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In this paper, a new self-supervised strategy for learning meaningful representations of complex optical Satellite Image Time Series (SITS) is presented. The methodology proposed, named U-BARN, a Unet-BERT spAtio-temporal Representation eNcoder, exploits irregularly sampled SITS. The designed architecture allows learning rich and discriminative features from unlabeled data, enhancing the synergy between the spatio-spectral and the temporal dimensions. To train on unlabeled data, a time series reconstruction pretext task inspired by the BERT strategy but adapted to SITS is proposed. A Sentinel-2 large-scale unlabeled data-set is used to pre-train U-BARN. To demonstrate its feature learning capability, representations of SITS encoded by U-BARN are then fed into a shallow classifier to generate semantic segmentation maps. Experimental results are conducted on a labeled crop data-set (PASTIS) as well as a dense land cover data-set (MultiSenGE). Two ways of exploiting U-BARN pre-training are considered: either U-BARN weights are frozen or fine-tuned. The obtained results demonstrate that representations of SITS given by the frozen U-BARN are more efficient for land cover and crop classification than those of a supervisedtrained linear layer. Then, we observe that fine-tuning boosts U-BARN performances on MultiSenGE dataset. Additionally, we observe on PASTIS, in scenarios with scarce reference data, that the fine-tuning brings a significative performance gain compared to fully-supervised approaches. We also investigate the influence of the percentage of elements masked during pre-training on the quality of the SITS representation. Eventually, semantic segmentation performances show that the fully supervised U-BARN architecture reaches better performances than the spatiotemporal baseline (U-TAE) on both downstream tasks: crop and dense land cover segmentation.

I. INTRODUCTION

Over the last decade, the Satellite Image Time Series (SITS) acquired by the Sentinel-2 (S2) mission has produced a large amount of multi-spectral land surface imagery with a high 5day revisit rate. The high spectral, spatial, and temporal resolutions of SITS capture physical measurements of temporal and spatial variations of the surface, making them crucial data for Earth monitoring [START_REF] Giuliani | Earth observation open science: Enhancing reproducible science using data cubes[END_REF], [START_REF] Petitjean | Satellite image time series analysis under time warping[END_REF], [START_REF] Panuju | Change detection techniques based on multispectral images for investigating land cover dynamics[END_REF]. Deep learning (DL) holds a great potential for automatically extracting features from spatiotemporal remote sensing data [START_REF] Kattenborn | Review on convolutional neural networks (CNN) in vegetation remote sensing[END_REF], [START_REF] Vali | Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: a review[END_REF]. Nonetheless, there are still significant challenges that DL architectures face in dealing with the particularities of SITS, which are non-stationary, I. Dumeur, S. Valero, J. Inglada are with CESBIO, Université de Toulouse, CNES/CNRS/INRAe/IRD/UPS, 31000 Toulouse, France (e-mail: iris.dumeur@univ-tlse3.fr, silvia.valero@cesbio.cnes.fr, jordi.inglada@cesbio.cnes.fr).

This work is supported by the DeepChange project under the grant agreement ANR-DeepChange CE23 multi-variate, and irregularly sampled. Data gaps induced by cloud contamination and data quality issues lead to a significant lack of information between optical valid acquisitions. In addition, undetected clouds can produce misleading results in land surface analysis. Besides the challenges associated with complex satellite data, DL methodologies in large-scale remote sensing applications face a major bottleneck. The limited availability and quality of the labeled data restrain the training of deep complex models. Over the past few years, selfsupervised learning (SSL) has emerged as a potential solution to mitigate or even eliminate the need for costly collection of labeled data-sets [START_REF] Wang | Self-supervised learning in remote sensing: A review[END_REF]. This strategy enables the pre-training of deep models on large unlabeled data-sets for later finetuning a shallow network on a downstream task. Therefore, self-supervised pre-training methods can be a solution for applications collecting small labelled data-sets, where deep models cannot be trained from scratch. Recent reviews [START_REF] Berg | Self-supervised learning for scene classification in remote sensing: Current state of the art and perspectives[END_REF], [START_REF] Wang | Self-supervised learning in remote sensing: A review[END_REF] have highlighted the great opportunities of self-supervised learning for remote sensing applications. Despite proposing different taxonomies, these studies agree that most of the proposed methods are based on discriminative models. In contrast, generative models such as GAN [START_REF] Goodfellow | Generative adversarial nets[END_REF] and variational auto-encoders [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] that learn the latent distribution generating the input data have been less studied. This can be explained by the fact that latent variables capturing the distribution of observed variables cannot guarantee generalization capabilities for downstream tasks [START_REF] Saeed | Sense and learn: Self-supervision for omnipresent sensors[END_REF]. Among discriminative self-supervised learning studies, two main categories have been identified: contrastive approaches and methodologies using pretext tasks. Contrastive learning methods rely on data augmentation techniques that apply multiple transformations to the data without affecting their semantics. Although augmentation techniques have been defined for single satellite images as [START_REF] Li | Global and local contrastive self-supervised learning for semantic segmentation of hr remote sensing images[END_REF], [START_REF] Hu | Hypernet: Self-supervised hyperspectral spatial-spectral feature understanding network for hyperspectral change detection[END_REF], the augmentation of multi-spectral time series is not trivial. For this reason, existing contrastive methods exploiting Sentinel data mainly focus on optical and radar data, treating each modality as a distinct augmentation of the same object. For example, [START_REF] Liu | Multi-source remote sensing pretraining based on contrastive self-supervised learning[END_REF] processes pairs of single S1 and S2 images, while [START_REF] Yuan | Bridging optical and sar satellite image time series via contrastive feature extraction for crop classification[END_REF] handles pairs of S1, S2 SITS. However, it should be noted that this latter contrastive approach on SITS to pre-train deep architectures is not unsupervised, as classification labels are utilized to generate positive and negative samples required for the contrastive loss. Consequently, self-supervised training strategies based on pretext tasks are preferred on temporal data. This approach involves defining a task that can be solved using the input data alone, without the need for explicit labels. By generating a supervised learning strategy through pretext tasks, meaningful features can be extracted from the data. As an example, generative-based pretext tasks attempt to learn the structure of the data by posing a reconstruction task to recover the features and information of the data itself. For instance, BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] aims to recover masked words, and MAE [START_REF] He | Masked autoencoders are scalable vision learners[END_REF] recovers masked pixels of images. Despite generative-based pretext tasks being one of the most promising strategies to exploit complex SITS, only two recent works are proposed in the literature [17] [18]. This can be explained by the strong challenges associated with : (i) the design of network architectures exploiting the complex SITS, and (ii) the pretexttask definition, ensuring that the learned representations are useful for downstream applications. Considering all the above, this paper presents a novel selfsupervised learning method for capturing meaningful representations of complex optical Satellite Image Time Series. The proposed methodology, named U-BARN, proposes a selfsupervised learning strategy to learn a Unet-BERT spAtiotemporal Representation eNcoder. The first important contribution is the design of a new DL architecture that captures the spatio-temporal information contained in irregularly sampled multi-variate SITS. The spatial, spectral and temporal dimensions of the data are handled by the combination of Unet and Transformer architectures. Instead of using a traditional CNN [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF], a Unet architecture is proposed to embed the spatiospectral information by exploiting different spatial resolutions. By preserving the spatial input data dimensions, the Unet leads to highly efficient inference times. Compared with the most recent supervised end-to-end architecture [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF], U-BARN proposes to apply temporal attention mechanisms at high spatial resolution, to capture more precise spatio-temporal information. The second significant contribution of this study is the self-supervised training of U-BARN which allows learning high-quality latent representations without requiring annotated data. Based on BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF], a generative pretexttask masking strategy is proposed. Our pretraining approach differs from SOTA self-supervised learning strategy on SITS [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF], on significative points. First, the masking strategy is different, and the effect of the masking rate is studied. Then, in opposition to [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF], our pre-training dataset contains cloudy images. Eventually, our unlabeled and labeled datasets have a great geographical variability which demonstrate the scalability of our approach. The general framework presented in this work is summarized in Fig. 1. On the left, we show the main blocks describing the backbone network of U-BARN, which is described in Section III-A. On the right, the use of pre-trained U-BARN in the semantic segmentation downstream task is illustrated. In a nutshell, the main contributions of this paper are:

