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Self-Supervised Spatio-Temporal Representation
Learning Of Satellite Image Time Series
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Abstract—In this paper, a new self-supervised strategy for
learning meaningful representations of complex optical Satel-
lite Image Time Series (SITS) is presented. The methodol-
ogy proposed, named U-BARN, a Unet-BERT spAtio-temporal
Representation eNcoder, exploits irregularly sampled SITS. The
designed architecture allows learning rich and discriminative
features from unlabeled data, enhancing the synergy between
the spatio-spectral and the temporal dimensions. To train on
unlabeled data, a time series reconstruction pretext task inspired
by the BERT strategy is proposed. A Sentinel-2 large-scale
unlabeled data-set is used to pre-train U-BARN. To demonstrate
its feature learning capability, representations of SITS encoded
by U-BARN are then fed into a shallow classifier to generate
semantic segmentation maps. Experimental results are conducted
on a labeled data-set (PASTIS). Two ways of exploiting U-BARN
pre-training are considered: either U-BARN weights are frozen or
fine-tuned. The obtained results demonstrate that representations
of SITS given by the frozen U-BARN are more efficient for land
cover classification than those of a supervised-trained linear layer.
Then, we observe in scenarios with scarce reference data that
the fine-tuning brings a significative performance gain compared
to fully-supervised approaches. We also investigate the influence
of the percentage of elements masked during pre-training on
the quality of the SITS representation. Eventually, semantic
segmentation performances show that the fully supervised U-
BARN architecture reaches slightly better performances than the
spatio-temporal baseline (U-TAE).

Index Terms—Satellite Image Time series (SITS), Transformer,
Self-Supervised Learning, Spatio-Temporal Network, Unet, Rep-
resentation Learning

I. INTRODUCTION

Over the last decade, the Satellite Image Time Series (SITS)
acquired by the Sentinel-2 (S2) mission has produced a large
amount of multi-spectral land surface imagery with a high 5-
day revisit rate. The high spectral, spatial, and temporal resolu-
tions of SITS capture physical measurements of temporal and
spatial variations of the surface, making them crucial data for
Earth monitoring [1],[2], [3]. Deep learning (DL) holds a great
potential for automatically extracting features from spatio-
temporal remote sensing data [4], [5]. Nonetheless, there are
still significant challenges that DL architectures face in dealing
with the particularities of SITS, which are non-stationary,
multi-variate, and irregularly sampled. Data gaps induced by
cloud contamination and data quality issues lead to a signif-
icant lack of information between optical valid acquisitions.
In addition, undetected clouds can produce misleading results
in land surface analysis. Besides the challenges associated
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with complex satellite data, DL methodologies in large-scale
remote sensing applications face a major bottleneck. The
limited availability and quality of the labeled data restrain the
training of deep complex models. Over the past few years, self-
supervised learning (SSL) has emerged as a potential solution
to mitigate or even eliminate the need for costly collection
of labeled data-sets [6]. This strategy enables the pre-training
of deep models on large unlabeled data-sets for later fine-
tuning a shallow network on a downstream task. Therefore,
self-supervised pre-training methods can be a solution for
applications collecting small labelled data-sets, where deep
models cannot be trained from scratch.
Recent reviews [7],[6] have highlighted the great opportunities
of self-supervised learning for remote sensing applications.
Despite proposing different taxonomies, these studies agree
that most of the proposed methods are based on discrimi-
native models. In contrast, generative models such as GAN
[8] and variational auto-encoders [9] that learn the latent
distribution generating the input data have been less stud-
ied. This can be explained by the fact that latent variables
capturing the distribution of observed variables cannot guar-
antee generalization capabilities for downstream tasks [10].
Among discriminative self-supervised learning studies, two
main categories have been identified: contrastive approaches
and methodologies using pretext tasks. Contrastive learning
methods rely on data augmentation techniques that apply
multiple transformations to the data without affecting their
semantics. Although augmentation techniques have been de-
fined for single satellite images as [11], [12], the augmentation
of multi-spectral time series is not trivial. For this reason,
existing contrastive methods exploiting Sentinel data mainly
focus on optical and radar data, treating each modality as
a distinct augmentation of the same object. For example,
[13] processes pairs of single S1 and S2 images, while [14]
handles pairs of S1,S2 SITS. However, it should be noted
that this latter contrastive approach on SITS to pre-train deep
architectures is not unsupervised, as classification labels are
utilized to generate positive and negative samples required
for the contrastive loss. Consequently, self-supervised training
strategies based on pretext tasks are preferred on temporal
data. This approach involves defining a task that can be solved
using the input data alone, without the need for explicit labels.
By generating a supervised learning strategy through pretext
tasks, meaningful features can be extracted from the data. As
an example, generative-based pretext tasks attempt to learn the
structure of the data by posing a reconstruction task to recover
the features and information of the data itself. For instance,
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BERT [15] aims to recover masked words, and MAE [16]
recovers masked pixels of images. Despite generative-based
pretext tasks being one of the most promising strategies to
exploit complex SITS, only two recent works are proposed
in the literature [17] [18]. This can be explained by the
strong challenges associated with : (i) the design of network
architectures exploiting the complex SITS, and (ii) the pretext-
task definition, ensuring that the learned representations are
useful for downstream applications.
Considering all the above, this paper presents a novel self-
supervised learning method for capturing meaningful repre-
sentations of complex optical Satellite Image Time Series.
The proposed methodology, named U-BARN, proposes a self-
supervised learning strategy to learn a Unet-BERT spAtio-
temporal Representation eNcoder. The first important contri-
bution is the design of a new DL architecture that captures the
spatio-temporal information contained in irregularly sampled
multi-variate SITS. The spatial, spectral and temporal dimen-
sions of the data are handled by the combination of Unet and
Transformer architectures. Instead of using a traditional CNN
[18], a Unet architecture is proposed to embed the spatio-
spectral information by exploiting different spatial resolutions.
By preserving the spatial input data dimensions, the Unet
leads to highly efficient inference times. Compared with the
most recent supervised end-to-end architecture [19], U-BARN
proposes to apply temporal attention mechanisms at high
spatial resolution, to capture more precise spatio-temporal in-
formation. The second significant contribution of this study is
the self-supervised training of U-BARN which allows learning
high-quality latent representations without requiring annotated
data. Based on BERT [15], a generative pretext-task masking
strategy is proposed. The general framework presented in this
work is summarized in Fig. 1. On the left, we show the main
blocks describing the backbone network of U-BARN, which is
described in Section III-A. On the right, the use of pre-trained
U-BARN in the semantic segmentation downstream task is
illustrated.

Figure 1. Left: Description of the proposed SSL strategy using BERT. Right:
Description of how representations are used for the downstream semantic
segmentation task.

