, k) [33]. It can be written as follows:

Z(x) = µ(x) + Y (x), ∀x ∈ Rd,

where (Y (x)) is a zero-mean GP with covariance function k, i.e., Y ∼ GP(0, k), with

k(x,x′) = Cov(Y (x), Y (x′)) = E[Y (x)Y (x′)], ∀x,x′ ∈ Rd.
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Given a dataset of size n, namely, D = {(xi, yi), i = 1, . . . , n}, where xi denotes an input vector of
dimension d and yi denotes a scalar output. The input vectors {xi} form the n× d design matrix
X = [x1, . . . ,xn]> and the outputs {yi} form the output vector y = [y1, . . . , yn]> called data. Thus,
the dataset can be written as D = {(X,y)}. The following regression problem is considered

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

noise), (1)

where f is an unknown latent function that generates the data, and εi is an additive independent
identically distributed (i.i.d.) zero-mean Gaussian noise with constant variance σ2

noise. A GP prior
distribution on the underlying function f is assumed. Conditionally on y = [y1, . . . , yn]>, the
conditional process remains a GP [33]

{Y (·)|y} ∼ GP (µc(·), c(·, ·)) , (2)

where the conditional mean function µc and covariance function c are given as follows:

µc(x) = E [Y (x)|y] = k(x,X)>
(
k(X,X) + σ2

noiseIn
)−1

y; (3)

c(x,x′) = k(x,x′)− k(x,X)>(k(X,X) + σ2
noiseIn)−1k(x′,X);

with In the n × n identity matrix. Let us recall that k(X,X) is the covariance matrix of Y (X) of
dimension n× n, and k(x,X) = [k(x,x1), . . . , k(x,xn)]> is the vector of covariance between Y (x)
and Y (X) of dimension n.

In the simple special case where data are noise-free [36], that is when we know {(xi, fi)|i =
1, . . . , n}, with fi = f(xi), the equations for GPR prediction (3) remain the same, but we have to
replace the noise variance σ2

noise by zero and the data vector y by f , where f = [f1, . . . , fn]>.

Table 1: Some popular covariance functions with their degree of smoothness [33].

Name Expression Class

Squared Exponential exp
(
− (x−x′)2

2θ2

)
C∞

Matérn ν = 5/2
(

1 +
√

5|x−x′|
θ

+ 5(x−x′)2
3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn ν = 3/2
(

1 +
√

3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0

Table 1 displays some commonly used covariance functions in the machine learning community
[33], ordered by decreasing degree of smoothness in the one-dimensional case, where θ is the cor-
relation length parameter. In the present paper, we focus on the Matérn covariance function with
a smoothness parameter of ν = 5/2, as recommended in [33]. The exponential kernel is a Matérn
covariance function with ν = 1/2. The squared exponential (SE), on the other hand, is a Matérn
covariance function with ν → +∞.

Figure 1 shows three covariance functions in the left panel and their corresponding GP sample
paths in the right panel.

3 Constrained Gaussian processes

3.1 C0 approximation with Model (Mh)

In this section, the finite-dimensional approximation of GPs proposed in [22] is considered. Without
loss of generality, let Y be a zero-mean GP with covariance function k, i.e., Y ∼ GP(0, k). We
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Figure 1: The left panel displays some covariance functions, while the right panel shows the corre-
sponding GP sample paths. The correlation length parameter θ is fixed at 0.4.

first focus on the one-dimensional input case. The methodology is later extended to handle multi-
dimensional input spaces (refer to Sect. 3.4 below). Let D be a compact set in R. For simplicity,
we suppose that D is the unit interval [0, 1]. Let tj = (j − 1)∆N , j ∈ {1, . . . , N} be a sequence
of N equally spaced knots on D, with a spacing of ∆N = 1/(N − 1). Let us mention that the
methodology developed in this paper is applicable for non-uniform discretization of D (see the left
panel of Figure 2). Let us define the three basis functions proposed in [22], which will be used in
three different models, Mh, Mφ, and Mϕ, in the present paper. These functions are given by

hj(x) := h

(
x− tj
∆N

)
, φj(x) :=

∫ x

0

hj(t)dt, ϕj(x) :=

∫ x

0

∫ t

0

hj(u)dudt, (4)

for j ∈ {1, . . . , N}, where h(x) := (1 − |x|)1[−1,1](x) is the hat function on [−1, 1]. The hat
functions {hj} admit two nice properties. First, the value of any hat function at any knot is equal
to Kronecker’s delta function (i.e., hj(tl) = δj,l), where δj,l is equal to one when j = l and zero

otherwise. Second, for any x ∈ D, we have
∑N

j=1 hj(x) = 1. The second property is used in the

proof of Lemma 1. As mentioned in [22], any continuous function f : D → R, that is, f ∈ C0(D,R)
can be approximated by a piecewise linear interpolating between the function values at the knots
{tj},

f̃N(x) =
N∑
j=1

f(tj)hj(x), ∀x ∈ D.

Let us recall the following well known result.

Lemma 1 (Uniform convergence C0). Let f be a continuous function on D, then, the piecewise
linear interpolating function f̃N(·) =

∑N
j=1 f(tj)hj(·) converges uniformly to f when N tends to

infinity.

Proof. Indeed, for any x ∈ D, we have
∑N

j=1 hj(x) = 1 and∣∣∣f̃N(x)− f(x)
∣∣∣ =

∣∣∣∣∣
N∑
j=1

(f(tj)− f(x))hj(x)

∣∣∣∣∣
≤ sup

|x−x′|≤∆N

|f(x′)− f(x)|
N∑
j=1

hj(x) = sup
|x−x′|≤∆N

|f(x′)− f(x)| . (5)

By the uniform continuity of the function f on the compact interval D and the last inequality (5),
we deduce that

sup
x∈D

∣∣∣f̃N(x)− f(x)
∣∣∣ −→
N→+∞

0.

This concludes the proof of the lemma.
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Figure 2: An example of approximating a monotone (nondecreasing) and bounded function f (red
solid curve) using a piecewise linear interpolating function f̃N (black dashed curve). A uniform
(resp. non-uniform) subdivision is used with N = 5 hat functions and knots in the left (resp. right)
panel. The gray triangles represent the hat functions, while the black dashed thin lines denote the
lower and upper bounds constraints.

Figure 2 shows the deterministic function f(x) =
√
x (red solid curve) which verifies the mono-

tonicity (nondecreasing) and boundedness constraints. This function is approximated by the piece-
wise linear interpolating function f̃N (black dashed curve) using either a uniform subdivision with
N = 5 hat basis functions (left panel), or a non-uniform subdivision (right panel). The black dashed
thin lines represent the lower and upper bound constraints, while the gray triangles represent the hat
basis functions {hj}. The black stars represent the values of the true and approximated functions
at the knots {tj}. Let us mention that the true function grows rapidly on [0, 0.3]. As a result, a
finer discretization with N = 3 was used only for this interval, while N = 2 was used for the inter-
val [0.3, 1]. This shows that a suitable subdivision can improve the accuracy of the approximation
and reduce the number of knots. This also reduces the complexity of the sampling process when
using an efficient HMC sampler to approximate the posterior distribution, as described in detail in
Sect. 3.2.

If no additional smoothness assumptions are required, the first model can be written as follows:

Y N(x) :=
N∑
j=1

Y (tj)hj(x) =
N∑
j=1

ξjhj(x), x ∈ D, (Mh)

where we denote ξj = Y (tj). Since Y is a zero-mean GP with covariance function k, then, the vector
ξ = [ξ1, . . . , ξN ]> is also zero-mean and Gaussian with covariance matrix Γ, i.e., ξ ∼ N (0N ,Γ),
where

Γj,l = Cov(Y (tj), Y (tl)) = k(tj, tl), j, l ∈ {1, . . . , N}, (6)

and 0N = [0, . . . , 0]> is the N -dimensional zero vector. Furthermore, the coefficients {ξj} can be
interpreted as the values of the original GP (Y (x)) evaluated at the knots {tj}. Let C be the
convex set of functions that verify some inequality constraints, such as monotonicity, convexity, and
boundedness. The non-convex case will be investigated later in this section. For instance,

C =


Cb := {f ∈ C0(D,R) s.t. ` ≤ f(x) ≤ u, ∀x ∈ D}
Cm := {f ∈ C0(D,R) s.t. f(x) ≤ f(y), ∀x ≤ y ∈ D}
Cc :=

{
f ∈ C0(D,R) s.t. f(y)−f(x)

y−x ≤ f(z)−f(y)
z−y , ∀x ≤ y ≤ z ∈ D

} (7)

which corresponds to boundedness, monotonicity, and convexity constraints respectively, where the
constants ` and u represent the lower and upper bounds, respectively, and where C0(D,R) is the
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set of continuous functions from D to R. Our aim is to compute the posterior distribution of Y N

such that Y N ∈ C. The authors in [22] have shown the advantage of using the hat function as
in Model (Mh) and more generally the basis functions defined in (4). They demonstrated that
satisfying an infinite number of inequality constraints on the process Y N ∈ C is equivalent to
satisfying a finite number of linear inequality constraints on the coefficient vector ξ = [ξ1, . . . , ξN ]>.
To be more precise, for many various choices of C, we have

Y N ∈ C ⇔ ξ ∈ E , (8)

where E is a convex set of RN . For the inequality constraints given in (7), we obtain

E =


Eb :=

{
z ∈ RN : ` ≤ zj ≤ u, ∀j = 1, . . . , N

}
Em :=

{
z ∈ RN : zj−1 ≤ zj, ∀j = 2, . . . , N

}
Ec :=

{
z ∈ RN :

zj−1 − zj−2

tj−1 − tj−2

≤ zj − zj−1

tj − tj−1

, ∀j = 3, . . . , N

} (9)

which corresponds to boundedness, monotonicity, and convexity constraints respectively. The ability
of these bases {hj} to express different constraints equivalently as linear restrictions on the vector
of coefficients ξ is a desirable feature that may not be present in other bases such as Bernstein
polynomials [12], regression splines [4, 27], and restricted splines [37]. In the following sections,
we also demonstrate the attractiveness of the other basis functions defined in (4). Furthermore,
new and smoother basis functions are given below (cf., Sect. 4). In the present section, we focus
exclusively on Model (Mh) using the hat functions {hj}. Note that the linear restrictions on the
coefficients vector ξ in Eq. (9) can be expressed in a matrix form as follows:

ξ ∈ E ⇔ ξ ∈ RN s.t. ` ≤ Λξ ≤ u, (10)

where Λ ∈ Rm×N is the matrix of constraints, and ` and u are lower and upper bounds vectors,
respectively. For instance, when ξ ∈ Em, we get

Λi,j =


−1 if j = i for any i = 1, . . . , N − 1;
1 if j = i+ 1 for any i = 1, . . . , N − 1;
0 otherwise;

and ` = [0, . . . , 0]> ∈ Rm and u is the vector with components +∞. In that case, we get m = N−1
linear inequality constraints on the coefficients vector ξ.