• The construction of a novel spatio-temporal architecture for SITS, named U-BARN • The self-supervised training of U-BARN with a generative pretext task • The assessment of the self-supervised training strategy on two different downstream tasks

To evaluate the performance of the proposed U-BARN architecture and the self-supervised training strategy, we con- duct several experiments using the semantic segmentation downstream tasks defined by the labeled PASTIS data-set [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] and MultiSengGE [START_REF] Wenger | Multisenge: A multimodal and multitemporal benchmark dataset for land use/land cover remote sensing applications[END_REF]. First, the pre-trained U-BARN segmentation performances are compared with two end-toend trained architectures (U-TAE and U-BARN). Then, the usefulness of U-BARN is assessed by conducting several experiments on real-world scenarios suffering from scarce reference data. Additionally, different experiments are carried out to study the influence of the complexity of the pre-training task on the quality of the spatio-temporal representations. Lastly, a study of the U-BARN computational efficiency is conducted. The remainder of the paper is organized as follows: (i) a presentation of current state-of-the-art spatiotemporal architectures for SITS and existing SSL strategies are presented in Section II, (ii) a detailed description of our methodology is given in Section III, (iii) an explanation of the experimental setup is detailed in Section IV, (iv) the results obtained from the different experiments are presented in Section V, and finally, conclusions are drawn in Section VI.

For reproducibility, the large unlabeled S2 L2A data-set used to pre-train U-BARN [START_REF] Dumeur | Unlabeled Sentinel 2 time series dataset : Self-Supervised Spatio-Temporal Representation Learning of Satellite Image Time Series[END_REF] as well as the code1 are available.

II. RELATED WORKS

This section reviews: (i) the existing DL spatio-temporal architectures proposed to exploit SITS in a supervised way and (ii) SSL methods using pretext-tasks for temporal data.

A. Deep spatio-temporal architectures for SITS

Spectro-temporal patterns from multi-temporal data provide the most essential information to characterize land cover classes. For this reason, the earlier DL architectures exploiting recent SITS have not considered the spatial dimension of the data. For instance, TempCNN [START_REF] Pelletier | Temporal convolutional neural network for the classification of satellite image time series[END_REF], which applies convolution on the temporal dimension, or Recurrent Neural Networks [START_REF] Sun | Using long short-term memory recurrent neural network in land cover classification on landsat and cropland data layer time series[END_REF], [START_REF] Ienco | Land cover classification via multitemporal spatial data by deep recurrent neural networks[END_REF], [START_REF] Rußwurm | Multi-temporal land cover classification with sequential recurrent encoders[END_REF], [START_REF] Minh | Deep recurrent neural networks for winter vegetation quality mapping via multitemporal sar sentinel-1[END_REF], [START_REF] Ndikumana | Deep recurrent neural network for agricultural classification using multitemporal sar sentinel-1 for camargue, france[END_REF] which retain past timestamps information in memory, have been proposed. Although these architectures can outperform traditional approaches such as Random Forest [START_REF] Pelletier | Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas[END_REF], existing literature [START_REF] Benedetti | m 3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF], [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF], [START_REF] Mou | Learning spectral-spatialtemporal features via a recurrent convolutional neural network for change detection in multispectral imagery[END_REF], has corroborated that better results could be obtained by also considering the spatial dimension. This is due to the fact that high-level spatio-temporal features allow the detection and discrimination of closely resembling spectral signatures. Convolutional Neural Networks (CNN) exploiting the spatial domain of SITS have been typically combined with temporal networks. For instance, the combination of CNN and RNN is proposed in [START_REF] Mou | Learning spectral-spatialtemporal features via a recurrent convolutional neural network for change detection in multispectral imagery[END_REF], where the ReCNN architecture is introduced. The proposed network marries CNNs and RNNs as separate layers and the CNN output is injected as the input to an RNN. Other CNN and RNN combinations are proposed in [START_REF] Benedetti | m 3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF] [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF]. Both studies propose an architecture composed of two parallel branches aiming to independently extract spatial and temporal features. After the feature extraction step, the results of both branches are concatenated and injected in a fully connected network to predict the final class. In M 3 -fusion [START_REF] Benedetti | m 3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF], the architecture proposes the fusion of Sentinel-2 (S2) pixel time series with Spot 6/7 VHSR patch images centered on the pixel of the time series. Features from temporal data are extracted by applying a RNN architecture whereas spatial features are learned by a CNN network applied on a high spatial-resolution 25 × 25 patch image. Although two parallel branches are also proposed in Duplo [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF], this architecture exploits temporal S2 patches with a spatial dimension of 5 × 5 on both branches. The temporal branch uses a shallow CNN to reduce the spatial dimension to 1 before applying Gated Recurrent Units. The independent spatial branch processes the temporal S2 patches by a more complex CNN architecture. This last study demonstrates that the combination of both network branches outperforms either CNN or RNN trained individually. However, the combined CNN-RNN architectures, [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF], [START_REF] Benedetti | m 3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF], [START_REF] Mou | Learning spectral-spatialtemporal features via a recurrent convolutional neural network for change detection in multispectral imagery[END_REF] suffer from significant limitations when applied to SITS: (i) a narrow spatial neighborhood is considered, with a square patch width of only 50 meters (ii) inference is costly, since only the class of the center pixel within the patch is predicted. Alternative spatio-temporal architectures apply 3D CNN to learn the local temporal features along with the spatial ones [START_REF] Mohammadi | 3d fully convolutional neural networks with intersection over union loss for crop mapping from multitemporal satellite images[END_REF] [START_REF] Ji | 3d convolutional neural networks for crop classification with multi-temporal remote sensing images[END_REF]. These latter architectures process inputs with wider spatial dimensions, and in particular [START_REF] Mohammadi | 3d fully convolutional neural networks with intersection over union loss for crop mapping from multitemporal satellite images[END_REF] fully convolutional architecture is efficient for segmentation map prediction. However, only short temporal dynamics of the time series are learned by such architectures. Additionally, the use of the aforementioned temporal architectures on SITS suffer from important weaknesses. First, RNN and TempCNN do not handle irregularly sampled time series, which implies that all SITS are first resampled to a common gap-free temporal grid. Secondly, long-term temporal dependencies are not fully captured, whereas correlation in temporal information between the beginning and the end of the annual SITS can be important. To overcome the limitation of TempCNN and RNN architectures, the work in [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] propose to apply the Transformer network [START_REF] Vaswani | Attention is all you need[END_REF] in the spectro-temporal domain to classify S2 time series. This architecture (see Section III-A2) is applied on individual S2 pixel time series to extract spectro-temporal features for crop classification. Thanks to its attention layers and positional encoding, this architecture allows capturing relations between all the elements of a sequence and process irregular time series. The Transformer architecture also demonstrates cloud-robustness [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] compared to other architectures such as Duplo [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF] and TempCNN [START_REF] Pelletier | Temporal convolutional neural network for the classification of satellite image time series[END_REF]. The study in [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] shows that the Transformer is capable of identifying cloudy dates as outliers with low attention score. Recently, several transformer-based models are proposed for tackling SITS classification capturing temporal [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF], [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF], [START_REF] Garnot | Lightweight Temporal Self-attention for Classifying Satellite Images Time Series, ser. Advanced Analytics and Learning on Temporal Data[END_REF], [START_REF] Zhang | Attention to both global and local features: a novel temporal encoder for satellite image time series classification[END_REF], and spatio-temporal features [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF], [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF]. First, temporal approaches as [36][37] propose different solutions to reduce the high computational complexity of the classical Transformer network [START_REF] Vaswani | Attention is all you need[END_REF]. Both spectro-temporal models simplify the architecture by reducing the number of operations required to compute the attention score. The modified transformer, TAE described in [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF] proposes to compute a unique master query to squeeze each individual pixel time series into a single embedding in the time dimension, which summarizes the global temporal information. A simplified version of TAE [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF] is proposed by L-TAE [START_REF] Garnot | Lightweight Temporal Self-attention for Classifying Satellite Images Time Series, ser. Advanced Analytics and Learning on Temporal Data[END_REF], where the master query is set as a network parameter. This last architecture outperforms TempCNN [START_REF] Pelletier | Temporal convolutional neural network for the classification of satellite image time series[END_REF], [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF], as well as architectures with RNN, Conv-LSTM [START_REF] Rußwurm | Convolutional lstms for cloud-robust segmentation of remote sensing imagery[END_REF] and Conv-GRU [START_REF] Sainte Fare | Time-Space Tradeoff in Deep Learning Models for Crop Classification on Satellite Multi-Spectral Image Time Series[END_REF]. As the altered attention mechanism focuses on global attention, [START_REF] Zhang | Attention to both global and local features: a novel temporal encoder for satellite image time series classification[END_REF] proposes a two branch temporal network GL-TAE, where the LTAE and the Lightweight convolution networks (LConv) respectively compute global and local attention. TAE, LTAE and LConv mechanisms squeeze the temporal dimension of the time series to 1, preventing the succession of multiple temporal encoder layers. To leverage the spatio-temporal dimensions of SITS, the SITS-Former [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF] combines a three-dimensional CNN with a traditional Transformer. However, similarly to [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF], [START_REF] Benedetti | m 3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF], [START_REF] Mou | Learning spectral-spatialtemporal features via a recurrent convolutional neural network for change detection in multispectral imagery[END_REF], a narrow spatial-context (i.e. patch size of 5 × 5 pixels) is considered and only the pixel at the center of the patch is classified. Alternatively, the U-TAE network [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] combining the L-TAE with a Unet network [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] has been recently proposed. The use of a Unet offers some advantages with respect to classical CNN architectures. By using contracting and expansive paths with skip connections between them, Unet features enable more accurate localization. Besides, larger receptive fields can be obtained by increasing the Unet depth, which allows extracting more context-rich spatial relationships. The U-TAE network [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] proposes to incorporate the L-TAE network within the Unet bottleneck. Although this choice considerably reduces the method's computational complexity, it implies that the temporal attention is only computed at the coarsest spatial resolution. Consequently, the ability to model temporal patterns can be reduced due to the encoder output resolution, which can lead to less accurate results. Consequently, our proposed methodology, U-BARN, combines a Unet with a Transformer to capture rich and wide spatial and temporal correlations. The temporal attention mechanism is computed at a full spatial resolution. Therefore, our network produces embeddings which contain rich temporal information at the spatial resolution of the original data, which is expected to benefit downstream tasks like semantic segmentation.