To evaluate the performance of the proposed U-BARN

architecture and the self-supervised training strategy, we con-
duct several experiments using the semantic segmentation
downstream task defined by the labeled PASTIS data-set [19].
First, the pre-trained U-BARN segmentation performances are
compared with two end-to-end trained architectures (U-TAE
and U-BARN). Then, the usefulness of U-BARN is assessed
by conducting several experiments on real-world scenarios
suffering from scarce reference data. Lastly, to evaluate the
impact of the pretext task, different experiments are carried
out to study the influence of the complexity of the pre-training
task on the quality of the spatio-temporal representations. The
remainder of the paper is organized as follows: (i) a presen-
tation of current state-of-the-art spatio-temporal architectures
for SITS and existing SSL strategies are presented in Section
II, (ii) a detailed description of our methodology is given
in Section III, (iii) an explanation of the experimental setup
is detailed in Section IV, (iv) the results obtained from the
different experiments are presented in Section V, and finally,
conclusions are drawn in Section VI.

For reproducibility, the large unlabeled S2 L2A data-set
used to pre-train U-BARN [20] as well as the code1 are
available.

II. RELATED WORKS

This section reviews: (i) the existing DL spatio-temporal
architectures proposed to exploit SITS in a supervised way
and (ii) SSL methods using pretext-tasks for temporal data.

A. Deep spatio-temporal architectures for SITS

Spectro-temporal patterns from multi-temporal data provide
the most essential information to characterize land cover
classes. For this reason, the earlier DL architectures exploiting
recent SITS have not considered the spatial dimension of the
data. For instance, TempCNN [21], which applies convolution
on the temporal dimension, or Recurrent Neural Networks
[22], [23], [24], [25], [26] which retain past timestamps
information in memory, have been proposed. Although these
architectures can outperform traditional approaches such as
Random Forest [27], existing literature [28], [29], [30], has
corroborated that better results could be obtained by also
considering the spatial dimension. This is due to the fact
that high-level spatio-temporal features allow the detection
and discrimination of closely resembling spectral signatures.
Convolutional Neural Networks (CNN) exploiting the spatial
domain of SITS have been typically combined with temporal
networks. For instance, the combination of CNN and RNN is
proposed in [30], where the ReCNN architecture is introduced.
The proposed network marries CNNs and RNNs as separate
layers and the CNN output is injected as the input to an
RNN. Other CNN and RNN combinations are proposed in
[28] [29]. Both studies propose an architecture composed of
two parallel branches aiming to independently extract spatial
and temporal features. After the feature extraction step, the
results of both branches are concatenated and injected in a
fully connected network to predict the final class. In M3-fusion

1https://src.koda.cnrs.fr/iris.dumeur/ssl_ubarn
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[28], the architecture proposes the fusion of Sentinel-2 (S2)
pixel time series with Spot 6/7 VHSR patch images centered
on the pixel of the time series. Features from temporal data
are extracted by applying a RNN architecture whereas spatial
features are learned by a CNN network applied on a high
spatial-resolution 25× 25 patch image. Although two parallel
branches are also proposed in Duplo [29], this architecture
exploits temporal S2 patches with a spatial dimension of 5×5
on both branches. The temporal branch uses a shallow CNN
to reduce the spatial dimension to 1 before applying Gated
Recurrent Units. The independent spatial branch processes the
temporal S2 patches by a more complex CNN architecture.
This last study demonstrates that the combination of both
network branches outperforms either CNN or RNN trained
individually. However, the combined CNN-RNN architectures,
[29], [28], [30] suffer from significant limitations when applied
to SITS: (i) a narrow spatial neighborhood is considered,
with a square patch width of only 50 meters (ii) inference
is costly, since only the class of the center pixel within the
patch is predicted. Alternative spatio-temporal architectures
apply 3D CNN to learn the local temporal features along with
the spatial ones [31] [32]. These latter architectures process
inputs with wider spatial dimensions, and in particular [31]
fully convolutional architecture is efficient for segmentation
map prediction. However, only short temporal dynamics of
the time series are learned by such architectures.
Additionally, the use of the aforementioned temporal archi-
tectures on SITS suffer from important weaknesses. First,
RNN and TempCNN do not handle irregularly sampled time
series, which implies that all SITS are first resampled to a
common gap-free temporal grid. Secondly, long-term temporal
dependencies are not fully captured, whereas correlation in
temporal information between the beginning and the end of
the annual SITS can be important.
To overcome the limitation of TempCNN and RNN archi-
tectures, the work in [33] propose to apply the Transformer
network [34] in the spectro-temporal domain to classify S2
time series. This architecture (see Section III-A2) is applied
on individual S2 pixel time series to extract spectro-temporal
features for crop classification. Thanks to its attention layers
and positional encoding, this architecture allows capturing
relations between all the elements of a sequence and process ir-
regular time series. The Transformer architecture also demon-
strates cloud-robustness [33] compared to other architectures
such as Duplo [29] and TempCNN [21]. The study in [33]
shows that the Transformer is capable of identifying cloudy
dates as outliers with low attention score. Recently, several
transformer-based models are proposed for tackling SITS
classification capturing temporal [17], [35], [36], [37], and
spatio-temporal features [18], [19]. First, temporal approaches
as [35][36] propose different solutions to reduce the high com-
putational complexity of the classical Transformer network
[34]. Both spectro-temporal models simplify the architecture
by reducing the number of operations required to compute the
attention score. The modified transformer, TAE described in
[35] proposes to compute a unique master query to squeeze
each individual pixel time series into a single embedding in
the time dimension, which summarizes the global temporal

information. A simplified version of TAE [35] is proposed
by L-TAE [36], where the master query is set as a network
parameter. This last architecture outperforms TempCNN [21],
[33], as well as architectures with RNN, Conv-LSTM [38] and
Conv-GRU [39]. As the altered attention mechanism focuses
on global attention, [37] proposes a two branch temporal
network GL-TAE, where the LTAE and the Lightweight con-
volution networks (LConv) respectively compute global and
local attention. TAE, LTAE and LConv mechanisms squeeze
the temporal dimension of the time series to 1, preventing the
succession of multiple temporal encoder layers. To leverage
the spatio-temporal dimensions of SITS, the SITS-Former
[18] combines a three-dimensional CNN with a traditional
Transformer. However, similarly to [29], [28], [30], a narrow
spatial-context (i.e. patch size of 5 × 5 pixels) is considered
and only the pixel at the center of the patch is classified.
Alternatively, the U-TAE network [19] combining the L-TAE
with a Unet network [40] has been recently proposed. The
use of a Unet offers some advantages with respect to classical
CNN architectures. By using contracting and expansive paths
with skip connections between them, Unet features enable
more accurate localization. Besides, larger receptive fields
can be obtained by increasing the Unet depth, which allows
extracting more context-rich spatial relationships. The U-TAE
network [19] proposes to incorporate the L-TAE network
within the Unet bottleneck. Although this choice considerably
reduces the method’s computational complexity, it implies
that the temporal attention is only computed at the coarsest
spatial resolution. Consequently, the ability to model temporal
patterns can be reduced due to the encoder output resolution,
which can lead to less accurate results.
Consequently, our proposed methodology, U-BARN, combines
a Unet with a Transformer to capture rich and wide spatial
and temporal correlations. The temporal attention mechanism
is computed at a full spatial resolution. Therefore, our network
produces embeddings which contain rich temporal information
at the spatial resolution of the original data, which is expected
to benefit downstream tasks like semantic segmentation.