The authors of [22] demonstrated that under the representation in Model (Mh):

• Y N is a finite-dimensional GP with covariance function

kN(x, x′) = h(x)>Γh(x′), ∀x, x′ ∈ D,

where h(x) = [h1(x), . . . , hN(x)]>.

• Y N converges uniformly to Y when N tends to infinity (with probability one).

Let us give the following results concerning Model (Mh).

Proposition 1 (Multiple constraints (Mh)). Suppose that Y N is defined as in Model (Mh).

• Boundedness in a convex region: Let Cbc be a set of continuous functions on D bounded be-
tween two functions f` and fu such that the region between the lower bound function f` and
the upper bound function fu is convex4. Then, Y N ∈ Ccb if and only if f`(tj) ≤ ξj ≤ fu(tj),
for any j ∈ {1, . . . , N}.

4A set C is convex if and only if for any x, y ∈ C, (1− t)x+ ty ∈ C, where t ∈]0, 1[.
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• Convexity: Y N is convex (i.e., Y N ∈ Cc) if and only if

ξj+1 − ξj
tj+1 − tj

≤ ξj+2 − ξj+1

tj+2 − tj+1

, j ∈ {1, . . . , N − 2}. (11)

In our case, tj+1− tj = ∆N = 1/(N − 1), for any j ∈ {1, . . . , N − 1}. Thus, inequalities (11)
are equivalent to

ξj+2 − 2ξj+1 + ξj ≥ 0, j ∈ {1, . . . , N − 2},
which in turn is equivalent to Λξ ≥ 0N−2 according to the notation in (10), with ξ =
[ξ1, . . . , ξN ]>. The matrix of constraints Λ is given by

Λi,j =


1 if j = i for any i = 1, . . . , N − 2;
−2 if j = i+ 1 for any i = 1, . . . , N − 2;
1 if j = i+ 2 for any i = 1, . . . , N − 2;
0 otherwise.

• Multiple constraints: For example, Y N is nondecreasing and bounded in a convex region (i.e.,

Y N(x) ∈ Cm ∩ Cbc) if and only if{
ξj ≤ ξj+1 j ∈ {1, . . . , N − 1};
f`(tj) ≤ ξj ≤ fu(tj) j ∈ {1, . . . , N}; (12)

where f` and fu are the lower and upper bounds functions. Let us mention that if f` and fu
are constants, for example f`(x) = a < b = fu(x), for any x ∈ D, where a, b ∈ R, then the
linear constraints (12) become a ≤ ξ1 ≤ . . . ≤ ξN ≤ b. This leads to only m = N + 1 linear
constraints on the coefficients vector ξ according to (10).

Proof. For the first item, if Y N is in Cbc, then in particular, ξj = Y N(tj) ∈ [f`(tj), fu(tj)], for any
j ∈ {1, . . . , N}. Now, if ξj ∈ [f`(tj), fu(tj)], for any j ∈ {1, . . . , N}, then Y N is in Cbc, since Y N is
a piecewise linear interpolation function at the knots {tj}.
The proof of the second item is simply a result of the fact that Y N from Model (Mh) is a piecewise
linear interpolating between the function values at the knots {tj} and that the convexity constraints
are equivalent to having a nondecreasing slope.
The last item is evident, which completes the proof of the proposition.

Remark 1.

• The linear inequality constraints on the coefficients f`(tj) ≤ ξj ≤ fu(tj), for any j ∈ {1, . . . , N}
in Proposition 1 can be written in a matrix form as in (10), where Λ = IN , ` = [f`(t1), . . . , f`(tN)]>,
and u = [fu(t1), . . . , fu(tN)]>.

• The three constraints introduced in Proposition 1 (boundedness, convexity, and monotonicity)
can be imposed together.

The result of Proposition 1 (boundedness constraints) remains valid if the region between the
lower and upper bounds functions is non-convex, as long as it can be decomposed into convex sets
at nonoverlapping subdomains (cf., Proposition 2 and Figures 5 and 7 below).

Proposition 2 (Boundedness in a non-convex region). Suppose that Cbnc is a set of continuous
functions on D bounded between two functions f` and fu such that the region between the lower bound
function f` and the upper bound function fu is non-convex. Suppose also that this non-convex region
can be decomposed into convex regions on Q nonoverlapping input subdomains Dr, r ∈ {1, . . . , Q}.
If the intersection extremities t1,N1 , . . . , tQ−1,NQ−1

of each subdomain are elements of the subdivision
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of D, then Y N is in Cbnc if and only if f`(tr,jr) ≤ ξr,jr ≤ fu(tr,jr), for all jr ∈ {1, . . . , Nr} and
r = {1, . . . , Q}. These linear inequalities on ξr,jr can be expressed in a matrix form as follows:

` ≤ Λξ ≤ u,

where ` = [`>1 , . . . , `
>
Q]>, u = [u>1 , . . . ,u

>
Q]>, and Λ = [Λ>1 , . . . ,Λ

>
Q]> (block diagonal matrix), with

for example, `1 = [f`(t1,1), . . . , f`(t1,N1)]
>.

Proof. We denote by C1 ∪ . . . ∪ CQ = ∪rCr = Cbnc, where Cr is the convex region on the subdomain
Dr for any r ∈ {1, . . . , Q}. Thanks to Proposition 1, for each r ∈ {1, . . . , Q}, the boundedness
constraint f`(tr,jr) ≤ ξr,jr ≤ fu(tr,jr) for all jr ∈ {1, . . . , Nr} is equivalent to Y N ∈ Cr. The following
condition: ‘the intersection extremities t1,N1 , . . . , tQ−1,NQ−1

of each subdomain are elements of the
subdivision of D’ completes the proof of the proposition.

3.2 Constrained Gaussian process with noisy observations

In this section, we consider the finite-dimensional GP approximation defined in (Mh) given both
noisy observations and inequality constraints:

Y N(x) =
N∑
j=1

ξjhj(x) s.t.

{
Y N(xi) + εi = yi (noisy observations),
Y N ∈ C (inequality constraints),

(13)

where xi ∈ D is the design point, yi ∈ R is the data and εi
iid∼ N (0, σ2

noise), with σ2
noise the noise

variance. Given a set of design points X = [x1, . . . , xn]> ∈ Dn, the noisy observations can be written
a matrix form as follows:

Hξ + ε = y,

where y = [y1, . . . , yn]> is the vector of data, ε = [ε1, . . . , εn]> is the noise Gaussian vector and H is
the n×N matrix defined by Hi,j := hj(xi). Following the strategy in [21] and the equivalent in (8),
the conditional distribution of Y N given both noisy observations {Y N(X) + ε = y} and inequality
constraints {Y N ∈ C} can be obtained from the conditional distribution of ξ given {Hξ + ε = y}
and {ξ ∈ E}

ξ ∼ N (0N ,Γ) s.t.

{
Hξ + ε = y (noisy observations)
ξ ∈ E (linear inequality constraints)

(14)

Hereafter, the linear inequality constraints {ξ ∈ E} is reformulated as ` ≤ Λξ ≤ u, where ` and
u are the lower and upper bounds vectors of dimension m. Now, we will explain the procedure for
sampling from the posterior distribution as stated in (14). Since ξ ∼ N (0N ,Γ), then Hξ + ε ∼
N (0N ,HΓH> + σ2

noiseIn). Under only noisy observations, the conditional distribution of ξ is a
multivariate normal (MVN) [23, 33]:

{ξ|Hξ + ε = y} ∼ N (µ,Σ), where{
µ = (HΓ)>(HΓH> + σ2

noiseIn)−1y
Σ = Γ− (HΓ)>(HΓH> + σ2

noiseIn)−1HΓ
(15)

with In the n × n identity matrix. Note that this problem is called hyperplane-truncated MVN
distribution [7, 23, 24, 25]. The consideration of noisy observations in (13) has a relaxing effect
on the interpolation conditions, as the number of knots and basis functions N does not need to
be larger than the size n of the samples (condition required in [22] for the interpolation of noise-
free observations called degree of freedom). This leads to less restrictive sample spaces and less
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expensive MCMC samplers when N � n as it is performed on RN and independent of the number
of observations n. Additionally, it should be mentioned that, unlike interpolation with noise-
free observations, the given data does not need to satisfy inequality constraints (see, for example,
Figure 3). The posterior distribution (14) is the following truncated MVN distribution:

{ξ|Hξ = y + ε, ` ≤ Λξ ≤ u} ∼ NT (µ,Σ, `,u), (16)

where NT (m,C,a, b) is the truncated MVN distribution with mean vector m, covariance matrix
C, and lower and upper bounds constraints a and b respectively. Recently, several efficient MCMC
algorithms have been proposed to approximate the truncated posterior distribution (16), such as
Gibbs sampling [39], Metropolis-Hastings (MH) [28], HMC [30] and the minimax tilting method
accept-reject sampler [2]. In the present paper, the fast HMC sampler developed in [30] and imple-
mented in the R package tmg is used.
Let us mention that the posterior mode, which corresponds to the maximum of the posterior prob-
ability density function (pdf), i.e.,

µ∗ := arg min
z∈RN
{z>Γ−1z|Hz + ε = y, ` ≤ Λz ≤ u}

can be computed. This problem is equivalent to the following quadratic optimization problem
subject to convex constraints (see [3, 14])

µ∗ := arg min
z∈RN

`≤Λz≤u

{
(z − µ)>Σ−1(z − µ)

}
= arg min

z∈RN

`≤Λz≤u

{
z>Σ−1z − 1

2
µ>Σ−1z

}
, (17)

where µ and Σ are given in (15). In the numerical examples of the present paper, the solve.QP
function from the R package quadprog is used to compute the posterior mode µ∗. The next sections
highlight the advantages of the posterior mode µ∗ over the posterior mean.

Algorithm 1: Sampling scheme of {ξ|Hξ + ε = y, ` ≤ Λξ ≤ u}, where ξ ∼ N (0N ,Γ).

• Initialization: y, Γ ∈ RN×N , H ∈ Rn×N , Λ ∈ Rm×N , `, u.

• Compute the conditional mean and covariance of {ξ|Hξ + ε = y}

µ = (HΓ)>(HΓH> + σ2
noiseIn)−1y;

Σ = Γ− (HΓ)>(HΓH> + σ2
noiseIn)−1HΓ.

• Compute the posterior mode by solving the quadratic optimization problem subject to linear
inequality constraints (the solve.QP function from the R package quadprog is used in this
paper):

µ∗ := arg min
z∈RN
{z>Γ−1z|Hz + ε = y, ` ≤ Λz ≤ u}.

• Sample from the truncated MVN distribution (HMC tmg is used in this paper)

{ξ|Hξ + ε = y, ` ≤ Λξ ≤ u} ∼ NT (µ,Σ, `,u).