B. Using self-supervised pretext tasks for temporal data Self-supervised pre-training for sequence data has become hugely popular in Natural Language Processing (NLP). Most of existing techniques have used predictive or generative pretext tasks to capture temporal patterns from the data itself. Predictive strategies have proposed temporal shift prediction [START_REF] Saeed | Sense and learn: Self-supervision for omnipresent sensors[END_REF] or retrieving the order of a shuffled sequence [START_REF] Misra | Shuffle and Learn: Unsupervised Learning Using Temporal Order Verification[END_REF]. In contrast, methods based on generative pretext tasks have learned to regenerate the input time series [START_REF] Mohamed | Self-supervised speech representation learning: A review[END_REF] based on some limited view of the data. Note that generative pretext tasks differ from generative models, which learn implicit distributions that allow to sample new data. The reconstruction of masked tokens (e.g. embedded words or sub-words) was shown to be an effective generative pretext task in NLP. More precisely, the BERT strategy proposed in [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] has become a de facto standard strategy to train a language representation model. In this strategy, a bidirectional Transformer backbone encoder is trained to reconstruct input data by using information from tokens located both before and after the missing content. The excellent performance of BERT has led to the proposal of two similar generative pretext tasks in remote sensing [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF] [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF]. To the best of our knowledge, SITS-BERT [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF] was the first self-supervised strategy exploiting SITS. This last study proposed to learn spectro-temporal features from Sentinel-2 by training a Transformer architecture. Specifically, a denoising pretext task goal is presented by simulating abnormal reflectance values caused by clouds, snow/ice and shadows. The corruption is obtained by adding positive or negative noise on a few dates. Following the same strategy, SITS-Former [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF] was proposed by the same authors to learn more complex spatio-temporal features from multi-temporal data. Compared to [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF], a more complex pretext task was proposed by SITS-Former by masking input patches with random values drawn from a normal distribution. The finetuned SITS-Former model showed impressive results for land cover classification tasks outperforming other models such as Random Forest, Duplo [START_REF] Interdonato | Duplo: a dual view point deep learning architecture for time series classification[END_REF], SITS-BERT [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF] and Conv-RNN [START_REF] Rußwurm | Multi-temporal land cover classification with sequential recurrent encoders[END_REF]. As mentioned in the previous section, being not fully convolutional, SITS-Former can be highly inefficient to produce classification or segmentation maps. Besides its architectural limitations, the pretext task proposed by SITS-Former suffers from other limitations. First, SITS-Former uses the original masking rate proposed by BERT. Retrieving a masked word in NLP requires a holistic understanding of the sentence. However, in SITS, the continuity of spectral measurements usually allows the reconstruction of the missing input by simple interpolation. While some dates in SITS may be invalid due to the presence of clouds, shadows, or saturation, the masking rate may need to be adjusted to ensure that the pretext task is difficult enough. Secondly, distribution shift can significantly impact fine-tuning performance. In this context, distribution shift means that, at inference time, the data is not masked, and therefore, the distribution is different from the training data. To mitigate this effect, the original BERT employed an 80-10-10 strategy among the 15% of masking rate. Specifically, 80% of the masked words were replaced by the [MASK] token, 10% were left unchanged, and 10% were replaced by a random token value. However, as satellite data cannot be represented in a finite and discrete embedding space like natural language, the choice of mask values should differ from NLP. While SITS-Former proposed masking only with random values drawn from a normal distribution, we suppose that this approach might not adequately address the distribution shift issue. Thirdly, while [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] has demonstrated that Transformer attention networks can handle invalid acquisitions, SITS-Former is exclusively trained on cloud-free SITS. Therefore, the self-supervised strategy employed by SITS-Former may not perform well on downstream tasks that involve non-filtered or imperfectly filtered cloud data. Eventually, recently, the pre-training of vision Transformers (viT) [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], as masked autoencoders, have been applied to SITS through SAT-MAE [START_REF] Cong | SatMAE: Pre-training transformers for temporal and multi-spectral satellite imagery[END_REF]. In computer vision, ViT traditionally split images into smaller patches, and spatial attention is computed between the various embedded patches. For SITS, they suggest splitting SITS along the spatial and temporal dimension into 3D cubes. Computing spatio-temporal attention between all these embedded cubes drastically increases the number of operations in the attention mechanism. Additionally as SITS contain static objects (no spatial movement through time), computing spatio-temporal attention might not worth the high computational cost. This spatio-temporal attention mechanism might prevent the processing long SITS. Indeed, while SAT-MAE shows interesting results on images, their temporal approach has solely been pre-trained on RGB SITS composed of three acquisitions.

III. PROPOSED METHODOLOGY

This section presents the network architecture of the U-BARN encoder and the proposed pre-training strategy.