B. Using self-supervised pretext tasks for temporal data

Self-supervised pre-training for sequence data has become
hugely popular in Natural Language Processing (NLP). Most
of existing techniques have used predictive or generative
pretext tasks to capture temporal patterns from the data itself.
Predictive strategies have proposed temporal shift prediction
[10] or retrieving the order of a shuffled sequence [41]. In con-
trast, methods based on generative pretext tasks have learned
to regenerate the input time series [42] based on some limited
view of the data. Note that generative pretext tasks differ
from generative models, which learn implicit distributions
that allow to sample new data. The reconstruction of masked
tokens (e.g. embedded words or sub-words) was shown to be
an effective generative pretext task in NLP. More precisely,
the BERT strategy proposed in [15] has become a de facto
standard strategy to train a language representation model. In
this strategy, a bidirectional Transformer backbone encoder is
trained to reconstruct input data by using information from
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tokens located both before and after the missing content. The
excellent performance of BERT has led to the proposal of two
similar generative pretext tasks in remote sensing [17] [18]. To
the best of our knowledge, SITS-BERT [17] was the first self-
supervised strategy exploiting SITS. This last study proposed
to learn spectro-temporal features from Sentinel-2 by training a
Transformer architecture. Specifically, a denoising pretext task
goal is presented by simulating abnormal reflectance values
caused by clouds, snow/ice and shadows. The corruption
is obtained by adding positive or negative noise on a few
dates. Following the same strategy, SITS-Former [18] was
proposed by the same authors to learn more complex spatio-
temporal features from multi-temporal data. Compared to [17],
a more complex pretext task was proposed by SITS-Former
by masking input patches with random values drawn from
a normal distribution. The fine-tuned SITS-Former model
showed impressive results for land cover classification tasks
outperforming other models such as Random Forest, Duplo
[29], SITS-BERT [17] and Conv-RNN [24]. As mentioned
in the previous section, being not fully convolutional, SITS-
Former can be highly inefficient to produce classification or
segmentation maps. Besides its architectural limitations, the
pretext task proposed by SITS-Former suffers from other
limitations. First, SITS-Former uses the original masking rate
proposed by BERT. Retrieving a masked word in NLP requires
a holistic understanding of the sentence. However, in SITS,
the continuity of spectral measurements usually allows the
reconstruction of the missing input by simple interpolation.
While some dates in SITS may be invalid due to the presence
of clouds, shadows, or saturation, the masking rate may need
to be adjusted to ensure that the pretext task is difficult enough.
Secondly, distribution shift can significantly impact fine-tuning
performance. In this context, distribution shift means that, at
inference time, the data is not masked, and therefore, the
distribution is different from the training data. To mitigate
this effect, the original BERT employed an 80-10-10 strategy
among the 15% of masking rate. Specifically, 80% of the
masked words were replaced by the [MASK] token, 10% were
left unchanged, and 10% were replaced by a random token
value. However, as satellite data cannot be represented in a
finite and discrete embedding space like natural language, the
choice of mask values should differ from NLP. While SITS-
Former proposed masking only with random values drawn
from a normal distribution, this approach does not adequately
address the distribution shift issue. Thirdly, while [33] has
demonstrated that Transformer attention networks can handle
invalid acquisitions, SITS-Former is exclusively trained on
cloud-free SITS. Therefore, the self-supervised strategy em-
ployed by SITS-Former may not perform well on downstream
tasks that involve non-filtered or imperfectly filtered cloud
data.

III. PROPOSED METHODOLOGY

This section presents the network architecture of the U-
BARN encoder and the proposed pre-training strategy.

A. U-BARN network architecture

The U-BARN backbone network is mainly divided in two
main blocks: (i) the patch embedding layers providing a
spatio-spectral representation of each independent image patch
of the time series and (ii) the transformer block capturing
the temporal relations between the patch embeddings of the
time series. U-BARN generates spatio-temporal SITS rep-
resentations, at the same spatial and temporal resolutions
than the input SITS. Specifically, given a batch of input
patch time series (B, T,C,H,W ) with B the batch, T the
temporal, C the spectral, and H,W the spatial dimensions, U-
BARN generates a batch of patch time series representations
(B, T, dmodel,H,W ) with dmodel the number of features.

1) Patch embedding: As shown in Fig. 2, this block embeds
each patch of the time series with its corresponding positional
encoding. Considering a time series of T dates, the spectro-
spatial encoder (SSE) independently encodes each patch into
feature map. As a result, patches of dimension (C,H,W )
are projected in to feature vectors of size (dmodel,H,W ).
The proposed SSE is based on a Unet architecture with four
down-sampling and up-sampling levels as shown in Fig. 2.
This Unet implementation enables to capture high-level spatial
features with a wide field of view. For each down-sampling
and up-sampling level, the spatial dimension of the feature
map is respectively divided and multiplied by 2. the Unet
architecture is similar to the U-TAE [19] although the temporal
attention mechanism is removed from Unet bottleneck. As no
temporal dimension is exploited in the SSE, input time series
(B, T,C,H,W ) are reshaped to (B × T,C,H,W ), before
being processed by the Unet. We expect that during training
the SSE learns to generate, for each pixel, features which
contain spectral information as well as rich and wide spatial
context.
To incorporate temporal information (relative and absolute
ordering) of the original time series on the learned SSE feature
maps, the classical positional encoding [34] is added to each
encoded patch of size dmodel. As denoted by Eq. 1, the strategy
uses sine functions of varying frequencies for even embedding
indexes (’i’) and cosine functions for odd embedding indexes.
The term i refers to each of the dmodel features. As proposed
by [17], the acquisition day of year (DOY) of each image
is used to indicate the position of the patches in the time
series. As recommended in [35] a scaling constant of a 1000
is considered.

PE(DOY, 2i) = sin(
DOY

10002i/dmodel
) (1a)

PE(DOY, 2i+ 1) = cos(
DOY

10002i/dmodel
) (1b)

2) Transformer block: This network architecture aims to
exploit temporal relations of the series of feature maps result-
ing from the patch embedding layers (see Fig. 1). Under this
goal, each time series of features describing a single pixel is in-
dividually processed by the Transformer architecture. Consid-
ering that, the dimension of the batch of pixel-level time series
fed in the network is equal to (B ×H ×W,T, dmodel). The
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Figure 2. Left: Overview of the patch embedding. A spatial-spectral encoder (SSE) embeds each patch into a (H,W, dmodel) feature map. A positional
encoding is added on the resulting feature maps. Right: Detailed description of the SSE architecture.

backbone network is composed of multi-head self-attention
and feed forward layers, as detailed in Fig. 3.

Figure 3. Overall architecture of the spectro-temporal encoder. The Trans-
former processes pixel-level time series.

The multi-head attention module decomposes the attention
in multiple heads running in parallel as illustrated in Fig. 4.
Each head is composed by an attention mechanism which
computes similarity scores for all pairs of positions in a pixel-
level time series. These scores are computed by applying a
scaled dot product operation on the q and k representations of
an input time series X as described by Eq. 2. These represen-
tations denoted by "query", q = WQX and "key" k = WKX
∈ RT∗dmodel are obtained by the learned projection matrices
WQ and WK. As denoted by Eq. 2 and illustrated in Fig. 4
the dot product result is passed through a softmax operation.
The resulting scores then weight another representation of the
input time series, called "value" v = WV X . These weights
give indication on which acquisitions are important for the
training task.