Remark 2. Algorithm 1 generates the posterior distribution of the coefficients vector ξ conditionally
on noisy observations {Hξ + ε = y} and linear inequality constraints {ξ ∈ RN s.t. ` ≤ Λξ ≤ u}.
To get the posterior distribution of Y N , i.e., {Y N |Y N(X) + ε = y, Y N ∈ C}, one can substitute the
generated samples from Algorithm 1 into Model (Mh). Let us note that the posterior mode µ∗ can
serve as a suitable starting point for the HMC sampler.
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Before presenting numerical examples of the proposed approach for various types of inequality
constraints, we define the following two estimators.

Definition 1 (MAP estimate). The Maximum a posteriori (MAP) estimate of Y N conditionally
on inequality constraints and noisy observations is defined as

MN(x) :=
N∑
j=1

µ∗jhj(x) = h(x)>µ∗, x ∈ D,

where µ∗ = [µ∗1, . . . , µ
∗
N ]> ∈ RN is the posterior mode computed by (17) and h(x) = [h1(x), . . . , hN(x)]>.

Let us provide some comments: the MAP estimate in Algorithm 1 is independent of the sampling
process. It is determined only by solving a quadratic optimization problem with linear inequality
constraints (17). Furthermore, it has been shown that the MAP estimate MN converges to the
optimization spline problem in both noise and noise-free observation cases when using the hat basis
functions, i.e., Model (Mh) (see [1, 15]). These two results can be seen as a generalization of the
Kimeldorf-Wahba correspondence [17] between Bayesian estimation on stochastic processes and
smoothing by splines.

Definition 2 (mAP estimate). The mean a posteriori (mAP) estimate of Y N conditionally on
inequality constraints and noisy observations is defined as

mN(x) := E
[
Y N(x)

∣∣Y N(X) + ε = y, Y N ∈ C
]

= h(x)>µc,

where µc := E [ξ|Hξ + ε = y, ` ≤ Λξ ≤ u] is the posterior mean which is computed from simula-
tions and h(x) = [h1(x), . . . , hN(x)]>.

3.3 Illustrative examples of Model (Mh)

In the following examples, the performance of the MAP estimate using Model (Mh) is highlighted,
and the flexibility of Model (Mh) to incorporate multiple types of convex and non-convex inequality
constraints is shown.

Example 1 (Boundedness in a convex set). We consider the function f1(x) = 0.8x sin(5x) for any
x ∈ D. This function is bounded on D between convex and concave functions f` and fu respectively:

f`(x) = (x− 0.5)2 − 1.2 and fu(x) = −(x− 0.5)2 + 0.3.

Additionally, this function is slightly flat and close to the upper bound function fu on the interval
[0, 0.5].

Figure 3 illustrates the GP approximation from Model (Mh) with and without boundedness con-
straints. We use the Matérn covariance function with ν = 5/2 and θ = 0.4. We fix N = 30 to avoid
the possibility of overfitting [29]. Our numerical analysis indicates that this value of N provides a
satisfactory approximation, as shown in Figure 13 in Sect. 4.5. In the right panel, we use the HMC
sampler [30] to sample from the posterior distribution of the coefficients {ξj} as in Algorithm 1.
The black solid curve represents the true bounded function f1. The two black dashed thin curves
correspond to the lower and upper bounds functions f` and fu respectively. The red dashed (resp.
blue dashed-dotted) curve represents the MAP (resp. mAP) estimate (cf., Definitions 1 and 2).
The gray shaded area is the 95% pointwise confidence interval. The black stars represent the 50
training data generated from (1) using the true function f1 and a true noise standard deviation of
σnoise = 0.25. First, we observe that both the prediction estimates and the confidence intervals in
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Figure 3: In the left (resp. right) panel, the true function and its estimates (MAP and mAP) are
plotted for the GP approximation of Model (Mh) without (resp. with) boundedness constraints.
The 50 training data are represented by black stars, and the 95% pointwise confidence interval is
shown in gray. The lower and upper bounds functions are indicated by the two black dashed thin
curves.

the left panel do not satisfy boundedness constraints. Second, we observe that including the bounded-
ness constraints into the posterior distribution (right panel) results in more accurate predictions and
smaller confidence intervals compared to those produced by the unconstrained GP model (left panel).
Let us note that in the left panel, the MAP and mAP estimates coincide in the unconstrained case
according to the result in [17]. However, for the constrained case on the right panel, the MAP and
mAP no longer coincide. In this paper, the performance of the MAP estimate is further discussed,
with a particular focus on its behavior compared to that of the other estimate. Let us conclude this
example by noting that, based on this numerical experiment, the MAP estimate appears to perform
better visually than the mAP estimate. It is closer to the observed values than the mAP estimate.

Example 2 (Monotonicity and boundedness constraints). In this example, our aim is to show
the flexibility of the proposed Model (Mh) in incorporating multiple types of inequality constraints
simultaneously. Additionally, we examine the behavior of the MAP estimate in terms of prediction
accuracy when the function is flat and close to upper and/or lower bounds at certain regions of D.
To do this, we consider the function f2(x) = 5.6

√
x+ 10, which is increasing and bounded between

the following convex and linear functions on D:

f`(x) = 4x2 + 10 and fu(x) = 4x+ 12.
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(a) Unconstrained
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(b) Monotonicity constraints
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(c) Monotonicity and boundedness

Figure 4: GP approximation from Model (Mh) satisfying different constraints.

Figure 4 shows side by side the unconstrained GP (left), Model (Mh) under monotonicity con-
straints (middle), and Model (Mh) under both monotonicity and boundedness constraints (right).
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The Matérn covariance function with ν = 5/2 and θ = 0.5 is used. The black stars represent the
training data generated from (1) using f2 and a true noise standard deviation σnoise = 1. We set
N = 30 in (Mh) and we use the HMC technique to sample from the posterior distribution of {ξj}
as in Algorithm 1. The descriptions of the panels are identical to those in Figure 3. We observe
that including monotonicity constraints improves the predictive accuracy and reduces the confidence
intervals in comparison to those generated by the GP without constraints (left panel). However,
they do not satisfy the boundedness constraints provided by the lower and upper bounds functions
(black dashed thin curves). Adding the boundedness constraints, as shown in the right panel, leads
to more accurate predictions and more realistic confidence intervals.

Example 3 (Boundedness in a non-convex region). In this illustrative example, we consider the
scenario where the true underlying function is bounded between two functions (a lower and an upper
bound) f` and fu, and the region between these bounding functions is non-convex. For example,
consider the case where the lower and upper bound functions are as follows:

f`(x) = (x− 0.5)2 + 0.1 and fu(x) =

{
−x+ 0.8 if x ∈ [0, 0.4]
0.5x+ 0.2 if x ∈ (0.4, 1]
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Figure 5: GP approximation from Model (Mh) with and without boundedness constraints at the
right and left panels, respectively. The input domain is divided into two nonoverlapping subdomains
by a vertical red dashed line on the right, resulting in two bounded convex regions.

Figure 5 shows fifty GP sample paths from Model (Mh) with and without boundedness constraints
at the right and left panels, respectively. We use the Matérn covariance function with ν = 5/2 and
θ = 0.4. The black stars represent the training observations, where {xi} are generated uniformly
on [0, 1] and the data {yi} are generated uniformly on [0, 0.6]. The region between the lower and
upper bounds functions f` and fu is non-convex. However, the input domain, D, can be divided
into two nonoverlapping subdomains at x = 0.4, yielding two convex regions. In that case, we apply
Proposition 2 with Q = 2 to get the matrix of constraints Λ = [Λ>1 ,Λ

>
2 ]>, and the lower and upper

bounds vectors:
` = [`>1 , `

>
2 ]> and u = [u>1 ,u

>
2 ]>.

As required in Proposition 2, we impose x = 0.4 to be an element of the subdivision {tj}. We
use Algorithm 1 to get the posterior distribution of {ξj}. Unlike the left panel, the sample paths
of the GP satisfy boundedness constraints everywhere. Let us note that these types of boundedness
constraints can be integrated with other inequality constraints, such as monotonicity or convexity
constraints, as shown in Example 4.

Example 4 (Sequential constraints). Model (Mh) is capable of incorporating different inequality
constraints sequentially at nonoverlapping intervals as shown in Figures 6 and 7 below.
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Figure 6: Left: GP model without any constraints. Right: GP approximation from Model (Mh)
under monotonicity constraints on [0, 0.5] and under boundedness constraints on [0.5, 1]. The verti-
cal dashed line splits the input set into two nonoverlapping intervals at x = 0.5. The two horizontal
dashed lines represent the lower and upper bounds.

In Figure 6, the true underlying function is defined as f4(x) = (5− 5.2x) log((x+ 1)/(2−x)). It
admits two different behaviors at two nonoverlapping intervals. Indeed, it is increasing on [0, 0.5] and
bounded between −0.5 and 0.5 on [0.5, 1]. We observe that adding sequential constraints significantly
reduces the 95% pointwise confidence intervals. The monotonicity and boundedness constraints
are satisfied at their respective subintervals when using the proposed approach under sequential
constraints, as shown in the right panel.
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Figure 7: GP approximation from Model (Mh) under boundedness constraints on [0, 0.4] and under
both boundedness and monotonicity constraints on [0.4, 1]. The vertical dashed line divides the
interval [0, 1] into two nonoverlapping subintervals at x = 0.4.

In Figure 7, the lower and upper bounds functions f` and fu are those used in Figure 5. The
input domain is split into two nonoverlapping subdomains by a red vertical dashed line at x = 0.4.
We suppose that the underlying function admits two different behaviors within these two subdomains.
In the first subdomain [0, 0.4], the function is bounded. In the second subdomain [0.4, 1], it is both
nondecreasing and bounded. Again, we applied Proposition 2 with Q = 2, ensuring that x = 0.4 is
included as an element in the subdivision {tj}. The gray curves represent the GP sample paths from
Model (Mh) under sequential constraints. The fifty black stars are the training data and the black
dashed thin curves are the lower and upper bounds (identical to those in Figure 5). The sample paths
respect boundedness constraints on the entire domain and nondecreasing constraints on [0.4, 1].

Let us recall that Model (Mh) has been generalized to multidimensional input spaces, as detailed
in [22]. For example, the convexity constraints with respect to two input variables or to only one
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variable are given in [21]. For simplicity, the two-dimensional case is considered. Next section shows
the performance and the flexibility of the proposed approach to incorporate multiple constraints,
such as monotonicity and boundedness (with lower and upper bound functions), as well as when
the bounded region is non-convex.