A. U-BARN network architecture

The U-BARN backbone network is mainly divided in two main blocks: (i) the patch embedding layers providing a spatiospectral representation of each independent image patch of the time series and (ii) the transformer block capturing the temporal relations between the patch embeddings of the time series. U-BARN generates spatio-temporal SITS representations, at the same spatial and temporal resolutions than the input SITS. Specifically, given a batch of input patch time series (b, t, c, h, w) with b the batch, t the temporal, c the spectral, and h, w the spatial dimensions, U-BARN generates a batch of patch time series representations (b, t, d model , h, w) with d model the number of features.

1) Patch embedding: As shown in Fig. 2, this block embeds each patch of the time series with its corresponding positional encoding. Considering a time series of T dates, the spectrospatial encoder (SSE) independently encodes each patch into feature map. As a result, patches of dimension (c, h, w) are projected in to feature vectors of size (d model , h, w). The proposed SSE is based on a Unet architecture with four down-sampling and up-sampling levels as shown in Fig. 2. This Unet implementation enables to capture high-level spatial features with a wide field of view. For each down-sampling and up-sampling level, the spatial dimension of the feature map is respectively divided and multiplied by 2. the Unet architecture is similar to the U-TAE [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] although the temporal attention mechanism is removed from Unet bottleneck. As no temporal dimension is exploited in the SSE, input time series (b, t, c, h, w) are reshaped to (b×t, c, h, w), before being processed by the Unet. We expect that during training the SSE learns to generate, for each pixel, features which contain spectral information as well as rich and wide spatial context. To incorporate temporal information (relative and absolute ordering) of the original time series on the learned SSE feature maps, the classical positional encoding [START_REF] Vaswani | Attention is all you need[END_REF] is added to each encoded patch of size d model . As denoted by Eq. 1, the strategy uses sine functions of varying frequencies for even embedding indexes ('i') and cosine functions for odd embedding indexes. The term i refers to each of the d model features. As proposed by [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF], the acquisition day of year (DOY) of each image is used to indicate the position of the patches in the time series. As recommended in [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF] a scaling constant of a 1000 is considered.

P E(DOY, 2i) = sin( DOY 1000 2i/d model ) (1a) P E(DOY, 2i + 1) = cos( DOY 1000 2i/d model ) (1b)
2) Transformer block: This network architecture aims to exploit temporal relations of the series of feature maps resulting from the patch embedding layers (see Fig. 1). Under this goal, each time series of features describing a single pixel is individually processed by the Transformer architecture. Considering that, the dimension of the batch of pixel-level time series fed in the network is equal to (b×h×w, t, d model ). The backbone network is composed of multi-head self-attention and feed forward layers, as detailed in Fig. 3.

The multi-head attention module decomposes the attention in multiple heads running in parallel as illustrated in Fig. 4. Each head is composed by an attention mechanism which computes similarity scores for all pairs of positions in a pixellevel time series. These scores are computed by applying a scaled dot product operation on the Q and K representations of an input time series X as described by Eq. 2. These representations denoted by "query", Q = W Q X and "key" K = W K X ∈ R t * d model are obtained by the learned projection matrices W Q and W K . As denoted by Eq. 2 and illustrated in Fig. 4 the dot product result is passed through a softmax operation. The resulting scores then weight another representation of the input time series, called "value" V = W V X. These weights give indication on which acquisitions are important for the training task. As demonstrated in [START_REF] Vaswani | Attention is all you need[END_REF], the computation of multi-head scaled-attention products leads to better performances and training stability. Accordingly, instead of computing one scaled-dot product on a unique set of query Q, key K and value V , the input X , scaled-dot product is computed in parallel on h set, of query, key and value, called "heads" as depicted in Fig. 4. The resulting h time series are then concatenated and fed into feed-forward layers that operate only on the feature (spectral) dimensions.

Attention(Q, K, V ) = softmax( QK T √ d model )V (2) 
Feed forward layers are composed of two linear layers interspersed with a ReLu activation layer. Inside this feedforward block the first fully-connected (FC) layer projects the features into d hidden -dimensional space, while the second FC layer projects the feature maps into d model -dimensional space.

Theoretically, increasing the number of layers and the number of heads improves the quality of the learned representation. Therefore, the U-BARN transformer block is composed of 3layers (as [START_REF] Yuan | Self-supervised pretraining of transformers for satellite image time series classification[END_REF]) with 4 heads each. The dimension of input and output features of the network are respectively set to d model = 64 and d hidden = 128. The architectural hyperparameters are detailed in Annex (see Appendix A).

B. Self-supervised strategy

Fig. 5 shows the overall framework of the proposed selfsupervised pre-training strategy inspired by the BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF]. As observed, the proposed pretext task aims to reconstruct some input patches that have been masked from the original time series. Specifically, the masking step is randomly applied on SSE output representations and a decoder MLP network is used for the inpainting task. The proposed strategy consists in randomly permuting the spectro-spatial embedding values among selected encoded patches within a batch. Specifically, an embedded pixel can be replaced by an embedded value from another date, another pixel location within the batch or another feature.

2) Decoder: The decoder, which is only used for pretraining and discarded afterward, enables to train the U-BARN in a self-supervised way. As shown in Fig. 1, the decoder reconstructs the input data using the latent representation.

In order to avoid leakage of meaningful features in the pretraining decoder, a very simple and shallow decoder composed of a single linear layer is proposed. The decoder operates exclusively on the feature (spectral) dimension to transform the (b, t, d model , h, w) latent representations into the S2 reconstructed patch time series (b, t, c, h, w).

3) Reconstruction loss: The quality of the reconstructed image patches is evaluated during the training by the classical Mean Square Error (MSE). This reconstruction loss is computed exclusively on the corrupted patches. Moreover, as input patches can have invalid measures due to acquisition conditions (e.g. cloudy and out of swath pixels), the information coming from the valid acquisition mask M valid is incorporated in the loss function. Therefore, invalid input pixels belonging to the corrupted input patches are not considered in the reconstruction loss. Eventually, given an input patch time series [P t1 , ..., P t Lmax ], a set T S of masked dates, n valid t k the number of valid pixels in the patch P t k , the resulting loss can be expressed as Eq. 3. P t k is a patch that is corrupted at the SSE output by the previously described masking strategy. Secondly, the implementation details of our downstream tasks are described.

L = 1 ||T S || t k ∈T S M valid t k n valid t k ||U BARN ( P t k ) -P t k || 2

A. Data-Sets

S2 images processed to surface reflectances (L2A) by Theia are used in this study. For these data-sets, only the four 10 m and the six 20 m resolution bands of S2 are used. The 20 m resolution bands are resampled onto the 10 m resolution grid by bi-cubic interpolation. A robust data normalization is applied on S2 L2A reflectances. First, the scaling technique of Eq. 4a using the 0.05 and 0.95 quantiles is applied to remove data outliers by clipping the data. Secondly, the data is centered by subtracting the median value of x clip to each spectral band and dividing the result by the dynamic data range (see Eq. 4b) 2 . Band statistics used to normalize the two S2 data sets are computed on the large unlabeled pre-training training data-set. Eventually, our network processes patch time series of spatial dimension of (64× 64). As the various data-sets used might contain wider patches, a random crop transformation is operated during training. For validation and testing, the spatial crop is not random and therefore a center crop transform3 is applied on the patch time series.

x clip = clip q0.95,q0.05 (x) (4a)

x norm = x clip -median q 0.95 -q 0.05 (4b) 2) PASTIS: This labeled S2 data-set proposed for semantic segmentation in [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] covers agricultural areas over France as shown in Fig. 6. Based on the French Land Parcel Information System, the agricultural parcels are grouped into 18 different crop classes. Although PASTIS contains SITS acquired from September 2018 to November 2019, only data from January 2019 to November 2019 is considered in our experiments. This requirement is imposed by our pre-training data-set which is composed of annual time series.