Attention(q, k, v) = softmax(
qkT√
dmodel

)v (2)

As demonstrated in [34], the computation of scaled-attention
products on different feature subspaces allows each atten-
tion head to focus on different features leading to better
performances and training stability. Accordingly, instead of
computing one scaled-dot product on a unique set of query
q, key k and value v, the input X is split along the feature
dimension into H subvectors. Scaled-dot product is computed
in parallel on H triplets, called "heads" as depicted in Fig. 4.
The resulting H time series are then concatenated and fed into

Figure 4. Left: Description of the multi-head self-attention mechanism on a
sequence of dimension (T,dmodel). Right: Scaled-dot product on time series.

feed-forward layers that operate only on the feature (spectral)
dimensions.

Feed forward layers are composed of two linear layers
interspersed with a ReLu activation layer. Inside this feed-
forward block the first fully-connected (FC) layer projects the
features into dhidden-dimensional space, while the second FC
layer projects the feature maps into dmodel-dimensional space.

Theoretically, increasing the number of layers and the num-
ber of heads improves the quality of the learned representation.
Therefore, the U-BARN transformer block is composed of 3-
layers (as [17]) with 4 heads each. The dimension of input
and output features of the network are respectively set to
dmodel = 64 and dhidden = 128. The architectural hyper-
parameters are detailed in Annex (see Appendix A).

B. Self-supervised strategy

Fig. 5 shows the overall framework of the proposed self-
supervised pre-training strategy inspired by the BERT [15]. As
observed, the proposed pretext task aims to reconstruct some
input patches that have been masked from the original time
series. Specifically, the masking step is randomly applied on
SSE output representations and a decoder MLP network is
used for the inpainting task.

1) Masking strategy: Two parameters are required for the
masking process: the percentage of data to be masked and
the masking values used to substitute original embedding
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Figure 5. Description of the proposed self-supervised strategy. A percentage
Mrate of the feature maps encoded by the SEE are masked. U-BARN is
trained to reconstruct the previously corrupted patch. The reconstruction loss
is computed on the valid pixels, given by the binary mask Mvalid associated
to the masked patch.

representations. Given an input time series, Mrate corresponds
to the percentage of masked timestamps to be reconstructed.
To increase the diversity of training samples, the masked
timestamps are drawn randomly for each time series and vary
at each training epoch. The masking values used to corrupt
the data can introduce outliers or unrealistic values that do
not exist in downstream tasks. This phenomenon, known as
distribution shift, is prevented in U-BARN masking strategy.
The proposed strategy consists in randomly permuting the
spectro-spatial embedding values among selected encoded
patches within a batch. Specifically, an embedded pixel can
be replaced by an embedded value from another date, another
pixel location within the batch or another feature.

2) Decoder: The decoder, which is only used for pre-
training and discarded afterward, enables to train the U-BARN
in a self-supervised way. As shown in Fig. 1, the decoder
reconstructs the input data using the latent representation.

In order to avoid leakage of meaningful features in the pre-
training decoder, a very simple and shallow decoder composed
of a single linear layer is proposed. The decoder operates
exclusively on the feature (spectral) dimension to transform
the (B, T, dmodel,H,W ) latent representations into the S2
reconstructed patch time series (B, T,C,H,W ).

3) Reconstruction loss: The quality of the reconstructed
image patches is evaluated during the training by the classical
Mean Square Error (MSE). This reconstruction loss is com-
puted exclusively on the corrupted patches. Moreover, as input
patches can have invalid measures due to acquisition condi-
tions (e.g. cloudy and out of swath pixels), the information
coming from the valid acquisition mask Mvalid is incorporated
in the loss function. Therefore, invalid input pixels belonging
to the corrupted input patches are not considered in the
reconstruction loss. Eventually, given an input patch time
series [Pt1 , ..., PtLmax ], a set TS of masked dates, Nvalid

tk
the

number of valid pixels in the patch Ptk , the resulting loss can
be expressed as Eq. 3. P̃tk is a patch that is corrupted at the
SSE output by the previously described masking strategy.

L =
1

||TS ||
∑

tk∈TS

Mvalid
tk

Nvalid
tk

� ||UBARN(P̃tk)− Ptk ||22 (3)

IV. EXPERIMENTAL SETUP

First, the two Sentinel 2 L2A data-sets used in our different
experiments are presented: the unlabeled large scale data-set
used for pre-training U-BARN and the downstream labeled
PASTIS data-set.

Secondly, the implementation details of our downstream
tasks are described.

A. Data-Sets

S2 images processed to surface reflectances (L2A) by Theia
are used in this study. For these data-sets, only the four 10 m
and the six 20 m resolution bands of S2 are used. The 20
m resolution bands are resampled onto the 10 m resolution
grid by bi-cubic interpolation. A robust data normalization is
applied on S2 L2A reflectances. First, the scaling technique
of Eq. 4a using the 0.05 and 0.95 quantiles is applied to
remove data outliers by clipping the data. Secondly, the data
is centered by subtracting the median value of xclip to each
spectral band and dividing the result by the dynamic data range
(see Eq. 4b)2. Band statistics used to normalize the two S2 data
sets are computed on the large unlabeled pre-training training
data-set.

xclip = clipq0.95,q0.05(x) (4a)

xnorm =
xclip −median

q0.95 − q0.05
(4b)

Figure 6. Description of the S2 data-sets used for pretext and downstream
tasks. The unlabeled data-set for pre-training is composed of two disjoint
data-sets: training (tiles in blue) and validation (tiles in red). S2 tiles in the
labeled PASTIS data-set are shown in green.

2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
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1) Large-scale unlabeled pre-training data-set: The data
set is composed of 13 tiles acquired by S2 over France. The
corresponding validity masks (non-corrupted pixels) are built
by considering edge, saturation and cloud information. As
previously explained, the information contained in validity
masks is incorporated in the reconstruction loss of the pretext
task. Geographical variability between training and down-
stream task is enforced by using disjoint tile sets between the
PASTIS data-set and the unlabeled data-set, as shown in Fig. 6.
We have more diverse pre-training data-set, compared to that
of the SITS-Former [18] data-set, which is only composed
of SITS from 3 S2 tiles from 2018 or 2019. The U-BARN
pre-training is performed by considering 9 different S2 tiles
acquired from 2018 to 2020. In each of these tiles, 10 smaller
regions of interest (ROIs) of size 1024 × 1024 are randomly
selected. During training, to build patch time series of spatial
dimension (64 × 64), a random crop3 is operated on the
1024×1024 ROIs. As a result, diverse samples are processed
by U-BARN during pre-training. The disjoint validation data
set is composed by the 4 remaining S2 tiles acquired from
2016 to 2019. For each year, 10 patch time series, of spatial
dimension (64× 64) are extracted from each of the 4 tiles and
used to tune the hyper-parameters. The validation data-set is
used to select the best model weights, which are then used for
the PASTIS downstream task. A more exhaustive description
of the unlabeled data-set is given in Table I

Table I
PRE-TRAIN DATA-SET DESCRIPTION

Data-Set S2 tiles Year
train T30TXT, T30TYQ, T30TYS,

T30UVU, T31TDJ, T31TDL,
T31TFN, T31TGJ, T31UEP

2018-2020

validation T30TYR, T30UWU, T31TEK,
T31UER

2016-2019

2) PASTIS: This labeled S2 data-set proposed for semantic
segmentation in [19] covers agricultural areas over France as
shown in Fig. 6. Based on the French Land Parcel Information
System, the agricultural parcels are grouped into 18 different
crop classes. Although PASTIS contains SITS acquired from
September 2018 to November 2019, only data from January
2019 to November 2019 is considered in our experiments. This
requirement is imposed by our pre-training data-set which is
composed of annual time series.