3.4 Multidimensional input spaces

The finite-dimensional GP approximation defined in (Mh) can be extended to d-dimensional input
spaces by tensorization [22]. For simplicity of notations, we focus on the case d = 2, with D2 = [0, 1]2

and N1×N2 knots located on a regular (or non regular) grid. Then, for any x = (x1, x2) ∈ D2, the
finite-dimensional Gaussian approximation is given by

Y N1,N2(x1, x2) :=

N1∑
j1=1

N2∑
j2=1

ξj1,j2h
1
j1

(x1)h2
j2

(x2), (18)

where {h1
j1
} and {h2

j2
} are the hat functions defined in (4), and ξj1,j2 = Y (tj1 , tj2), with {(tj1 , tj2)}

the knots. Similarly to the one-dimensional case, ξ = (ξj1,j2) ∈ RN1×N2 is a zero-mean Gaussian
vector with covariance matrix Γ as in (6). Thus, we have the following results:

• For the case of monotonicity in two dimensions, the constraints to be satisfied are given by
ξj+1,l ≥ ξj,l and ξj,l+1 ≥ ξj,l for any j ∈ {1, . . . , N1−1} and l ∈ {1, . . . , N2−1}. The constraints
for the monotonicity with respect to one of the two input variables can be computed in a similar
way [22].

• For the convexity in two dimensions, the constraints to be satisfied are given by

ξj+1,l − ξj,l
tj+1 − tj

≤ ξj+2,l − ξj+1,l

tj+2 − tj+1

and
ξj,l+1 − ξj,l
tl+1 − tl

≤ ξj,l+2 − ξj,l+1

tl+2 − tl+1

,

for any j ∈ {1, . . . , N1 − 2} and l ∈ {1, . . . , N2 − 2}. The constraints for the convexity with
respect to one of the two input variables can be computed in a similar way.

• For the upper and lower bound functions, fu and f` respectively, that define a convex set,
the constraints are expressed as f`(tj, tl) ≤ ξj,l ≤ fu(tj, tl), for all j ∈ {1, . . . , N1} and l ∈
{1, . . . , N2}.

Remark 3. The boundedness constraints in the last item above can be extended to the case where
the region between the lower and upper bounds is non-convex. As in the one-dimensional case, the
only requirement is that the points where the input domain D2 is divided into convex subsets must
be part of the discretization grid (see Example 6).

Example 5 (Numerical illustrations in 2D). The purpose of this numerical example is to demon-
strate the effectiveness of the proposed approach in the two-dimensional scenario. The flexibility of
Model (18) in incorporating multiple constraints in two dimensions is highlighted.

Figure 8 shows an example where boundedness and monotonicity constraints in two dimensions
are imposed together. The two-dimensional squared exponential (SE) covariance function is used

k(x,x′) = exp

(
−(x1 − x′1)2

2θ1

− (x2 − x′2)2

2θ2

)
, x = (x1, x2) ∈ D2, (19)

where θ1 and θ2 are the correlation length hyperparameters. The one hundred training observations
(black stars) were generated using the Hypercube Latin from the R package lhs, Eq. (1), the function
f(x1, x2) = 5.6

√
x1 + x2 + 10, and a true σnoise = 1. This function is monotone nondecreasing with
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Figure 8: The true nondecreasing and bounded function (left). The MAP estimate from Model (18)
under boundedness constraints (middle) and under both boundedness and monotonicity constraints
(right). The gray surface represents the upper bound constraint, and the black stars represent the
training data.

respect to the two input variables and bounded from above by fu(x1, x2) = 4x1 + x2 + 12. In this
figure, we illustrate the true function with the upper bound constraints on the left, the MAP estimate
with boundedness constraints in the middle, and the MAP with both boundedness and monotonicity
constraints on the right, side by side. The addition of multiple constraints enhances the accuracy of
predictions.
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Figure 9: In the left, middle, and right panels, the true bounded function (as well as the un-
constrained mean and MAP) are displayed along with the upper bound constraint function (gray
surface) and the training observations (black stars).

Example 6 (Boundedness in a non-convex region 2D). Figure 9 illustrates an example where
boundedness constraints form a non-convex region. As in Figure 8, the two-dimensional SE co-
variance function (19) is used. The one hundred training observations (black stars) are generated
using the Hypercube Latin from the R package lhs, Eq. (1), the true bounded function f(x1, x2) =
2(x1 − 0.5)2 + x2, and a true σnoise fixed at 0.25. This function is bounded from above on the unit
square D2 by the function fu(x1, x2) = 3(x1 − 0.5)2 + x2. The boundedness constraints in this ex-
ample form a non-convex set. However, this set can be decomposed into two convex subsets at two
nonoverlapping subdomains obtained by splitting D2 at x1 = 0.5. As in the one-dimensional case,
the only requirement is to include the knots at x1 = 0.5 in the subdivision grid. Model (18) is used,
where N1 and N2 are fixed at 9. Thus, we have 81 knots and basis functions. We illustrate, side by
side, the true bounded function with the upper bound constraints and training samples on the left,
the unconstrained mean, i.e., µc in (3) in the middle, and , the MAP estimate on the right. Con-
trary to the MAP estimate, the unconstrained mean violates the upper bound constraints in certain
regions.
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4 Constrained GPs: Cp approximation, p ≥ 1

In this section, we generalize Model (Mh) in order to provide smoother sample paths by proposing
new basis functions. The capability of this new model to incorporate multiple constraints such as
monotonicity with bounded slope constraints is investigated. Furthermore, a comparison of the
prediction accuracy between these models is included.

4.1 C1 approximation with Model (Mφ)

In this section, shape constraints for continuous and differentiable functions f ∈ C1(D,R) is con-
sidered. For example, the convex set Cm of nondecreasing functions is given by

Cm =
{
f ∈ C1(D,R) s.t. f ′(x) ≥ 0, x ∈ D

}
.

As stated in [22], any at least differentiable function f can be written as f(x) = f(0) +
∫ x

0
f ′(t)dt,

where f ′(t) represents the derivative of f at t. Following the strategy of Sect. 3.1, any differentiable
function f can be approximated by f̃N(x) = f(0)+

∑N
j=1 f

′(tj)φj(x), for any x ∈ D, where we recall

that φj(x) =
∫ x

0
hj(x)dx, for any x ∈ D.

Lemma 2 (Uniform convergence C1). For any f ∈ C1(D,R), the function f̃N := f(0)+
∑N

j=1 f
′(tj)φj(x),

where {φj} are defined in (4) converges uniformly to f when N tends to infinity.

Proof. For any x ∈ D, we have

|f̃N(x)− f(x)| =

∣∣∣∣∣f(0) +
N∑
j=1

f ′(tj)φj(x)−
(
f(0) +

∫ x

0

f ′(t)dt

)∣∣∣∣∣
=

∣∣∣∣∣
N∑
j=1

f ′(tj)

∫ x

0

hj(t)dt−
∫ x

0

f ′(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ x

0

N∑
j=1

(f ′(tj)− f ′(t))hj(t)dt

∣∣∣∣∣ ≤
∫ x

0

sup
|t′−t|≤∆N

|f ′(t′)− f ′(t)|dt.

The proof is done by following the reasoning of Lemma 1.

In Figure 10 right panel, the red solid curve is the deterministic function f(x) = x3, which
verifies monotonicity (nondecreasing) constraints. The black dashed curve, represented by f̃N(x) =
f(0) +

∑N
j=1 f

′(tj)φj(x), is an approximation of f(x) using a uniform subdivision with N = 5
basis functions. The gray curves represent the basis functions {φj} defined in (4). The black
stars represent the value of the true function at knots {tj}. In contrast, the left panel shows the
approximation of f ′(x) = 3x2 (red solid curve) using the derivative of our proposed approach f̃ ′N
(black dashed curve) and the hat functions {hj}.

Now we consider the second model proposed in [22]

Y N(x) := Y (0) +
N∑
j=1

Y ′(tj)φj(x) = ξ0 +
N∑
j=1

ξjφj(x), x ∈ D, (Mφ)

where, we denote by ξj = Y ′(tj), for any j ∈ {1, . . . , N}, ξ0 = Y (0), and {φj} are the basis functions
defined in (4). A comparison between Models (Mh) and (Mφ) is studied later in this section. The
proposed approach, i.e., Model (Mφ) is also applicable for non-uniform subdivision as in Sect. 3.1.
This model has been considered in [44] for revisiting the proton-radius problem, and more recently
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Figure 10: Left: the approximation of f ′(x) = 3x2 (red solid curve) by the derivative of the proposed
approach f̃ ′N (black dashed curve) together with the hat functions {hj}. Right: the approximation
of the monotone nondecreasing function f(x) = x3 (red solid curve) by the proposed approach f̃N
(black dashed curve) together with the basis functions {φj} (gray curves). A uniform subdivision
is used with N = 5 basis functions and knots.

in [45] to describe the mass-shifting phenomenon of the truncated MVN distribution for a flat region
problem. Since (Y (x))x∈D is a zero-mean GP, then the vector [Y (t1), . . . , Y (tN)]> is also zero-mean,
and Gaussian [33]. By [10, 31], we know that [Y ′(t1), . . . , Y ′(tN)]> is still a Gaussian vector with
covariance matrix

Gj,l = Cov(ξj, ξl) =
∂2

∂x∂x′
k(tj, tl), ∀j, l ∈ {1, . . . , N},

where we recall that k is the covariance function of the original GP Y . Therefore, the covariance
matrix of the Gaussian vector ξ = [ξ0, ξ1, . . . , ξN ]> is given by

Γ =

(
k(0, 0) ∂

∂x′
k(0, tl)

∂
∂x
k(tj, 0) Gj,l

)
1≤j,l≤N

∈ R(N+1)2 .

Thus, ξ ∼ N (0N+1,Γ) as in Sect. 3.1, where, 0N+1 is the (N + 1)-dimensional zero vector.

Proposition 3 (Monotonicity and bounded slope). If the GP approximation Y N is defined as in
(Mφ), then, Y N is nondecreasing (resp. nonincreasing) and (Y N)′(x) ∈ [`, u], for any x ∈ D if and
only if ξj ∈ [`, u] for any j ∈ {1, . . . , N}, where the lower bound ` is nonnegative (resp. the upper
bound u is nonpositive). This property can be extended to bounded slope constraints at a subset of
D (see the right panel in Figure 16).

The linear inequality constraints on the coefficients {ξj} in Proposition 3 can be written in a
matrix form as follows

` ≤ Λξ ≤ u,

where ` and u are the m-dimensional vectors representing the lower and upper bounds, and Λ is
the m× (N + 1) matrix of constraints, with m number of linear constraints. Since the lower bound
vector ` is nonnegative, incorporating monotonicity and bounded slope constraints requires only
m = N linear constraints on the basis coefficients {ξj}.

Proof of Proposition 3. We have for any x ∈ D

Y N(x) = ξ0 +
N∑
j=1

ξjφj(x) ⇒ (Y N)′(x) =
N∑
j=1

ξjhj(x) =
N∑
j=1

Y N(tj)hj(x),
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where {hj} are the hat functions defined in (4). The above right hand side equation corresponds
to Model (Mh). So, the bounded slope constraints (Y N)′(x) ∈ [`, u], for any x ∈ D is equivalent to
ξj ∈ [`, u], for any j ∈ {1, . . . , N}. This concludes the proof of the proposition since the monotonicity
(nondecreasing) constraints are equivalent to the nonnegativity of the coefficients {ξj}.