The complete data-set contains 2433 patch time series, and it is divided into 5 stratified folds to enable k-fold training. Therefore, to train the model on the PASTIS data-set, 5 trainings will be performed. In each of these experiments, 3 folds are attributed to train data, one for validation purpose and the last one for testing (see Table II). 3) MultiSenGE: MultiSenGE is a multi-temporal data-set which provides dense land cover labels over the Eastern region of France. We have used 8115 patches time series from 2020 with a spatial dimension of 256*256 pixels. Based on the LULC datastable named OCSGE2-GEOGRANDEST 4 and BDTOPO-IGN5 , this data-set is composed of 14 classes. As detailed in Table III, MultiSenGE is composed of 5 urban classes and 9 natural classes. In opposition to PASTIS data-set, MultiSenGE provides dense labels, therefore all the pixels of a patch are classified. A random split is conducted to split the data-set between train (60%), validation(16%) and test (24%).

B. Details of the downstream task implementation

In the downstream semantic segmentation task, the reconstruction decoder described in Section III-B2 is replaced by a shallow classifier (SC) as shown in Fig. 1. The objective of the classifier is to generate segmentation maps from the latent representations encoded by U-BARN. The selection of the architecture of the SC is driven by the two following criteria. First, the U-BARN encoder produces latent representations preserving the temporal size of the input time series. Therefore, the classifier should be able to process inputs with different temporal dimensions. Secondly, since this is a segmentation task, the output of the shallow classifier should have no temporal dimension.

Figure 7. Architecture of the shallow classifier and detailed description of the "mean-query" attention mechanism described in [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF] To meet both requirements, we have designed a shallow classifier (SC), shown in Fig. 7. To process inputs with different temporal dimension, the proposed SC utilizes the mean-query attention mechanism proposed in the TAE [START_REF] Sainte Fare | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF]. In this altered attention mechanism, a master query, which is the temporal average of the queries, is computed. Additionally, in the computation of the "value" representation, the time series X is not projected by a matrix W v , thus v = X in Eq. 2 . As shown in Fig. 7, the output of this meanquery attention has a collapsed temporal dimension. The meanquery attention mechanism followed by a Fully-Connected (FC) layer, to project the (b, 1, d model , H, W ) feature map into the (b, 1, k, h, w) segmentation map, with k the number of classes. As suggested in [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF], the cross-entropy loss is exclusively computed on known crop classes.

C. Training scenarios evaluated on the downstream tasks

According to [START_REF] Wang | Self-supervised learning in remote sensing: A review[END_REF], to evaluate self-supervised tasks, linearprobing and fine-tuning are often operated. Traditionally, the linear probing strategy evaluates the representations by a linear classifier which is trained on top of a learned and frozen encoder. Unfortunately, a linear classifier can not be applied on U-BARN latent spaces since the temporal length of the resulting U-BARN time series representations varies for each patch time series. The linear classifier is thus replaced by the SC, presented in Section IV-B, and it is trained to generate maps from representations obtained by a frozen pre-trained U-BARN encoder. This method, referred as U-BARN FR , enables to drastically reduce the number of training weights in the downstream task, as solely the SC is trained. For the finetuning approach, the weights of the U-BARN encoder are not frozen during the training of the downstream task. However, the weights of the pre-trained U-BARN are used as the starting values for training of the complete architecture. The finetuning strategy is denoted by U-BARN FT . To assess the quality of pre-trained U-BARN models, the previous self-supervised scenarios are compared with three training configurations supervised by the PASTIS data set. The first one is denoted by U-BARN e2e and corresponds to a trained end-to-end U-BARN encoder followed by the SC. The U-BARN e2e encoder can be considered as the U-BARN FR higher bound since frozen model performances are not expected to surpass its end-toend counterpart. In contrast, it is expected that U-BARN FT outperforms the U-BARN e2e model which is trained from scratch. The quality of representations obtained by the pretrained U-BARN models are also evaluated by a lower-bound. The idea is to compare the features learned by U-BARN with representations encoded by a single fully connected layer. For this situation U-BARN is replaced by a FC layer, which operates exclusively on the feature (spectral) dimension. The FC layer increases the spectral dimension (10 spectral bands) to d model . This lower bound is obtained by the end-to-end supervised training scenario denoted by FC-SC.

Finally, the supervised spatio-temporal baseline U-TAE [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] is also considered in our experiments.

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed U-BARN network architecture and the self-supervised training strategy are evaluated by the PASTIS crop segmentation and MultiSenGE dense land cover segmentation downstream tasks. First, a qualitative evaluation of the pretext task training is proposed. Then, the quality of the representations learned by pre-trained U-BARN models are evaluated by comparing the classification performances on both downstream tasks obtained by the aforementioned different training scenarios (see Section IV-C). The interest of using a pre-trained U-BARN self-supervised encoder is corroborated by studying the robustness of the proposed methodology under reference data scarcity conditions. Afterward, the influence of the masking rate on the generalization capabilities of U-BARN representations is studied. Eventually, a computational efficiency study is conducted on U-BARN different configurations and U-TAE.

Each training (either pre-training or downstream task) involves training the networks for a minimum of 100 epochs. The learning rate is set to 0.001, and a learning rate on plateau reduction scheduler is used with a patience of 10 epochs. The networks are trained on a single GPU, which could be a Tesla V100, A100, or A30, with a batch size of 2.

A. Qualitative assessment of the pre-training

This section presents an analysis of U-BARN's performance on the pre-training task. To evaluate the effectiveness of U-BARN on this task, we examine some reconstructed patches U -BARN 0.6mr from the unlabeled validation set, as shown in Fig. 8. The results demonstrate that U-BARN is able to reconstruct the temporal evolution of masked continuous blocks of dates (e.g., DOY 72 to 102 and 142 to 175 in Figure 8). Therefore, we consider that U-BARN can successfully learn the temporal dynamic of the SITS during pre-training. Furthermore, Fig. 8 also shows that U-BARN reconstructs ground surface reflectances of cloudy patches (see DOY 102, 115 and 142). This result can be explained by the fact that the reconstruction of cloudy patches is not forced in the loss function (see Eq. 3). Following [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF], we assume that the model learns that cloudy pixel values can be interpreted as outliers in the temporal profile. Under this situation, the network learns how to ignore their values for the patch reconstruction. Overall, our observations of U-BARN's performance on the pretext-task provide evidence that pre-training is successful, as U-BARN is able to effectively solve the pretext-task.

B. Classification performances on PASTIS and MultiSenGE data-sets

The classification performances on both labeled data-sets obtained by the above described training scenarios are compared here. The two downstream tasks differ on two main points. First, in the MultiSenGE data-set has a dense semantic labeling, while in PASTIS all pixels which do not belong to a known crop are not classified. Therefore, we assume that the spatial context should be better captured to successfully achieve the MultiSenGE labeling. However, we assume that to distinguish the 18 crops classes of PASTIS, compared to the 14 land cover classes, more complex temporal features are required. The U-BARN model is pre-trained on the unlabeled data-set with the proposed generative pre-text task strategy. The pre-training stage considers a masking rate equal to 60% which is justified by the results described in Section V-D. Four different classification metrics are used to evaluate the quality of the obtained results : Cohen Kappa, overall accuracy (OA), F1 score and mean Intersection over union (mIoU). The two latter metrics are averaged per classes and not per pixel as the overall accuracy. As we proceed to 5-fold training with PASTIS, mean and standard deviation of the classification metrics are given each time. For MultiSenGE downstream task, models are trained with two different seeds for each configuration. The overall results comparing the different training scenarios are reported in Table IV for PASTIS and Table VI for MultiSenGE. To bring detailed information on the classification of each class in the unbalanced data-sets, the F1-score per class is also given in Table V Table VII. Eventually, on PASTIS data-set, the confusion matrix, from U-BARN FR and FC-SC, are shown in Fig. 9 and example of the segmentation maps produced by the different networks is displayed in Fig. 10. Supplementary results over MultiSenGE data-set are available in Appendix C.
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U BARN FR

2) Fine-tuning U-BARN FT : The fine-tuning configuration has two different behaviors depending on the downstream task. First, the global classification metrics on PASTIS presented in Table IV and the F1-score per class in Table V show that there is little difference between the performances of U-BARN e2e and U-BARN FT . It appears that fine-tuning does not lead to any improvement in classification performance. We conjecture that the number and diversity of training labels available in the PASTIS data-set are sufficient to train the U-BARN e2e model. This assumption is later investigated in Section V-C, where the classification performances of both U-BARN models are compared in scenarios with scarce reference data.