The complete data-set contains 2433 patch time series, and
it is divided into 5 stratified folds to enable k-fold training.
Therefore, to train the model on the PASTIS data-set, 5
trainings will be performed. In each of these experiments, 3
folds are attributed to train data, one for validation purpose
and the last one for testing (see Table II).

The spatial dimension of PASTIS patch times series is equal
to (128×128). Therefore, a random crop transformation is
operated during training to obtain the spatial dimension of
(64× 64) used in the pre-training stage. For validation and
testing, there should be no randomness in the spatial crop,

3https://pytorch.org/vision/main/generated/torchvision.transforms.
RandomCrop.html

Table II
OFFICIAL 5-FOLD CROSS VALIDATION SCHEME GIVEN BY [19]

Fold Train Val Test
I 1-2-3 4 5
II 2-3-4 5 1
III 3-4-5 1 2
IV 4-5-1 2 3
V 5-1-2 3 4

therefore center crop transform4 is applied on the patch time
series.

B. Details of the downstream task implementation
In the downstream semantic segmentation task, the recon-

struction decoder described in Section III-B2 is replaced by
a shallow classifier (SC) as shown in Fig. 1. The objective
of the classifier is to generate segmentation maps from the
latent representations encoded by U-BARN. The selection of
the architecture of the SC is driven by the two following
criteria. First, the U-BARN encoder produces latent represen-
tations preserving the temporal size of the input time series.
Therefore, the classifier should be able to process inputs
with different temporal dimensions. Secondly, since this is a
segmentation task, the output of the shallow classifier should
have no temporal dimension.

Figure 7. Architecture of the shallow classifier and detailed description of
the "mean-query" attention mechanism described in [35]

To meet both requirements, we have designed a shallow
classifier (SC), shown in Fig. 7. To process inputs with
different temporal dimension, the proposed SC utilizes the
mean-query attention mechanism proposed in the TAE [35]. In
this altered attention mechanism, a master query, which is the
temporal average of the queries, is computed. Additionally,
in the computation of the "value" representation, the time
series X is not projected by a matrix Wv , thus v = X in
Eq. 2 . As shown in Fig. 7, the output of this mean-query
attention has a collapsed temporal dimension. The mean-query
attention mechanism followed by a Fully-Connected (FC)
layer, to project the (B, 1, dmodel,H,W ) feature map into
the (B, 1,K,H,W ) segmentation map, with K the number
of classes. As suggested in [19], the cross-entropy loss is
exclusively computed on known crop classes.

C. Training scenarios evaluated on the downstream tasks
According to [6], to evaluate self-supervised tasks, linear-

probing and fine-tuning are often operated. Traditionally, the

4https://pytorch.org/vision/main/generated/torchvision.transforms.
CenterCrop.html

https://pytorch.org/vision/main/generated/torchvision.transforms.RandomCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandomCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.CenterCrop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.CenterCrop.html
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linear probing strategy evaluates the representations by a linear
classifier which is trained on top of a learned and frozen
encoder. Unfortunately, a linear classifier can not be applied
on U-BARN latent spaces since the temporal length of the
resulting U-BARN time series representations varies for each
patch time series. The linear classifier is thus replaced by the
SC, presented in Section IV-B, and it is trained to generate
maps from representations obtained by a frozen pre-trained U-
BARN encoder. This method, referred as U-BARNFR, enables
to drastically reduce the number of training weights in the
downstream task, as solely the SC is trained. For the fine-
tuning approach, the weights of the U-BARN encoder are not
frozen during the training of the downstream task. However,
the weights of the pre-trained U-BARN are used as the starting
values for training of the complete architecture. The fine-
tuning strategy is denoted by U-BARNFT. To assess the quality
of pre-trained U-BARN models, the previous self-supervised
scenarios are compared with three training configurations
supervised by the PASTIS data set. The first one is denoted by
U-BARNe2e and corresponds to a trained end-to-end U-BARN
encoder followed by the SC. The U-BARNe2e encoder can
be considered as the U-BARNFR higher bound since frozen
model performances are not expected to surpass its end-to-
end counterpart. In contrast, it is expected that U-BARNFT

outperforms the U-BARNe2e model which is trained from
scratch. The quality of representations obtained by the pre-
trained U-BARN models are also evaluated by a lower-bound.
The idea is to compare the features learned by U-BARN with
representations encoded by a single fully connected layer.
For this situation U-BARN is replaced by a FC layer, which
operates exclusively on the feature (spectral) dimension. The
FC layer increases the spectral dimension (10 spectral bands)
to dmodel. This lower bound is obtained by the end-to-end
supervised training scenario denoted by FC-SC.

Finally, the supervised spatio-temporal baseline U-TAE [19]
is also considered in our experiments.

V. EXPERIMENTS AND ANALYSIS

In this section, the proposed U-BARN network architecture
and the self-supervised training strategy are evaluated by the
PASTIS segmentation downstream task. First, a qualitative
evaluation of the pretext task training is proposed. Then, the
quality of the representations learned by pre-trained U-BARN
models are evaluated by comparing the PASTIS classification
performances obtained by the aforementioned different train-
ing scenarios (see Section IV-C). The interest of using a pre-
trained U-BARN self-supervised encoder is corroborated by
studying the robustness of the proposed methodology under
reference data scarcity conditions. Finally, the influence of the
masking rate on the generalization capabilities of U-BARN
representations is studied.

Each training (either pre-training or downstream task) in-
volves training the networks for a minimum of 100 epochs.
The learning rate is set to 0.001, and a learning rate on plateau
reduction scheduler is used with a patience of 10 epochs. The
networks are trained on a single GPU, which could be a Tesla
V100, A100, or A30, with a batch size of 2.