Corollary 1. If Y N is defined as in Model (Mφ), and f` and fu are lower and upper bounds
functions such that the region between these two functions is convex, then, (Y N)′(x) ∈ [f`(x), fu(x)]
for any x ∈ D if and only if ξj ∈ [f`(tj), fu(tj)], for any j ∈ {1, . . . , N}.

Proof. The proof is similar to the one given in the first item Proposition 1.

Remark 4. The result in Corollary 1 can be extended to include bounded slope constraints on
subsets of D, as well as non-convex regions between lower and upper bounds functions f` and fu,
by decomposing the input domain D into nonoverlapping subdomains with convex regions. As in
Proposition 2, the only requirement is to include the intersection extremities of the subdomains in
the subdivision {tj}.

Proposition 4 (Multiple constraints (Mφ)). If the GP approximation Y N is defined as in (Mφ),
then,

• Monotonicity and boundedness: Y N is nondecreasing and nonnegative (resp. nonincreasing
and nonpositive) if and only if {ξj} are nonnegative (resp. nonpositive) for any j ∈ {0, . . . , N}.

• Convexity: Y N is convex if and only if ξj ≤ ξj+1, for any j ∈ {1, . . . , N − 1}.

• Monotonicity and convexity: Y N is monotone (nondecreasing) and convex in the entire do-
main if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN .
This leads to only m = N linear constraints on the basis coefficients {ξj} according to the
notation in (10).

• Monotonicity, convexity and boundedness: Y N is nondecreasing, convex, and nonnegative if
and only if 0 ≤ ξ1 ≤ . . . ≤ ξN and ξ0 ≥ 0.

Proof. If Y N is nondecreasing then from Proposition 3 the coefficients {ξj} are nonnegative, for any
j ∈ {1, . . . , N}. Since Y N(x) is nonnegative for any x in D, in particular ξ0 = Y N(0) is nonnegative.
Now, if {ξj} are nonnegative, for any j ∈ {0, . . . , N}, then Y N is nondecreasing (from Proposition 3)
and nonnegative since the basis functions {φj} are nonnegative.
In one hand, if Y N is convex, then (Y N)′ is nondecreasing. In particular, (Y N)′(tj) ≤ (Y N)′(tj+1)
which implies that ξj ≤ ξj+1 for any j ∈ {1, . . . , N − 1}. In the second hand, if ξj ≤ ξj+1 for any

j ∈ {1, . . . , N−1}, then (Y N)′ is nondecreasing since (Y N)′(x) =
∑N

j=1 ξjhj(x), which is a piecewise
linear function. The last two items are obvious.

Corollary 2. The bounded slope constraints from Proposition 3 can be combined with the ones
provided in Proposition 4.

As in Sect. 3.2, the GP approximation defined in (Mφ) with both noisy observations and in-
equality constraints is considered:

Y N(x) = ξ0 +
N∑
j=1

ξjφj(x) s.t.

{
Y N(xi) + εi = yi (noisy observations);
Y N ∈ C (inequality constraints).

where xi ∈ D is the input, yi ∈ R is the output and εi
iid∼ N (0, σ2

noise), with σ2
noise the noise variance.

Given a set of design points X = [x1, . . . , xn]>, the noisy observations can be written in a matrix
form as follows:

Φξ + ε = y,
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where y = [y1, . . . , yn]> is the vector of observations, ε = [ε1, . . . , εn]> is the noise Gaussian vector
and Φ is the n× (N + 1) matrix defined by

Φi,j :=

{
1 if j = 1;
φj−1(xi) for j = 2, . . . , N + 1.

Following the strategy in [22] and (8), the conditional distribution of Y N under both noisy obser-
vations Y N(X) + ε = y and inequality constraints Y N ∈ C can be obtained from the conditional
distribution of ξ given Φξ + ε = y and ` ≤ Λξ ≤ u

ξ ∼ N (0N+1,Γ) s.t.

{
Φξ + ε = y (noisy observations);
` ≤ Λξ ≤ u (linear inequality constraints).

(20)

As stated in Sect. 3.2, the performance of samplers depends only on the number of knots N , and
therefore, for a large number of observations, it is possible to keep N much smaller than n. One can
follow the procedure in Sect. 3.2 and Algorithm 1 to sample from the posterior distribution (20) as
well as to get the MAP and mAP estimates:

MN(x) := µ∗0 +
N∑
j=1

µ∗jφj(x) = [1,φ(x)>]µ∗; (21)

mN(x) := E
[
Y N(x)

∣∣Y N(X) + ε = y, Y N ∈ C
]

= [1,φ(x)>]µc,

for any x ∈ D, where φ(x) = [φ1(x), . . . , φN(x)]>, µ∗ = [µ∗0, . . . , µ
∗
N ]> := arg minz∈RN+1{z>Γ−1z|Φz+

ε = y, ` ≤ Λz ≤ u} is the posterior mode computed as in (17) and µc := E [ξ|Φξ + ε = y, ` ≤ Λξ ≤ u]
is the posterior mean which is computed from simulations.

Remark 5 (Model (Mh) versus Model (Mφ)). Before summarizing the differences between both
models (Mh) and (Mφ), let us note that they provide similar results in terms of prediction accuracy,
particularly when using the MAP estimate.

• Model (Mh) is more flexible than Model (Mφ). Indeed, with Model (Mh) one can incor-
porate different type of constraints like monotonicity, convexity and boundedness in convex
or non-convex regions. Additionally, these constraints can be incorporated either together or
sequentially. Furthermore, Model (Mh) is generalized to multidimensional cases [22].

• With Model (Mφ), the monotonicity (nondecreasing) constraints are equivalent to the nonneg-
ativity of the basis coefficients {ξj}, which can be an advantage for the sampling procedure.
For example, the authors in [34] proposed an efficient algorithm for sampling a Gaussian
vector truncated on the positive orthant. Additionally, Model (Mφ) provides smoother sample
paths compared to Model (Mh), which only provides continuous sample paths. Furthermore, as
shown in Proposition 3, the slope of the sample paths can be controlled. Model (Mφ) allows the
imposition of multiple constraints, such as monotonicity, convexity, negativity/positivity, and
bounded slope constraints, leading to improved prediction accuracy and less restricted credible
intervals. In terms of prediction accuracy, both models provide similar results under the same
parameters, but Model (Mφ) has more stability (see Figure 13).

4.2 Cp approximation, p ≥ 2 with Model (Mψ)

The sample paths generated from Model (Mφ) are differentiable. This means that the derivatives of
order zero and one are continuous. This is because the basis functions {φj} are the primitive of the
hat functions {hj} which are only continuous. The differentiability of the sample paths generated
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from (Mφ) can be generalized to any class Cp, p ≥ 1. For example, to obtain sample paths that are
twice differentiable, it is sufficient to define a hat basis function that is differentiable, as follows:

κj(x) = κ(x− tj/∆N) and ψj(x) =

∫ x

0

κj(t)dt, where (22)

κ(x) =


−2x3 − 3x2 + 1 if x ∈ [−1, 0];
2x3 − 3x2 + 1 if x ∈ (0, 1];
0 otherwise.

(23)

The function κ can be seen as the cubic Hermite spline defined on [−1, 1]. It is clear that κ is a
differentiable function on R and that {κj} is also differentiable. This implies that {ψj} are twice
differentiable. Additionally, κj(tl) = δj,l, where δj,l is the Kronecker’s delta function equal to one
if j = l and zero otherwise. Furthermore, the ‘new’ hat functions {κj} admit the following nice

property
∑N

j=1 κj(x) = 1, for any x ∈ D. This property plays an important role in the bounded
slope constraints that are added to the proposed approach, as well as in the convexity constraints
(see Proposition 6 below). Following the strategy of Sect. 4, any differentiable function f can be
approximated by

f̃N(x) = f(0) +
N∑
j=1

f ′(tj)ψj(x), (24)

for any x ∈ D.
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Figure 11: A uniform subdivision is used with N = 5 basis functions and knots. Left: f ′(x) = 3x2

(red solid curve) and f̃ ′N (black dashed curve) together with the ‘new’ hat functions {κj} (gray
curves). Right: the monotone nondecreasing function f(x) = x3 (red solid curve) and the proposed
approach f̃N in (24) represented by the black dashed curve, together with the ‘new’ basis functions
{ψj} (gray curves).

In Figure 11, a uniform subdivision of the domain D = [0, 1] is used with N = 5 basis functions
and knots. The non-uniform subdivision case is straightforward. In the left panel, we show the
‘new’ hat functions {κj} as well as the derivative function f ′(x) = 3x2 approximated by f̃ ′N(x) =∑N

j=1 f
′(tj)κj(x). The right panel shows the deterministic function f(x) = x3 (red solid curve),

which verifies monotonicity (nondecreasing) constraints and the proposed approach f̃N(x) = f(0)+∑N
j=1 f

′(tj)ψj(x) (black dashed curve). The gray curves are the basis functions {ψj} defined in (22).

The use of the basis functions {ψj} as in (Mψ) leads to differentiable GP sample paths of class C2.
The slope of the sample paths can also be controlled, as show in Proposition 6.

Proposition 5 (Bounded slope C2). Let f be a continuous and differentiable function on D over
R, i.e., f ∈ C1(D,R), and f̃N(x) := f(0) +

∑N
j=1 f

′(tj)ψj(x), for any x ∈ D. Then

f̃ ′N(x) ∈ [`, u], ∀x ∈ D ⇔ f ′(tj) ∈ [`, u], ∀j ∈ {1, . . . , N},
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where ` and u are the lower and upper bounds respectively.

Proof. In one hand, if f̃ ′N(x) ∈ [`, u] for any x ∈ D, then, in particular f ′(tj) = f̃ ′N(tj) ∈ [`, u]. In the
other hand, if f ′(tj) ∈ [`, u] for all j ∈ {1, . . . , N}, then, for any x ∈ D their exists l ∈ {1, . . . , N−1}
such that x ∈ [tl, tl+1]. Therefore,

f̃ ′N(x) = κl(x)f ′(tl) + κl+1(x)f ′(tl+1).

This is because κj(x) = 0 for any j 6= {l, l + 1}. Thus, the prove of the upper bound is as follows:

f̃ ′N(x) = κl(x)f ′(tl) + κl+1(x)f ′(tl+1) ≤ (κl(x) + κl+1(x))u = u.

The lower bound is done similarly, which completes the proof of the proposition.