However, for the dense land cover segmentation task, finetuning seems to improve the performances. We could first suppose that the pre-training task is more adapted to learn features suitable for land cover classification. Another possibility is that MultiSenGE data set does not have enough data to solve this complex dense land cover classification task. Therefore, pretraining the U-BARN on a large and diverse unlabeled data-set might help to extract meaningful spatio-temporal features.

3) U-BARN architecture: The U-BARN backbone network can be evaluated by comparing the metrics obtained by supervised U-TAE and U-BARN e2e models. The results on PASTIS data-set in Table IV and Table V reveal close performances for both models. U-BARN e2e has a significantly higher F1 score and mIoU. Looking more specifically at the F1 score per class, we notice that the performances slightly vary depending on the type of crop, as shown in Table V. Eventually, as shown by the segmentation maps Fig. 10, U-TAE retrieve slightly worse edges than U-BARN e2e . Contrary to our expectations, we did not find that on a crop classification task U-BARN e2e totally surpass U-TAE. A reasonable explanation is that attention at full spatial resolution is not an important asset in the PASTIS crop classification task. In the PASTIS data-set, small crops labels are discarded and considered as background, resulting in no assessment of segmentation of small items. Additionally, it must be noted that the metrics found differ from those found in the original UTAE study [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF]. This can be explained by the fact that we use only a part of the test data-set: a centered crop of 64 × 64 instead of the whole 128 × 128 pixels. The results slightly differ on MultiSenGE dense segmentation task. As shown in Table VI, the U-BARN e2e outperforms U-TAE on all classification metrics. Thus, for dense segmentation task, U-BARN e2e attention at full spatial resolution might be more advantageous. As a conclusion, the overall results show that training the U-BARN architecture by using an end-to-end supervised task has better performances than the U-TAE [START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] on both downstream tasks. While the gain of performances is modest for crop classification, it is more pronounced on dense land cover segmentation.

C. Impact of the amount of training data on fine-tuned U-BARN models

In spite of satellite data being now available in abundance, ground truth reference labels remain scarce and costly to obtain. As demonstrated in [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF], the performance gap between pre-trained SITS-Former and end-to-end trained models increases as the number of training labels decreases. Therefore, a similar experiment conducted on the PASTIS data-set is presented here. The goal is to compare the performances of U-BARN FT , U-BARN e2e and U-TAE models by reducing the size of the training data-set. In this experiment, U-BARN FT is pretrained with a masking rate of 60%. As previously mentioned, the PASTIS data-set is divided into five folds. To simulate label scarcity, for each of the five experiments, we have randomly selected N SIT S patch time series from the three folds assigned to the training set. However, the PASTIS data-set exhibits a strong class imbalance. To ensure that all classes are present in the generated reduced training data-sets, the random selection of the patch time series follows the specific protocol detailed in Appendix B. Due to the small size of the resulting data-set, we have generated five smaller training data-sets, each composed of N SIT S SITS, for each training experiment. Finally, in this experiment, due to K-Fold training, we have conducted 25 trials to assess the performance of a pre-trained model with a training data-set composed of N SIT S . The different trials are used to compute the means and standard deviations of the classification metrics for the different models. Fig. 11 plots the metrics as a function of the number of training labels. With a training data-set composed of 30 patch time series, U-BARN FT has a significantly higher mIoU and Kappa than U-BARN e2e . The fine-tuning is therefore effective to boost performance when training with a reduced number of labels. Besides, on the 4 classification metrics with N SIT S lower or equal to 100, U-BARN FT and U-BARN e2e outperform the U-TAE. We assume that because the U-TAE computes temporal attention at a low spatial resolution, the attention mechanism processes fewer pixel time series than the U-BARN, and therefore is less competitive. On all the classification score curves, we see a similar trend: the gap between the U-BARN FT , U-TAE and U-BARN e2e performances reduces when N SITS increases. These experiments corroborate previous results from SITS-Former [START_REF] Yuan | Sits-former: A pretrained spatio-spectral-temporal representation model for sentinel-2 time series classification[END_REF]; as the number of samples increases, the performance gain, obtained thanks to pre-training, decreases. This experiment highlights the effectiveness of our approach in real-world scenarios with limited training labels.

D. Influence of the masking rate

Theoretically, the quality of the learned representations tends to improve when the pretext task becomes harder to solve (see Section II-B). Therefore, the experiment carried out here aims to investigate if a higher masking rate creates a harder and more meaningful pre-training task that can retrieve deeper feature information. However, if this rate is set too high, the corrupted time-series become meaningless, making the task unsolvable. In this regard, we compared the performance of U-BARN FR pre-trained with different M rate values using the previously described classification metrics. The obtained results are shown in Fig. 12 and exhibit two local maximum for M rate equals to 30 and 60%. This observation could be explained by the double effect of varying the masking rate in the pre-training. As the masking rate increases, the number of "valid" dates used to reconstruct the corrupted patches diminishes, and the reconstruction loss during pre-training is applied to more patches during each optimization step. Eventually, we consider that best performances are reached with M rate 60%. This also suggests that the 15% masking rate proposed in NLP for BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] may not be optimal for pre-training our spatio-temporal architecture with SITS. Additionally, results show that a masking ratio greater than 80% causes a significant drop in classification performances, indicating that the pretext-task might have become too difficult for training purposes.

E. Study of computational efficiency

The size of the various configurations as well as their training and inference times are compared in this section. First, Table VIII indicates, the number of trainable weights, the total number of weights, and the model size in MB. In addition, Table IX indicates the time of a training step, and an inference step. Time measures have been scaled by the FC-SC validation step time. Specifically, this table presents the median time to process a random input of dimension (b,t,c,h,w), with b=2, t=40,c=10,h=64,w=64 over 100 trials. These training and validation steps were executed on a single GPU. U-BARN e2e is slightly bigger, in number of weights, than the U-TAE, as U-BARN has more Transformer layers than the U-TAE and a different attention mechanism. However, U-BARN training and validation steps are 4 times slower than the U-TAE. Indeed, by computing attention at a low spatial resolution in the U-TAE, it drastically reduces the number of operations in the attention mechanism. Then, as expected, using the frozen configuration enables to drastically reduce the number of trainable weights, which decreases training time compared to U-BARN e2e and U-BARN FT . 