A. Qualitative assessment of the pre-training

This section presents an analysis of U-BARN’s performance
on the pre-training task. To evaluate the effectiveness of U-
BARN on this task, we examine some reconstructed patches
from the unlabeled validation set, as shown in Fig. 8. The
results demonstrate that U-BARN is able to reconstruct the
temporal evolution of masked continuous blocks of dates (e.g.,
DOY 72 to 102 and 142 to 175 in Figure 8). Therefore, we
consider that U-BARN can successfully learn the temporal dy-
namic of the SITS during pre-training. Furthermore, Fig. 8 also
shows that U-BARN reconstructs ground surface reflectances
of cloudy patches (see DOY 102, 115 and 142). This result
can be explained by the fact that the reconstruction of cloudy
patches is not forced in the loss function (see Eq. 3). Following
[33], we assume that the model learns that cloudy pixel values
can be interpreted as outliers in the temporal profile. Under
this situation, the network learns how to ignore their values
for the patch reconstruction. Overall, our observations of U-
BARN’s performance on the pretext-task provide evidence that
pre-training is successful, as U-BARN is able to effectively
solve the pretext-task.

B. Classification performances on PASTIS data-set

The classification performances obtained by the above de-
scribed training scenarios are compared here. The U-BARN
model is pre-trained on the unlabeled dataset with the pro-
posed generative pre-text task strategy. The pre-training stage
considers a masking rate equal to 60% which is justified by the
results described in Section V-D. Four different classification
metrics are used to evaluate the quality of the obtained results
: Cohen Kappa, overall accuracy (OA), F1 score and mean
Intersection over union (mIoU). The two latter metrics are
averaged per classes and not per pixel as the overall accuracy.
As we proceed to 5-fold training with PASTIS, mean and
standard deviation of the classification metrics are given each
time. The overall results comparing the different training
scenarios are reported in Table III. The F1-score per class
is also given in Table IV to bring detailed information on the
classification of each class in the unbalanced PASTIS dataset.
Eventually, the confusion matrix, from U-BARNFR and FC-
SC, are shown in Fig. 9 and an example of the segmentation
maps produced by the different networks is displayed in
Fig. 10.

1) Frozen encoder U-BARNFR: As observed in Table III and
in Table IV, the performance of U-BARNFR is intermediate
between the FC-SC and the U-BARNe2e.

Compared to the FC layer, the pre-trained and frozen U-
BARNFR obtain a gain in Kappa of 0.058, 0.042 in OA,
0.045 in F1-score and 0.048 mIou. The F1-score per class
also highlights that the classification gain differs for each
class, with a significant improvement (at least 0.3 in F1-score)
for spring barley, potatoes, and orchards. We also observe
a gain of at least 0.1 in F1-score, for winter durum wheat,
soybeans, winter barley, and fruit vegetables & flowers. The
confusion matrices shown in Fig. 9 show that U-BARNFR has
fewer confusions than the FC-SC. Specifically, U-BARNFR

performs better at distinguishing sunflower from potatoes and
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Input SITS.
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U−BARN0.6mr

Figure 8. Example of a patch (from the validation data-set) reconstruction achieved by U-BARN during pre-training. Only a part of the SITS is displayed.
DOY of each patch are indicated. [MASK] indicates that the embedded patch was corrupted (see Section III-B1). The top row is the input SITS, and the
bottom row corresponds to reconstructions produced by U-BARN. During this pretraining the Mrate equals 60%.

Table III
CLASSIFICATION METRICS AVERAGE AND STANDARD DEVIATION OVER PASTIS K-FOLDS FOR DIFFERENT SITS ENCODER

Kappa OA F1 mIoU
FC-SC 0.631 ± 0.015 0.770 ± 0.013 0.670 ± 0.011 0.284 ± 0.007
U-BARNFR 0.689 ± 0.006 0.812 ± 0.009 0.715 ± 0.006 0.332 ± 0.002
U-BARNFT 0.831 ± 0.008 0.901 ± 0.008 0.841 ± 0.009 0.536 ± 0.008
U-BARNe2e 0.831 ± 0.008 0.902 ± 0.007 0.848 ± 0.010 0.539 ± 0.011
U-TAE 0.815 ± 0.010 0.893 ± 0.008 0.831 ± 0.008 0.548 ± 0.007

Table IV
F1 SCORE PER CLASS ON PASTIS DATASET FOR DIFFERENT SITS ENCODER

FC-SC U-BARNFR U-BARNFT U-BARNe2e U-TAE
Meadow 0.780 ± 0.020 0.788 ± 0.024 0.877 ± 0.021 0.878 ± 0.021 0.863 ± 0.019
Soft winter wheat 0.750 ± 0.015 0.790 ± 0.018 0.887 ± 0.019 0.893 ± 0.009 0.878 ± 0.031
Corn 0.847 ± 0.012 0.867 ± 0.014 0.934 ± 0.010 0.939 ± 0.008 0.932 ± 0.012
Winter barley 0.539 ± 0.027 0.718 ± 0.030 0.895 ± 0.021 0.901 ± 0.020 0.893 ± 0.019
Winter rapeseed 0.856 ± 0.039 0.868 ± 0.019 0.948 ± 0.010 0.954 ± 0.006 0.946 ± 0.015
Spring barley 0.209 ± 0.048 0.602 ± 0.066 0.808 ± 0.056 0.805 ± 0.048 0.783 ± 0.035
Sunflower 0.599 ± 0.070 0.653 ± 0.037 0.862 ± 0.034 0.862 ± 0.029 0.829 ± 0.036
Grapevine 0.625 ± 0.044 0.680 ± 0.044 0.862 ± 0.021 0.858 ± 0.018 0.853 ± 0.025
Beet 0.858 ± 0.032 0.873 ± 0.012 0.953 ± 0.019 0.948 ± 0.013 0.924 ± 0.027
Winter triticale 0.058 ± 0.042 0.191 ± 0.036 0.685 ± 0.033 0.708 ± 0.015 0.697 ± 0.057
Winter durum wheat 0.526 ± 0.043 0.644 ± 0.021 0.785 ± 0.026 0.782 ± 0.042 0.704 ± 0.083
Fruits, vegetables, flowers 0.201 ± 0.063 0.324 ± 0.023 0.678 ± 0.030 0.706 ± 0.039 0.636 ± 0.057
Potatoes 0.209 ± 0.048 0.532 ± 0.097 0.760 ± 0.066 0.742 ± 0.081 0.687 ± 0.112
Leguminous fodder 0.279 ± 0.073 0.250 ± 0.048 0.628 ± 0.038 0.638 ± 0.033 0.585 ± 0.029
Soybeans 0.645 ± 0.067 0.747 ± 0.037 0.913 ± 0.021 0.916 ± 0.022 0.903 ± 0.035
Orchard 0.179 ± 0.023 0.520 ± 0.034 0.698 ± 0.062 0.703 ± 0.049 0.681 ± 0.064
Mixed cereal 0.066 ± 0.038 0.081 ± 0.030 0.552 ± 0.034 0.606 ± 0.034 0.564 ± 0.051
Sorghum 0.171 ± 0.071 0.150 ± 0.075 0.599 ± 0.086 0.620 ± 0.040 0.589 ± 0.051

fruit, vegetable and flowers. Compared to the FC layer encod-
ing, U-BARNFR also mitigates confusion between spring and
winter barley. Therefore, we conclude that the representations
provided by U-BARNFR, compared to SITS encoded by a FC
layer, contain meaningful and discriminative information for
the shallow classifiers. Since U-BARNFR outperforms FC-SC
on all classification metrics, our self-supervised pre-training
strategy is shown to be effective. However, the performance
gap between U-BARNFR and U-BARNe2e suggests that there
is still room for improvement. A visual inspection of the seg-
mentation maps generated by U-BARNFR (shown in Fig. 10)
reveals an issue with spatial consistency. The appearance
of classification noise can be attributed to the fact that the
masking self-supervised strategy is mostly applied on the
temporal domain. Therefore, the proposed pretext task does
not allow to completely learn the spatial correlations between

pixels. As U-BARNe2e segmentation maps do not exhibit this
same issue, we consider that this weakness is due to the pretext
task and not the architecture itself.