In that case, the proposed approach is defined as follows:

Y N(x) := Y (0) +
N∑
j=1

Y ′(tj)ψj(x) = ξ0 +
N∑
j=1

ξjψj(x), ∀x ∈ D, (Mψ)

where, the basis functions {ψj} are defined in (22), ξ0 = Y (0) and ξj = Y ′(tj), for any j ∈
{1, . . . , N}.

Proposition 6 (Multiple constraints (Mψ)). If Y N is defined as in (Mψ), then

• the sample paths generated from Y N are twice differentiable.

• Monotonicity: Y N ∈ Cm if and only if {ξj} are nonnegative, for any j ∈ {1, . . . , N}.

• Monotonicity and bounded slope: Y N ∈ Cm and (Y N)′(x) ∈ [`, u], for any x ∈ D if and only
if {ξj} are in [`, u], for any j ∈ {1, . . . , N}, where `, u ∈ R+ are the lower and upper bounds
respectively.

• Monotonicity and boundedness: Y N is nondecreasing and nonnegative if and only if {ξj} are
nonnegative, for any j ∈ {0, . . . , N}.

• Convexity: Y N ∈ Cc if and only if ξj ≤ ξj+1, for any j ∈ {1, . . . , N − 1}.

• Monotonicity and convexity: Y N ∈ Cm ∩ Cc if and only if 0 ≤ ξ1 ≤ . . . ≤ ξN .

• Monotonicity, convexity and boundedness: Y N is nondecreasing, convex, and nonnegative if
and only if 0 ≤ ξ1 ≤ . . . ≤ ξN and ξ0 ≥ 0.

Proof. The first item is done by the fact that the basis functions {ψj} are twice differentiable.
For the second one, if Y N is nondecreasing, then (Y N)′(x) ≥ 0 for any x ∈ D. In particular
(Y N)′(tj) = ξj ≥ 0 for any j ∈ {1, . . . , N}. Now, if ξj ≥ 0 for any j ∈ {1, . . . , N}, then, Y N is
nondecreasing since the basis functions {ψj} are nondecreasing too. For the third one, if Y N is
nondecreasing and nonnegative then {ξj} are nonnegative for any j ∈ {1, . . . , N} and in particular
ξ0 = Y N(0) ≥ 0. Now, if {ξj} are nonnegative for any j ∈ {0, . . . , N}, then Y N is nondecreasing
and nonnegative since the basis functions are nonnegative. The fourth one is a simple consequence
of Proposition 5. For the fifth one, in one hand if Y N is convex then (Y N)′ is nondecreasing. In
particular, (Y N)′(tj) is nondecreasing which implies that ξj ≤ ξj+1, for any j ∈ {1, . . . , N − 1}. In
the other hand, if ξj ≤ ξj+1 for any j ∈ {1, . . . , N − 1}, then it is sufficient to prove that (Y N)′ is
nondecreasing. Two cases should be verified. The first one, their exists j < l such that x ∈ [tj, tj+1]
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and x′ ∈ [tl, tl+1]. This is the simple case since (Y N)′(x) ∈ [ξj, ξj+1] and (Y N)′(x′) ∈ [ξl, ξl+1].
Indeed,

ξj = ξj (κj(x) + κj+1(x))︸ ︷︷ ︸
=1

≤ ξjκj(x) + ξj+1κj+1(x) = (Y N)′(x) ≤ ξj+1.

The second one, their exists j ∈ {1, . . . , N − 1} such that x ≤ x′ ∈ [tj, tj+1]. In that case, we have

(Y N)′(x′)− (Y N)′(x) = ξjκj(x
′) + ξj+1κj+1(x′)− (ξjκj(x) + ξj+1κj+1(x))

= ξj(κj(x
′)− κj(x)) + ξj+1(κj+1(x′)− κj+1(x))

= ξj(κj+1(x)− κj+1(x′))− ξj+1(κj+1(x)− κj+1(x′))

= (κj+1(x)− κj+1(x′))︸ ︷︷ ︸
≤0

(ξj − ξj+1)︸ ︷︷ ︸
<0

≥ 0.

The sixth is a simple consequence of the previous two items. For the last one, it is enough to prove
that if 0 ≤ ξ1 ≤ . . . ≤ ξN and ξ0 ≥ 0, then Y N ∈ Cm∩Cc and is nonnegative as the basis functions are
nonnegative. Conversely, if Y N is nondecreasing, convex, and nonnegative, then 0 ≤ ξ1 ≤ . . . ≤ ξN
and, in particular, ξ0 = Y N(0) ≥ 0.

Remark 6. In this section, the smoothness of the sample paths of Model (Mφ) has been investigated,
with a focus on its differentiability in class Cp, for p ≥ 1. The function κ, as given in (23), has a
differentiability of class C1. This implies that the sample paths from (Mψ) are twice differentiable.
For example, to obtain sample paths that are differentiable up to order three (i.e., class C3), it is
sufficient to define κ as follows

κ(x) =


−3x4 − 8x3 − 6x2 + 1 if x ∈ [−1, 0];
−3x4 + 8x3 − 6x2 + 1 if x ∈ (0, 1];
0 otherwise.

(25)

It is straightforward to verify that κ is a differentiable function of class C2. Adopting the same
approach, we define κj and ψj as follows:

κj(x) = κ(x− tj/∆N) and ψj(x) =

∫ x

0

κj(t)dt.

Finally, let us recall that the functions {κj} verify the following two fundamental properties:

κj(tl) = δj,l, ∀j, l = 1, . . . , N ;
N∑
j=1

κj(x) = 1, ∀x ∈ D,

where we recall that δj,l is the Kronecker’s delta function equal to one if j = l and zero otherwise.

4.3 Cp approximation, p ≥ 2 with Model (Mϕ)

In this section, we first consider the convexity constraint for continuous and twice differentiable
functions f ∈ C2. Thus, the convex set Cc is given by

Cc =
{
f ∈ C2(D,R) s.t. f ′′(x) ≥ 0, x ∈ D

}
,

where f ′′ represents the second-order derivative of f . As stated in [22], any at least twice differen-
tiable function f can be written as f(x) = f(0) + xf ′(0) +

∫ x
0

∫ t
0
f ′′(u)dudt. Following the strategy

of Sect. 3.1, any twice differentiable function f can be approximated by

f̃N(x) = f(0) + xf ′(0) +
N∑
j=1

f ′′(tj)ϕj(x) (26)

for any x ∈ D, where {ϕj} are given in (4). As in Sect. 3.1 and 4, we recall the following result:
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Lemma 3 (Uniform convergence C2). For any f ∈ C2(D,R), the function f̃N defined in (26)
converges uniformly to f when N tends to infinity.

Proof. The proof is similar to the one given in Lemma 2.

In that case, we consider the following model

Y N(x) := Y (0) + Y ′(0)x+
N∑
j=1

Y ′′(tj)ϕj(x) = ξ∗0 + ξ0x+
N∑
j=1

ξjϕj(x), x ∈ D, (Mϕ)

where we denote by ξ∗0 = Y (0), ξ0 = Y ′(0), and ξj = Y ′′(tj), for any j ∈ {1, . . . , N}. In this case,
Y N is convex (resp. concave) on D if and only if {ξj} are nonnegative (resp. nonpositive) for any
j ∈ {1, . . . , N}.

Proposition 7 (Multiple constraints (Mϕ)). If Y N is defined as in (Mϕ), then

• Monotonicity and convexity: Y N ∈ Cm ∩ Cc if and only if ξj ≥ 0 for any j ∈ {0, . . . , N}.

• Monotonicity, convexity and boundedness: Y N ∈ Cm ∩ Cc and Y N is nonnegative if and only
if ξ∗0 ≥ 0 and ξj ≥ 0, for any j ∈ {0, . . . , N}.

Proof. On one hand, if Y N ∈ Cm ∩ Cc, then for any j ∈ {1, . . . , N}, {ξj} are nonnegative and
(Y N)′(0) = ξ0 ≥ 0. On the other hand, if {ξj} are nonnegative for any j ∈ {0, . . . , N}, then for any

x ∈ D, (Y N)′′(x) =
∑N

j=1 ξjhj(x) ≥ 0 and (Y N)′(x) = ξ0 +
∑N

j=1 ξjφj(x) ≥ 0 since φj(x) ≥ 0 for
any x ∈ D. The second item is obvious.

Remark 7. The sample paths generated from Model (Mϕ) are twice differentiable. As in Sect. 4.2,
the smoothness of the sample paths can be generalized to class Cp, for any p ≥ 2 by defining smoother
hat functions like ones given in (22) and (25).

Performance illustrations of Model (Mϕ)
The aim is to illustrate Model (Mϕ) and to demonstrate the superior prediction accuracy of the

MAP estimate over the mAP estimate.
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Figure 12: Left: The approximation of the convex function f3(x) = (x− 0.5)4 is shown by the red
solid curve, while the proposed approach f̃N is represented by the black dashed curve, along with
the basis functions {ϕj} shown in gray curves. The approximation is obtained using a uniform
subdivision with N = 10 basis functions and knots. Right: The GP approximation obtained from
Model (Mϕ) under convexity constraints is shown.

Figure 12 (left) shows the true convex function f3(x) = (x−0.5)4 (red solid curve), approximated
by the proposed approach f̃N (26) (black dashed curve) using a uniform subdivision with N = 10
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basis functions. The black stars represent the values of the true function f3 at the knots {tj}.
Figure 12 (right) shows the GP approximation from Model (Mϕ) with convexity constraints. We fix
N = 30 and use the SE covariance function (see Table 1), with a nugget effect of order 10−8. The
black stars represent the 50 training data generated from (1) using f3 and a true σnoise = 0.01. To
sample from the posterior distribution of the coefficients {ξj} as in Algorithm 1, we use the efficient
HMC technique developed in [30].

To rigorously compare the MAP and mAP estimates in terms of prediction accuracy, we propose
to generate a dataset of size n = 500 from (1) with f3 and a true σnoise = 0.01. This dataset is
randomly split into training set of size 300 and testing set of size 200. We propose to place a
uniform prior distribution on the correlation length parameter θ ∼ U(0.1, 1). In that case, we get
an average mean squared prediction error (MSPE) over 1,000 replicates equal to 1.85× 10−3 when
using the MAP estimate, and equal to 1.92× 10−3 when using the mAP estimate. Let us mention
that the mAP estimate is computed by averaging 1,000 samples generated from the efficient HMC
technique.

4.4 Comparison between Models (Mh), (Mφ) and (Mϕ)

In this section, a comparison between Models (Mh), (Mφ) and (Mϕ) in terms of prediction accuracy
is investigated. To do this, we consider the monotone nondecreasing function fm2 given in (27) and
the convex function f3(x) = (x− 0.5)4 (shown in Figure 12).
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Figure 13: The average MSPE over 25 replicates as a function of the dimension N is shown using
the MAP (resp. mAP) estimate for Models (Mh) and (Mφ) in the left (resp. right) panel.