VI. CONCLUSION

This paper proposes a novel self-supervised methodology for learning spatio-temporal representations from satellite image time series. The U-BARN architecture combines the strengths of Unet and Transformer to extract informative and discriminative features from unlabeled data-sets. We have assessed our network performances on two different segmentation scenarios: crop (PASTIS) and dense land cover (Mul-tiSenGE). Compared to U-TAE, which is the current spatiotemporal baseline, U-BARN computes temporal attention at a full spatial resolution. In this study, we demonstrate that the designed spatio-temporal architecture of the U-BARN is relevant as it outperforms the U-TAE on both downstream tasks. Although our architecture is less computationally efficient than the U-TAE, we have shown that this new design is more suitable to extract complex spatio-temporal features adapted for various tasks. Additionally, we introduce a BERT-inspired pretext task for pre-training U-BARN to reconstruct masked patches from a patch time series. We present here a new may to corrupt the patches as well as investigate on the suitable masking rate. We then assess the quality of the learned feature by studying two ways of using the pre-trained U-BARN weights: either frozen or fine-tuned. First, we demonstrate that the frozen and pre-trained U-BARN representations contain meaningful information for crop and land cover classification. Additionally, the fine-tuned U-BARN FT significantly outperforms both U-TAE and non-pre-trained U-BARN e2e for dense land cover segmentation. On crop segmentation, U-BARN FT exceeds both U-BARN e2e and U-TAE performances when the number of labeled samples is low. However, the gain in classification performance decreases with an increase in labeled samples. Eventually, our results also indicate that the percentage of patches masked during the pre-training task has a significant impact on the classification performance. With our pre-training task, we suggest using a masking rate of 60% with U-BARN.

We are aware that compared to U-TAE, U-BARN is less computationally efficient. We assume that further researchs should be pursued to reduce the number of operations of our architecture, while keeping temporal attention at a high spatial resolution. Then, although our results are promising, further investigations should be conducted on masked auto-encoders for SITS. Indeed, although we have stressed the importance of the masking rate value, we have not explored the influence of the masking value. Moreover, the use of asymmetric encoderdecoder architecture as proposed on [START_REF] He | Masked autoencoders are scalable vision learners[END_REF], which avoids the use of [MASK] token in the encoder, should be explored. However, we believe that to extract complex spatio-temporal features, other pre-training tasks should also be studied to perform multitask pre-training. Given the important gap between our fully-supervised configuration U-BARN e2e and the frozen pretrained U-BARN FR , we believe that masking solely on the temporal dimension is also not sufficient to extract complex spatio-temporal features. Specifically, we presume that the current pre-training task does not adequately incorporate spatial features. Therefore, combining the temporal masking strategy with a spatial self-supervised strategy, may be a promising direction to improve classification performances. Additionally, the temporal dimension of the learned representation is the same as the input time series. In the case of irregularly sampled time series, the classifier in the downstream task needs to be able to manage this kind of data. Moreover, the usual solutions (interpolation, gap-filling, or temporal reduction) may lead to a loss of information. To address this limitation, we suggest altering the network to achieve a fixed temporal sampling. Besides, a latent space with fixed-dimension is easier to analyze and interpret. Finally, we plan to apply this architecture to other downstream tasks and extend our selfsupervised scheme to multi-modal data. A probability p Pi to draw the patch is computed on each patch (see Eq. 5 ). This probability increases with the number of pixels belonging to scarce classes in the patch. More precisely, the following protocol is established:

1) A score s k , is computed . s k = α × 1
n k is inversely proportional to the total number n k of pixels from the class k in the selected training data-set, α is a normalization constant so αΣ k s k = 1.

2) For each patch P i , the sum of the number of elements in the patch (n Pi k ) from the class k, is weighted by the previously computed class probability s k . The resulting score is then normalized by the total number of pixels belonging to the K classes in the patch. Eventually, the constant Λ is used, so the sum of p Pi equals to 1.

p Pi = Σ k n Pi k * s k Σ k n Pi k × Λ (5) 
3) For each patch, we attribute disjoint interval contained in [0,1), of length equal to the patch probability 

Figure 1 .

 1 Figure 1. Left: Description of the proposed SSL strategy using BERT. Right: Description of how representations are used for the downstream semantic segmentation task.

Figure 2 .

 2 Figure 2. Left: Overview of the patch embedding. A spatial-spectral encoder (SSE) embeds each patch into a (h, w, d model ) feature map. A positional encoding is added on the resulting feature maps. Right: Detailed description of the SSE architecture.

Figure 3 .

 3 Figure 3. Overall architecture of the spectro-temporal encoder. The Transformer processes pixel-level time series.

Figure 4 .

 4 Figure 4. Left: Description of the multi-head self-attention mechanism on a sequence of dimension (t,d model ). Right: Scaled-dot product on time series.

Figure 5 .

 5 Figure 5. Description of the proposed self-supervised strategy. A percentage Mrate of the feature maps encoded by the SEE are masked. U-BARN is trained to reconstruct the previously corrupted patch. The reconstruction loss is computed on the valid pixels, given by the binary mask M valid associated to the masked patch.

1 )

 1 Masking strategy: Two parameters are required for the masking process: the percentage of data to be masked and the masking values used to substitute original embedding representations. Given an input time series, M rate corresponds to the percentage of masked timestamps to be reconstructed. To increase the diversity of training samples, the masked timestamps are drawn randomly for each time series and vary at each training epoch. The masking values used to corrupt the data can introduce outliers or unrealistic values that do not exist in downstream tasks. This phenomenon, known as distribution shift, is prevented in U-BARN masking strategy.

2 ( 3 )

 23 IV. EXPERIMENTAL SETUPFirst, the three Sentinel 2 L2A data-sets used in our different experiments are presented: the unlabeled large scale dataset used for pre-training U-BARN and the two downstream labeled data-sets: PASTIS and MultiSenGE.

Figure 6 . 1 )

 61 Figure 6. Description of the S2 data-sets used for pretext and downstream tasks. The unlabeled data-set for pre-training is composed of two disjoint data-sets: training (tiles in blue) and validation (tiles in red). S2 tiles in the labeled data-sets are shown in green and black respectively for PASTIS and MultiSenGE. 1) Large-scale unlabeled pre-training data-set: The data set is composed of 13 tiles acquired by S2 over France. The corresponding validity masks (non-corrupted pixels) are built by considering edge, saturation and cloud information. As previously explained, the information contained in validity masks is incorporated in the reconstruction loss of the pretext task. Geographical variability between training and downstream task is enforced by using disjoint tile sets between the PASTIS data-set and the unlabeled data-set, as shown in Fig. 6. We have more diverse pre-training data-set, compared to that of the SITS-Former [18] data-set, which is only composed of SITS from 3 S2 tiles from 2018 or 2019. The U-BARN pre-training is performed by considering 9 different S2 tiles acquired from 2018 to 2020. In each of these tiles, 10 smaller regions of interest (ROIs) of size 1024 × 1024 are randomly selected. The disjoint validation data set is composed by the 4 remaining S2 tiles acquired from 2016 to 2019. For each year, 10 patch time series, of spatial dimension (64× 64) are extracted from each of the 4 tiles and used to tune the hyper-parameters. The validation data-set is used to select the best model weights, which are then used for the PASTIS downstream task. A more exhaustive description of the unlabeled data-set is given in Table I

Fold

  

Figure 8 .

 8 Figure 8. Example of a patch (from the validation data-set) reconstruction achieved by U-BARN during pre-training. Only a part of the SITS is displayed. DOY of each patch are indicated. [MASK] indicates that the embedded patch was corrupted (see Section III-B1). The top row is the input SITS, and the bottom row corresponds to reconstructions produced by U-BARN. During this pretraining the Mrate equals 60%.

Figure 9 .Figure 10 .

 910 Figure 9. Confusion matrices on the PASTIS segmentation task. On each confusion matrix, rows correspond to true label and columns to predictions. The matrices are normalized per row. The correspondence between PASTIS classes and the confusion matrix index is the following: {0: Meadow, 1: Soft winter wheat, 2: Corn, 3: Winter barley, 4: Winter rapeseed, 5: Spring barley, 6: Sunflower, 7: Grapevine, 8: Beet, 9: Winter triticale, 10: Winter durum wheat, 11: Fruits, vegetables, flowers, 12: Potatoes, 13: Leguminous fodder, 14: Soybeans, 15: Orchard, 16: Mixed cereal, 17: Sorghum}

Figure 11 .Figure 12 .

 1112 Figure 11. Evolution of the Kappa, OA, F1, and mIoU scores as a function of the number of SITS in the training data-set PASTIS for different SITS classifiers: U-BARN FT -SC, U-BARN e2e -SC and UTAE

Figure 13 .Figure 14 .