2) Fine-tuning U-BARNFT: The global classification met-
rics presented in Table III and the F1-score per class in
Table IV show that there is little difference between the
performances of U-BARNe2e and U-BARNFT. It appears that
fine-tuning does not lead to any improvement in classification
performance. We conjecture that the number and diversity of
training labels available in the PASTIS data-set are sufficient to
train the U-BARNe2e model. This assumption is later investi-
gated in Section V-C, where the classification performances of
both U-BARN models are compared in scenarios with scarce
reference data.

3) U-BARN architecture: The U-BARN backbone network
can be evaluated by comparing the metrics obtained by
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

0.97 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.90 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.06 0.02 0.90 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.29 0.01 0.56 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.01 0.00 0.03 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.18 0.16 0.01 0.40 0.01 0.11 0.01 0.01 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.11 0.00 0.05 0.00 0.00 0.00 0.61 0.09 0.01 0.00 0.01 0.05 0.00 0.02 0.02 0.01 0.00 0.00

0.21 0.00 0.02 0.00 0.00 0.00 0.03 0.72 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00

0.02 0.01 0.03 0.02 0.03 0.00 0.01 0.00 0.86 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.18 0.65 0.01 0.11 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.13 0.15 0.03 0.06 0.00 0.03 0.04 0.03 0.00 0.00 0.50 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.18 0.05 0.08 0.01 0.03 0.00 0.30 0.11 0.04 0.00 0.02 0.15 0.00 0.02 0.01 0.01 0.00 0.00

0.06 0.02 0.11 0.01 0.01 0.01 0.56 0.04 0.02 0.00 0.00 0.04 0.08 0.01 0.03 0.01 0.00 0.00

0.68 0.01 0.02 0.01 0.01 0.00 0.04 0.04 0.00 0.00 0.01 0.00 0.00 0.17 0.00 0.00 0.00 0.00

0.19 0.01 0.13 0.02 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.57 0.00 0.00 0.00

0.69 0.00 0.02 0.00 0.00 0.00 0.02 0.15 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.09 0.00 0.00

0.42 0.17 0.04 0.20 0.10 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

0.22 0.00 0.52 0.00 0.01 0.00 0.06 0.11 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.02

FC SC
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0.97 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.92 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04 0.01 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.08 0.11 0.00 0.75 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 0.02 0.00 0.01 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.11 0.02 0.04 0.01 0.54 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.11 0.00 0.11 0.00 0.00 0.00 0.67 0.05 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.01 0.00 0.00 0.00 0.03 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.02 0.01 0.05 0.00 0.00 0.01 0.01 0.00 0.89 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.11 0.73 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.12 0.09 0.00 0.05 0.00 0.03 0.01 0.01 0.00 0.00 0.68 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.21 0.01 0.12 0.00 0.00 0.01 0.21 0.07 0.04 0.00 0.02 0.27 0.01 0.01 0.01 0.01 0.00 0.01

0.13 0.01 0.07 0.00 0.01 0.06 0.16 0.01 0.02 0.00 0.02 0.12 0.36 0.01 0.02 0.00 0.00 0.00

0.75 0.01 0.02 0.00 0.00 0.01 0.01 0.04 0.00 0.00 0.01 0.01 0.00 0.12 0.01 0.01 0.00 0.00

0.06 0.00 0.18 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.72 0.00 0.00 0.01

0.46 0.00 0.01 0.00 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.41 0.00 0.00

0.26 0.41 0.05 0.08 0.09 0.05 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

0.20 0.00 0.40 0.01 0.00 0.00 0.09 0.10 0.00 0.00 0.00 0.08 0.00 0.02 0.03 0.00 0.00 0.04

U BARNFR

Figure 9. Confusion matrices on the PASTIS segmentation task. On each confusion matrix, rows correspond to true label and columns to predictions. The
matrices are normalized per row. The correspondence between PASTIS classes and the confusion matrix index is the following: {1: Meadow, 2: Soft winter
wheat, 3: Corn, 4: Winter barley, 5: Winter rapeseed, 6: Spring barley, 7: Sunflower, 8: Grapevine, 9: Beet, 10: Winter triticale, 11: Winter durum wheat, 12:
Fruits, vegetables, flowers, 13: Potatoes, 14: Leguminous fodder, 15: Soybeans, 16: Orchard, 17: Mixed cereal, 18: Sorghum}

Figure 10. Top row, some of the S2 RGB images which belong to input time series. Bottom row, different segmentation maps generated by the different
networks. From left to right: target segmentation map, U-BARNe2e, U-BARNFR, U-BARNFT, U-TAE and the FC-SC predictions.

supervised U-TAE and U-BARNe2e models. The results in
Table III and Table IV reveal close performances for both
models. Whereas the highest mIoU is obtained by U-TAE,
U-BARNe2e has a significantly higher F1 score, OA and
Kappa. Looking more specifically at the F1 score per class,
we notice that the performances slightly vary depending on
the type of crop, as shown in Table IV. Among 10 of the
18 classes, U-BARNe2e F1 score is significantly higher than
that of the U-TAE. Eventually, as shown by the segmentation
maps Fig. 10, U-TAE retrieve slightly worse edges than U-
BARNe2e. Contrary to our expectations, we did not find that on
a crop classification task U-BARNe2e totally surpass U-TAE. A
reasonable explanation is that attention at full spatial resolution

is not an important asset in the PASTIS crop classification
task. In the PASTIS data-set, small crops labels are discarded
and considered as background, resulting in no assessment of
segmentation of small items. Additionally, it must be noted
that the metrics found are slightly lower than those found in
the original UTAE study [19]. This can be explained by the
fact that the SITS used are temporally smaller, as we process
annual SITS as detailed in Section IV-A2. As a conclusion,
the overall results show that training the U-BARN architecture
by using an end-to-end supervised task has slightly better
performances than the U-TAE [19] on PASTIS data-set.
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C. Impact of the amount of training data on fine-tuned U-
BARN models