Figure 13 shows the average MSPE over 25 replicates as a function of the dimension N . A
dataset of size n = 500 generated from (1) using fm2 and a true σnoise = 0.5 is randomly split into
training set of size 300 and testing set of size 200. The Matérn covariance function with ν = 5/2
and θ = 0.5 has been used. The left panel shows results using the MAP estimate, while the right
panel shows results using the mAP estimate. We observe that the average MSPE obtained with
the MAP estimate is smaller than that obtained with the mAP estimate. The difference between
the two models is more pronounced when N is small, but becomes less significant as N increases.
For N around 10, both models provide approximately the same MSPE.

In Figure 14, the three Models (Mh) ,(Mφ) and (Mϕ) are compared in terms of MSPE. A
dataset of size 500 generated randomly from (1) with f3 and a true σnoise = 0.01 is split randomly
into 300 training samples and 200 testing samples. The SE covariance function has been used with
correlation length parameter θ fixed at 0.5. As for the monotonicity case (Figure 13), we observe
that the average MSPE obtained with the MAP estimate is smaller than that obtained with the
mAP estimate. The difference between the three models is more pronounced when N is small, but
becomes less significant as N increases. As expected, Model (Mϕ) provides the least average MSPE
for the MAP estimate.
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Figure 14: The average MSPE over 25 replicates as a function of the dimension N is shown using
the MAP (resp. mAP) estimate for Models (Mh), (Mφ), and (Mϕ) in the left (resp. right) panel.
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Figure 15: The average 95% posterior coverage over 25 replicates as a function of the dimension N
is shown using the Matérn ν = 5/2 (resp. Matérn ν = 3/2) for Models (Mh) and (Mφ) in the left
(resp. right) panel.

Finally, in Figure 15, the average 95% posterior coverage (the estimated value should include
a 95% chance that the true value lies within it) over 25 replicates for Models (Mh) and (Mφ) is
displayed as a function of the dimension N . As before, the monotone nondecreasing function fm2

given in (27) is used as a test function which presents a challenge situation since this function is
approximately flat on [0.7, 1]. The Matérn covariance function with ν = 5/2 is applied in the left
panel, and ν = 3/2 is applied in the right panel. As expected, Model (Mh) performs better than
Model (Mφ) in terms of posterior coverage for both scenarios, as the corresponding coverage is closer
to 95%. This is related to the smoothness of the sample paths generated by both models, which
confirms the frequentist coverage results presented in [43]. We also observe that, on average, the
Matérn covariance function with a smoothness parameter of ν = 5/2 provides posterior coverage
closer to 95% than that provided by the Matérn covariance function with ν = 3/2. Additionally,
both cases show a decreasing posterior coverage as the dimension N of the basis coefficients {ξj} in-
creases. This confirms the result from [45], which demonstrated that the mass-shifting phenomenon
is more pronounced in high-dimensional truncated vectors.
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4.5 Performance of the MAP estimate

The aim of this section is to show the performance of the MAP estimate in terms of prediction
accuracy in different situations. A variety of functions is considered:

fm1(x) = (5x− 3)31[0.6,1](x), fm2(x) =
3

1 + exp{−10x+ 2.1}
,

fm3(x) =
√

2
100∑
j=1

j−1.7 sin(j)× cos(π(j − 0.5)(1− x)), fm4(x) = 5x2, (27)

for x ∈ [0, 1]. The function fm1 is monotone (nondecreasing) and flat on [0, 0.6]. However, fm2 and
fm3 are approximately flat on [0.7, 1]. The last function fm4 is an increasing function on the whole
domain [0, 1]. Let us mention that only the function fm3 is decreasing in certain regions which allows
us to evaluate the performance of the proposed approach under slight model misspecification.

functions methods MSPE (total) MSPE (flat) MSPE (increasing)

MAP 13.55 (4.97) 4.39 (1.87) 19.27 (7.59)
fm1 DGL 11.36 (2.62) 8.13 (1.95) 14.71 (4.79)

IGL 13.44 (2.62) 9.86 (1.70) 17.32 (5.23)
TMVN 65.63 (7.21) 14.53(2.59) 102.6 (11.16)
MAP 7.46 (1.65) 3.94 (2.31) 8.63 (1.99)

fm2 DGL 8.29 (1.78) 7.13 (2.64) 8.56 (2.32)
IGL 9.55 (1.92) 8.40 (2.61) 9.84 (2.54)

TMVN 8.32 (2.11) 8.61 (2.91) 7.94 (2.75)
MAP 7.84 (1.47) 5.23 (2.23) 8.78 (1.79)

fm3 DGL 7.76 (1.74) 9.16 (2.9) 6.87 (1.87)
IGL 7.72 (1.74) 8.57 (2.45) 7.18 (1.74)

TMVN 11.36 (1.33) 15.27 (2.85) 8.97 (1.76)
MAP 9.44 (1.89) - 9.44 (1.89)

fm4 DGL 8.67 (2.15) - 8.67 (2.15)
IGL 9.34 (2.16) - 9.34 (2.16)

tMVN 5.68 (1.61) - 5.68 (1.61)

Table 2: The average of the MSPE ×102 (standard deviation ×102) over one thousand replicates
for different functions and methods. Model (Mh) has been used to compute the MAP estimate.

The simulation studies are based on a dataset of size n = 500 generated from (1) using the true
functions (27) and a true σnoise = 0.5. The dataset is randomly split into training set of size 300
and testing set of size 200. Table 2 summarizes the average of the MSPE ×102 (standard deviation
×102) over one thousand replicates for the four true functions (27) using different approaches. To
evaluate the performance between the flat and increasing regions separately, we additionally report
the average partial MSPEs for each region: MSPE (flat) for the flat portion and MSPE (increasing)
for the increasing portion, in addition to the overall average MSPE. To avoid overfitting, we set
N = bntr/8c as in [45], where ntr is the number of training samples fixed at 300. In that case, the
MAP estimate provides the same MSPE results when using different models (see Section 4.4).

The Matérn family of covariance functions is used with smoothness parameter ν ∼ U(0.5, 1) and
correlation length parameter θ ∼ U(0.1, 1) generated at each replicate as in [45]. For flat regions, the
MAP estimate outperformed the shrinkage approaches of [45] (IGL,DGL and TMVN). This confirms
the robustness of the MAP estimate for capturing flat regions. According to the MSPE criterion,
the MAP estimate is twice (resp. three times) more efficient than IGL and DGL (resp. TMVN)
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when using fm2 over the flat region. This was also seen when calculating the total MSPE for fm2 ,
where the proposed approach had a slightly lower standard deviation than the shrinkage approaches
(IGL, DGL, and TMVN). This again confirms the stability of the MAP estimate provided by the
proposed approach. Let us recall that the MAP estimate is computed from a quadratic optimization
problem given by equation (17). Finally, it should be mentioned that the simulation studies are
conducted without any additional constraints.

Figure 16: GP approximation from Model (Mφ) satisfying monotonicity constraints (left panel),
monotonicity and bounded slope constraints (right panel). The panel description is the same as in
Figure 3, with zoomed-in inset plots where x ∈ [0.7, 1]. The green vertical dashed line in the right
panel represents the starting location of bounded slope constraints.

Figure 16 shows the GP approximation from Model (Mφ) with monotonicity constraints only
(left panel) and both monotonicity and bounded slope constraints (right panel). The function
fm2(x) = 3

1+exp{−10x+2.1} is considered. This function is interesting because it is monotonically

increasing and almost flat over the interval [0.7, 1]. We used the Matérn covariance function with
ν = 5/2 and the efficient HMC technique [30] to sample from the posterior distribution of the
basis coefficients {ξj}. The black solid curve represents the function fm2 , while the red dashed
(resp. blue dashed-dotted) curve represents the MAP estimate (resp. mAP estimate). The gray
shaded area represents the 95% pointwise confidence interval. The black stars are the 300 noisy
observations generated from (1) using fm2 and a true noise standard deviation of σnoise = 0.5. The
green vertical dashed line in the right panel corresponds to the starting point where the bounded
slope constraints are imposed. In the right panel, we impose an upper bound slope constraints on
the proposed approach in the flat region [0.7, 1]. In the left panel, we observe that the pointwise
95% confidence intervals fail to capture the true nondecreasing function fm2 for a substantial part
of the input domain. This is due to the mass-shifting phenomenon highlighted in [45]. Including
bounded slope constraints (right panel) provides smaller and more realistic credible intervals as
compared to those without such constraints (left panel). Let us mention that the MAP estimate
is robust in both scenarios, with or without bounded slope constraints. This is because the MAP
estimate converges to the constrained optimal smoothing function (as proved in [15]). Additionally,
the mAP estimate tends towards the MAP estimate when bounded slope constraints are added,
as seen in the right panel. Finally, the average 95% posterior coverage over 25 replicates is equal
to 78% when using the proposed approach with only monotonicity (nondecreasing) constraints.
However, it increases to 89% when adding the bounded slope constraints. Thus, by adding multiple
constraints, the prediction accuracy is improved as the posterior coverage is closer to 95%.
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5 Real-world data applications

5.1 Light detection and ranging (LiDAR)

In this section, the proposed approach developed in this paper was applied on the light detection and
ranging (LiDAR) real-world data that consist of 221 observations from a LiDAR experiment and
it contain information on range and logratio. The predictor range represents the distance travelled
before the light is reflected back to its source, however, the response variable logratio represents the
logarithm of the ratio of received light from two laser sources. This real-world data is available from
the R package HRW. The data suggest that the underlying function is nonpositive and monotone
nonincreasing with a flat region when the range is less than 550.
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Figure 17: Estimation accuracy of the proposed approach applied on LiDAR data. The red dashed
curve corresponds to the MAP estimate, while the blue dashed-dotted corresponds to the mAP
estimate. The black stars represent real-world data, and the gray shaded area represents the 95%
pointwise confidence interval.

In Figure 17, the proposed approach using Model (Mφ) has been applied to the n = 221 LiDAR
data (shown as black stars). We fix N = bn/8c to avoid overfitting (this choice is justified later
in this section), and we use the Matérn covariance functions with ν = 5/2. The red dashed curve
represents the MAP estimate, while the blue dashed-dotted curve represents the mAP estimate.
The gray shaded area corresponds to the 95% pointwise credible interval. Top left: Model (Mφ)
satisfying monotonicity constraints only. We observe that, unlike the MAP estimate, the credible
interval and mAP estimate fail to follow the behavior of the data in the flat region (range less than
550). To rigorously compare the MAP and mAP estimates in terms of prediction accuracy, we
propose to place a uniform prior distribution on the correlation length parameter θ ∼ U(50, 300)
as well as on the noise standard deviation σnoise ∼ U(0.1, 0.5). By randomly splitting the total
dataset of size 221 into 80% training and 20% testing datasets, we obtain an average MSPE over
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one thousand replicates of 8.23× 10−2 when using the MAP estimate and 9.76× 10−2 when using
the mAP estimate. Top right: we added nonnegativity constraints (as per Proposition 4) and
found that, once again, credible intervals as well as the mAP estimate fail to capture the flat
region. Bottom: we added bounded slope constraints in the flat region between the green vertical
dashed lines (see Proposition 3). In that case, we observe that both the mAP estimate and the
95% pointwise credible interval follow the observations and capture the flat region. The proposed
model with triple inequality constraints seems to align with the data better, specifically over the
flat region and when logratio starts to decreases. We also observe that the mAP estimate tends
towards the MAP estimate, which behaves well in all three situations. As expected, adding multiple
constraints improves the prediction accuracy of the proposed approach (MAP and mAP estimates)
as well as the behavior of the posterior distribution, which provides more realistic pointwise credible
intervals.