 1314 Figure 13. Down Block description

Table II OFFICIAL 5 -

 II5 FOLD CROSS VALIDATION SCHEME GIVEN BY[START_REF] Garnot | Panoptic segmentation of satellite image time series with convolutional temporal attention networks[END_REF] 

Table III DESCRIPTION

 III OF THE LAND COVER CLASSES USED IN MULTISENGE[START_REF] Wenger | Multisenge: a multimodal and multitemporal benchmark dataset for land use/land cover remote sensing applications[END_REF].

	Original level 1 typology	New level 3 typology
	Urban areas	Dense Built-Up
		Sparse Built-Up
		Specialized Built-Up Areas
		Specialized but Vegetative Areas
		Large Scale Network
	Agricultural areas	Arable Lands
		Vineyards
		Orchards
		Grasslands
		Groces, Hedges
	Forest and semi-natural areas Forest
		Open Spaces, Mineral
	Wetlands	Wetlands
	Water Surfaces	Water Surfaces

Table IV CLASSIFICATION

 IV METRICS AVERAGE AND STANDARD DEVIATION OVER PASTIS K-FOLDS FOR DIFFERENT SITS ENCODERS

		Kappa	OA	F1	mIoU
	FC-SC	0.738 ± 0.018 0.793 ± 0.015 0.509 ± 0.036 0.401 ± 0.028
	U-BARN FR	0.790 ± 0.011 0.832 ± 0.010 0.618 ± 0.017 0.501 ± 0.015
	U-BARN FT	0.892 ± 0.011	0.912 ± 0.009	0.816 ± 0.018	0.713 ± 0.022
	U-BARN e2e	0.893 ± 0.010	0.913 ± 0.008	0.820 ± 0.013	0.716 ± 0.017
	U-TAE	0.883 ± 0.012	0.906 ± 0.009 0.803 ± 0.023 0.696 ± 0.027
			Table V		
	F1 SCORE PER CLASS ON PASTIS DATASET FOR DIFFERENT SITS ENCODERS
		FC-SC	U-BARN FR	U-BARN FT	U-BARN e2e	U-TAE
	Meadow	0.888 ± 0.011 0.904 ± 0.006	0.945 ± 0.007 0.945 ± 0.007	0.939 ± 0.007
	Soft winter wheat	0.850 ± 0.016 0.875 ± 0.009	0.940 ± 0.008 0.940 ± 0.010	0.936 ± 0.008
	Corn	0.903 ± 0.010 0.920 ± 0.007	0.962 ± 0.005 0.964 ± 0.004	0.960 ± 0.006
	Winter barley	0.628 ± 0.037 0.808 ± 0.037	0.930 ± 0.018 0.931 ± 0.017	0.923 ± 0.019
	Winter rapeseed	0.900 ± 0.017 0.901 ± 0.021	0.963 ± 0.008 0.962 ± 0.009	0.961 ± 0.012
	Spring barley	0.255 ± 0.058 0.626 ± 0.086	0.779 ± 0.068 0.788 ± 0.053	0.768 ± 0.049
	Sunflower	0.511 ± 0.052 0.647 ± 0.037	0.871 ± 0.025 0.862 ± 0.014	0.860 ± 0.007
	Grapevine	0.720 ± 0.033 0.790 ± 0.027	0.916 ± 0.013 0.916 ± 0.006 0.905 ± 0.016
	Beet	0.855 ± 0.018 0.905 ± 0.016	0.958 ± 0.027 0.963 ± 0.019	0.953 ± 0.026
	Winter triticale	0.020 ± 0.012 0.211 ± 0.046	0.677 ± 0.051 0.688 ± 0.042	0.683 ± 0.043
	Winter durum wheat	0.605 ± 0.043 0.707 ± 0.027	0.827 ± 0.026 0.821 ± 0.032 0.798 ± 0.034
	Fruits, vegetables, flowers 0.294 ± 0.094 0.409 ± 0.059	0.721 ± 0.057 0.727 ± 0.040	0.697 ± 0.079
	Potatoes	0.245 ± 0.175 0.533 ± 0.077	0.748 ± 0.050 0.734 ± 0.064	0.704 ± 0.105
	Leguminous fodder	0.332 ± 0.094 0.307 ± 0.051	0.643 ± 0.060 0.646 ± 0.062	0.607 ± 0.057
	Soybeans	0.706 ± 0.086 0.797 ± 0.012 0.937 ± 0.015	0.948 ± 0.009 0.938 ± 0.013
	Orchard	0.281 ± 0.055 0.580 ± 0.051	0.775 ± 0.047 0.782 ± 0.032	0.761 ± 0.042
	Mixed cereal	0.112 ± 0.063 0.079 ± 0.021	0.545 ± 0.055 0.563 ± 0.035	0.528 ± 0.062
	Sorghum	0.065 ± 0.070 0.123 ± 0.105	0.558 ± 0.089 0.569 ± 0.048	0.541 ± 0.064
			Table VI		
	CLASSIFICATION METRICS OVER MULTISENGE FOR DIFFERENT SITS ENCODERS. CLASSIFICATION METRICS ARE AVERAGED ALONG TWO TRAININGS
		CONDUCTED WITH DIFFERENT SEEDS	
		Kappa	OA	F1	mIoU
	FC-SC	0.766 ± 0.001 0.838 ± 0.001 0.323 ± 0.001 0.254 ± 0.001
	U-BARN FR	0.772 ± 0.001 0.842 ± 0.001 0.356 ± 0.001 0.278 ± 0.002
	U-BARN FT	0.855 ± 0.001	0.898 ± 0.001	0.506 ± 0.001	0.421 ± 0.001
	U-BARN e2e	0.851 ± 0.001 0.895 ± 0.000 0.492 ± 0.003 0.407 ± 0.002
	UTAE	0.832 ± 0.011 0.883 ± 0.007 0.426 ± 0.033 0.353 ± 0.030

Table VII F1

 VII SCORE PER CLASS ON MULTISENGE DATASET. CLASSIFICATION METRICS ARE AVERAGED ALONG TWO TRAININGS CONDUCTED WITH DIFFERENT

Table IX COMPARISON

 IX OF TRAINING AND VALIDATION TIME BETWEEN U-BARN CONFIGURATIONS AND U-TAE. TIME MEASURES HAVE BEEN SCALED BYFC-SC VALIDATION STEP TIME.

		Table VIII		
	COMPARISON OF U-BARN CONFIGURATIONS AND U-TAE WEIGHTS SIZE
	Model Name	Trainable weights Total weights Size in (MB)
	U -T AE	1086969	1086969	4.35
	U -BARN e2e	1122323	1122323	4.49
	F C -SC	14547	14547	0.06
	U -BARN F R	13843	1122323	4.49
	U -BARN F T	1122323	1122323	4.49
	Model Name	Training step time Validation step time
	F C -SC		4	1
	U -T AE		16	15
	U -BARN F R	60	57
	U -BARN e2e	66	57
	U -BARN F T	66	57

  We draw N SIT S random numbers between [0,1). The patches which contains these random numbers constitute this tiny training data-set.

						4) APPENDIX C
						MULTISENGE SUPPLEMENTARY RESULTS
			Table XI		
	ARCHITECTURAL HYPER-PARAMETERS OF THE TRANSFORMER
	N layers	N head	attn dropout	dropout d model	d hidden
	3	4	0.1	0.1	64	128

https://src.koda.cnrs.fr/iris.dumeur/ssl_ubarn

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing. RobustScaler.html

https://pytorch.org/vision/main/generated/torchvision.transforms. CenterCrop.html

https://www.datagrandest.fr/portail/fr/tags/ocs-ge2

https://geoservices.ign.fr/documentation/donnees/vecteur/bdtopo
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