In spite of satellite data being now available in abundance,
ground truth reference labels remain scarce and costly to
obtain. As demonstrated in [18], the performance gap between
pre-trained SITS-Former and end-to-end trained models in-
creases as the number of training labels decreases. Therefore,
a similar experiment conducted on the PASTIS data-set is
presented here. The goal is to compare the performances of U-
BARNFT, U-BARNe2e and U-TAE models by reducing the size
of the training data-set. In this experiment, U-BARNFT is pre-
trained with a masking rate of 60%. As previously mentioned,
the PASTIS data-set is divided into five folds. To simulate label
scarcity, for each of the five experiments, we have randomly
selected NSITS patch time series from the three folds assigned
to the training set. However, the PASTIS data-set exhibits a
strong class imbalance. To ensure that all classes are present in
the generated reduced training data-sets, the random selection
of the patch time series follows the specific protocol detailed in
Appendix B. Due to the small size of the resulting data-set, we
have generated five smaller training data-sets, each composed
of NSITS SITS, for each training experiment. Finally, in this
experiment, due to K-Fold training, we have conducted 25
trials to assess the performance of a pre-trained model with
a training data-set composed of NSITS . The different trials
are used to compute the means and standard deviations of the
classification metrics for the different models. Fig. 11 plots the
metrics as a function of the number of training labels. With a
training data-set composed of 30 patch time series, U-BARNFT

has a significantly higher Kappa and OA than U-BARNe2e.
The fine-tuning is therefore effective to boost performance
when training with a reduced number of labels. Besides, on
all the 4 classification metrics with NSITS equals to 30 and
50, U-BARNFT and U-BARNe2e outperform the U-TAE. We
assume that because the U-TAE computes temporal attention
at a low spatial resolution, the attention mechanism processes
fewer pixel time series than the U-BARN, and therefore is
less competitive. On the Kappa, OA and F1 score curves,
we see a similar trend: the gap between the U-BARNFT ,
U-TAE and U-BARNe2e performances reduces when NSITS
increases. These experiments corroborate previous results from
SITS-Former [18]; as the number of samples increases, the
performance gain, obtained thanks to pre-training, decreases.
This experiment highlights the effectiveness of our approach
in real-world scenarios with limited training labels.

D. Influence of the masking rate

Theoretically, the quality of the learned representations
tends to improve when the pretext task becomes harder to
solve (see Section II-B). Therefore, the experiment carried out
here aims to investigate if a higher masking rate creates a
harder and more meaningful pre-training task that can retrieve
deeper feature information. However, if this rate is set too high,
the corrupted time-series become meaningless, making the
task unsolvable. In this regard, we compared the performance
of U-BARNFR pre-trained with different Mrate values using
the previously described classification metrics. The obtained

results are shown in Fig. 12 and exhibit two local maximum
for Mrate equals to 30 and 60%. This observation could be
explained by the double effect of varying the masking rate in
the pre-training. As the masking rate increases, the number
of "valid" dates used to reconstruct the corrupted patches
diminishes, and the reconstruction loss during pre-training
is applied to more patches during each optimization step.
Eventually, we consider that best performances are reached
with Mrate 60%. This also suggests that the 15% masking
rate proposed in NLP for BERT [15] may not be optimal
for pre-training our spatio-temporal architecture with SITS.
Additionally, results show that a masking ratio greater than
80% causes a significant drop in 3 out of 4 classification
metrics (Kappa, OA and mIoU), indicating that the pretext-
task might have become too difficult for training purposes.

VI. CONCLUSION

This paper proposes a novel self-supervised methodology
for learning spatio-temporal representations from satellite im-
age time series. The U-BARN architecture combines the
strengths of Unet and Transformer to extract informative and
discriminative features from unlabeled data-sets. Compared
to U-TAE, which is the current spatio-temporal baseline, U-
BARN computes temporal attention at a full spatial resolution.
In this study, we demonstrate that the designed spatio-temporal
architecture of the U-BARN is relevant as it slightly outper-
forms the U-TAE on a crop classification task.
Additionally, we introduce a BERT-inspired pretext task for
pre-training U-BARN to reconstruct masked patches from a
patch time series. We then assess the quality of the learned fea-
ture by studying two ways of using the pre-trained U-BARN
weights: either frozen or fine-tuned. First, we demonstrate that
the frozen and pre-trained U-BARN representations contain
meaningful information for crop classification. Additionally,
the fine-tuned U-BARNFT significantly outperforms both U-
TAE and non-pre-trained U-BARNe2e when the number of
labeled samples is low. However, the gain in classification
performance decreases with an increase in labeled samples.
Eventually, our results also indicate that the percentage of
patches masked during the pre-training task has a significant
impact on the classification performance. With our pre-training
task, we suggest using a masking rate of 60% with U-BARN.

Although our results are promising, we believe that the
current pre-training task does not adequately incorporate spa-
tial features. Therefore, developing a spatial self-supervised
strategy, may be a promising direction to improve classification
performance. Additionally, the temporal dimension of the
learned representation is the same as the input time series.
In the case of irregularly sampled time series, the classifier in
the downstream task needs to be able to manage this kind of
data. Moreover, the usual solutions (interpolation, gap-filling,
or temporal reduction) may lead to a loss of information. To
address this limitation, we suggest altering the network to
achieve a fixed temporal sampling. Besides, a latent space with
fixed-dimension is easier to analyze and interpret. Finally, we
plan to apply this architecture to other downstream tasks and
extend our self-supervised scheme to multi-modal data.
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Figure 11. Evolution of the Kappa, OA, F1, and mIoU scores as a function of the number of SITS in the training data-set PASTIS for different SITS
classifiers: U-BARNFT-SC, U-BARNe2e-SC and UTAE
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APPENDIX A
DETAILED U-BARN ARCHITECTURE

Table V
HYPER-PARAMETER OF THE ARCHITECTURE OF THE UNET ENCODER.

DOWNBLOCK ARCHITECTURE IS DETAILED IN FIG. 13

Block Name Input dimension Output dimensions
Input Convolution (B*T,64,64,10) (B*T,64,64,64)
Down Block 1 (B*T,64,64,64) (B*T,64,64,64)
Down Block 2 (B*T,64,64,64) (B*T,64,64,64)
Down Block 3 (B*T,64,64,64) (B*T,64,64,128)
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Figure 13. Down Block description

Figure 14. Up Block description

APPENDIX B
GENERATION OF SMALL LABELLED DATA-SET FROM

PASTIS

A probability pPi
to draw the patch is computed on each

patch (see Eq. 5 ). This probability increases with the number
of pixels belonging to scarce classes in the patch. More
precisely, the following protocol is established:

1) A score sk, is computed . sk = α × 1
nk

is inversely
proportional to the total number nk of pixels from
the class k in the selected training data-set, α is a
normalization constant so αΣksk = 1.

2) For each patch Pi, the sum of the number of elements
in the patch (nPi

k ) from the class k, is weighted by the
previously computed class probability sk. The resulting
score is then normalized by the total number of pixels
belonging to the K classes in the patch. Eventually, the
constant Λ is used, so the sum of pPi equals to 1.

pPi =
Σkn

Pi

k ∗ sk
Σkn

Pi

k

× Λ (5)

3) For each patch, we attribute disjoint interval contained
in [0,1), of length equal to the patch probability

Table VI
ARCHITECTURAL HYPER-PARAMETERS OF THE TRANSFORMER

Nlayers Nhead attndropout dropout dmodel dhidden
3 4 0.1 0.1 64 128

4) We draw NSITS random numbers between [0,1). The
patches which contains these random numbers constitute
this tiny training data-set.
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