For the estimation of the correlation length parameter θ, and the noise standard deviation σnoise,
we propose an adjustment of the 5-fold CV technique based on minimizing the MSPE using the
MAP as an estimator. The procedure is as follows:

(θ̂, σ̂noise)CV = arg min


√√√√ 1

nt

nt∑
i=1

(yi − ŷi)2

 , (28)

where ŷi is the value of the MAP estimate MN at the test point xi, which depends on σnoise and θ,
and nt is the number of test samples, representing 20% of the total dataset.

Now, we analyze the value of the number of grid points N as a function of the number of
samples n. Its value influences the prediction accuracy of the proposed approach. In order to avoid
overfitting, it is more reasonable to choose the number of grid points N to be smaller than the
number of training samples n. We consider the case where N ∈ {n, bn/2c, bn/4c, bn/8c} to conduct
a thorough analysis on our real-world dataset.
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Figure 18: MSPEs as a function of the correlation length parameter θ using 5-fold CV technique
for different values of N ∈ {n, bn/2c, bn/4c, bn/8c} and standard deviation σnoise = 0.1 (resp.,
σnoise = 0.5 and σnoise = 1) in the left (resp., middle and right) panel.

Figure 18 shows the 5-fold CV MSPEs repeated fifty times as a function of the length parameter
θ ∈ {5, 50, 100, 200, 300}, with N ∈ {n, bn/2c, bn/4c, bn/8c}. We fix σnoise = 0.1 (resp., σnoise = 0.5
and σnoise = 1) in the left (resp., middle and right) panel. First, we observe that in all three
situations, the MSPE drops rapidly for small values of the correlation length parameter θ, and
then increases for larger values of θ. Second, we also observe that using a smaller number of
discretization points, N = bn/8c, results in lower MSPEs. Third, we observe that the optimal value
of the correlation length parameter θ depends on the noise standard deviation parameter σnoise.
A small value of σnoise leads to an optimal MSPE for a large value of θ, and vice versa. These
numerical experiments guided us to choose N = bn/8c for the remainder of this study.

For hyperparameter estimation, we use the NLopt optimization tools from [16], specifically
the Constrained Optimization BY Linear Approximations (COBYLA) [32] optimizer. This choice
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was justified by numerical comparison tests with the optim function in R, which showed that the
COBYLA optimizer method provided more accurate results for estimating the correlation length
and noise standard deviation parameters θ and σnoise, respectively. Let us mention that a multistart
optimization was conducted using ten initial vectors of the correlation length parameter θ ∈ [40, 200]
and the noise standard deviation parameter σnoise ∈ [0.05, 1].

5.2 Nuclear safety

In this section, we investigate the performance of the proposed model using real-world data provided
by the Institut de Radioprotection et de Sret Nuclaire (IRSN) in France. We studied the nuclear
reactor of the uranium sphere known as the Lady Godiva device, located at Los Alamos National
Laboratory (LANL) in New Mexico, U.S. The reactor’s output increases with respect to two input
parameters: its radius, which ranges between 0 and 20 cm, and its density, which ranges between
10 and 20 g/cm3.
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Figure 19: 3D visualization of Godiva’s training samples (black crosses) with mAP (left panel) and
MAP (right panel) estimates. The noise standard deviation is fixed at σnoise = 0.1, and the average
MSPE over 100 replicates is 6.99× 10−2 for mAP and 3.87× 10−2 for MAP.

We used 121 observations defined on the interval [0, 20]×[10, 20] to demonstrate the effectiveness
of the proposed model in terms of prediction accuracy and to compare the mAP and MAP estimates.
Figure 19 shows the application of the GP approximation from Model (18). To avoid overfitting, we
set N1 = N2 = bn/16c = 6, which results in 36 knots and basis functions. Later in this section, we
will provide justification for this choice of grid discretization. The two-dimensional SE covariance
function (19) is used, with a nugget effect of order 10−12. We randomly split the real-world dataset,
which has a size of 121, into 80% training set and 20% testing set. We fix the noise standard
deviation at σnoise = 0.1. The left panel displays the mAP estimate based on 5,000 sample paths
generated using the efficient HMC sampler along with the training samples (represented by black
crosses), while the right panel shows the MAP estimate, also with the training samples represented
by black crosses. To rigorously compare the mAP and MAP estimates, we propose to place a
prior on the correlation length parameters: θ1 ∼ U(1, 20) and θ2 ∼ U(1, 20), as well as on the
noise standard deviation: σnoise ∼ U(0.1, 1). The numerical experiment is conducted within 1,000
replicates. The given real-world dataset of size 121 is split randomly into 80% training and 20%
testing datasets. In that case, the average MSPE over one hundred replicates is 3.87× 10−2 when
using the MAP estimate, and 6.99× 10−2 when using the mAP estimate.

Now we investigate the choice of the number of discretization points N1 and N2 in (18). To
conduct a thorough analysis on our real-world dataset, we consider the case where N = N1 = N2

are selected from the grid {bn/4c, bn/8c, bn/16c}.
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Figure 20: MSPE as a function of the correlation length parameters θ1 (left) and θ2 (right), using
the 5-fold CV technique for different values of N ∈ {bn/4c, bn/8c, bn/16c}. The noise standard
deviation is fixed at 0.1 (top) and at 0.04 (bottom).

Figure 20 shows the 5-fold CV MSPEs as a function of the length parameters θ1 ∈ {5, 10, 15, 20}
in the left panel and θ2 ∈ {1, 3, 5, 10} in the right panel, with σnoise fixed at 0.1 in the top plot
and at 0.04 in the bottom plot. First, we observe that in all four situations, the MSPE drops
quickly for small values of the correlation length parameters θ1 and θ2, and then increases for larger
values (θ1 ≥ 15 and θ2 ≥ 5). Second, we observe that a smaller number of discretization points,
N = bn/16c, provides lower MSPEs. These analyses guided us to choose N1 = N2 = bn/16c. Third,
the optimal values of the correlation length parameters (θ1, θ2) are around (15, 5) for both small
and large noise standard deviations, σnoise. Fourth, a smaller value of σnoise = 0.04 provides a much
smaller MSPE compared to the case when σnoise = 0.1. In fact, σnoise plays the role of a compromise
between smoothness and fidelity to data samples.

Conclusion

The Gaussian process approximation originally proposed in [22] is considered, which verify interpo-
lation conditions and inequality constraints in the entire domain. The flexibility of this approach
to incorporate both noisy observations and multiple convex and non-convex constraints is inves-
tigated. This leads to significant improvement in prediction accuracy and more realistic credible
intervals. We propose an adjustment to the cross-validation technique that uses Maximum a Pos-
teriori (MAP) to estimate both covariance and noise variance hyperparameters. Additionally, we
propose new basis functions to enhance the smoothness of the sample paths and ensure differen-
tiability of class Cp, for any p ≥ 1. The behavior of this approach in challenging situations, such
as monotonicity with a flat region or boundedness where the underlying function is flat and close
to lower and/or upper bounds, is investigated. In that case, we show that, unlike the MAP esti-

31



mate, the truncated multivariate normal distribution is not suitable for capturing the flat region.
To address this issue, we propose adding multiple constraints, such as monotonicity with bounded
slope constraints. The superiority of the MAP estimate over the mean a posterior (mAP) estimate
is demonstrated in a wide range of settings based on its theoretical convergence. Real-world data
studies show that the MAP estimate effectively captures flat regions and that incorporating multiple
constraints accurately reflects the behavior of the posterior distribution.
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[35] J. Riihimäki and A. Vehtari. Gaussian processes with monotonicity information. In Proceedings
of the thirteenth international conference on artificial intelligence and statistics, pages 645–652.
JMLR Workshop and Conference Proceedings, 2010.

[36] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer
experiments. Statistical Science, 4(4):409–423, 1989.

[37] T. S. Shively, S. G. Walker, and P. Damien. Nonparametric function estimation subject to
monotonicity, convexity and other shape constraints. Journal of Econometrics, 161(2):166–
181, 2011.

[38] L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman. A survey of constrained
Gaussian process regression: Approaches and implementation challenges. Journal of Machine
Learning for Modeling and Computing, 1(2), 2020.

[39] J. Taylor and Y. Benjamini. RestrictedMVN: multivariate normal restricted by affine con-
straints. R package version, 1, 2016.

[40] I. Ustyuzhaninov, I. Kazlauskaite, C. H. Ek, and N. Campbell. Monotonic Gaussian process
flows. In International Conference on Artificial Intelligence and Statistics, pages 3057–3067.
PMLR, 2020.

[41] X. Wang and J. O. Berger. Estimating shape constrained functions using Gaussian processes.
SIAM/ASA Journal on Uncertainty Quantification, 4(1):1–25, 2016.

[42] N. J. Williams, C. Osborne, I. D. Seymour, M. Z. Bazant, and S. J. Skinner. Application of
finite Gaussian process distribution of relaxation times on SOFC electrodes. Electrochemistry
Communications, page 107458, 2023.

[43] Y. Yang, A. Bhattacharya, and D. Pati. Frequentist coverage and sup-norm convergence rate
in Gaussian process regression. arXiv preprint arXiv:1708.04753, 2017.

[44] S. Zhou, P. Giulani, J. Piekarewicz, A. Bhattacharya, and D. Pati. Reexamining the proton-
radius problem using constrained Gaussian processes. Phys. Rev. C, 99:055202, May 2019.

34



[45] S. Zhou, P. Ray, D. Pati, and A. Bhattacharya. A mass-shifting phenomenon of truncated
multivariate normal priors. Journal of the American Statistical Association, 0(ja):1–37, 2022.

35


	Introduction
	Gaussian process regression review
	Constrained Gaussian processes
	C0 approximation with Model (Mh)
	Constrained Gaussian process with noisy observations
	Illustrative examples of Model (Mh)
	Multidimensional input spaces

	Constrained GPs: Cp approximation, p1
	C1 approximation with Model (M)
	Cp approximation, p2 with Model (M)
	Cp approximation, p2 with Model (M)
	Comparison between Models (Mh), (M) and (M)
	Performance of the MAP estimate

	Real-world data applications
	Light detection and ranging (LiDAR)
	Nuclear safety


