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Latent disconnectome prediction 
of long-term cognitive-behavioural 
symptoms in stroke

Lia Talozzi,1,2,3 Stephanie J. Forkel,2,4,5,6,† Valentina Pacella,1,2,7,† Victor Nozais,1,2 

Etienne Allart,8,9 Céline Piscicelli,10,11 Dominic Pérennou,12 Daniel Tranel,13,14 

Aaron Boes,15 Maurizio Corbetta,16,17,18 Parashkev Nachev19 and Michel Thiebaut 
de Schotten1,2

†These authors contributed equally to this work.

Stroke significantly impacts the quality of life. However, the long-term cognitive evolution in stroke is poorly predict-
able at the individual level. There is an urgent need to better predict long-term symptoms based on acute clinical neu-
roimaging data. Previous works have demonstrated a strong relationship between the location of white matter 
disconnections and clinical symptoms. However, rendering the entire space of possible disconnection-deficit asso-
ciations optimally surveyable will allow for a systematic association between brain disconnections and cognitive-be-
havioural measures at the individual level. Here we present the most comprehensive framework, a composite 
morphospace of white matter disconnections (disconnectome) to predict neuropsychological scores 1 year after 
stroke. Linking the latent disconnectome morphospace to neuropsychological outcomes yields biological insights 
that are available as the first comprehensive atlas of disconnectome-deficit relations across 86 scores—a 
Neuropsychological White Matter Atlas. Our novel predictive framework, the Disconnectome Symptoms 
Discoverer, achieved better predictivity performances than six other models, including functional disconnection, le-
sion topology and volume modelling. Out-of-sample prediction derived from this atlas presented a mean absolute 
error below 20% and allowed personalize neuropsychological predictions. Prediction on an external cohort achieved 
an R2 = 0.201 for semantic fluency. In addition, training and testing were replicated on two external cohorts achieving 
an R2 = 0.18 for visuospatial performance.
This framework is available as an interactive web application (http://disconnectomestudio.bcblab.com) to provide 
the foundations for a new and practical approach to modelling cognition in stroke. We hope our atlas and web appli-
cation will help to reduce the burden of cognitive deficits on patients, their families and wider society while also help-
ing to tailor future personalized treatment programmes and discover new targets for treatments. We expect our 
framework’s range of assessments and predictive power to increase even further through future crowdsourcing.
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Introduction
The fidelity of lesion-deficit models depends not only on the quality 
of the data but also on the underlying theoretical framework. 
Together they establish the evidence of a relationship between the 
location of brain lesions and clinical symptoms such as visuospatial 
neglect,1–3 aphasias,4–12 apraxias13,14 or motor anosognosia,15–18

among others. The associations between anatomical white matter 
networks and clinical presentations have revealed no one-to-one re-
lationship between structures and clinical presentation, as different 
lesions can cause the same functional impairments.19–23 One ex-
ample would be that a stroke in the middle or posterior cerebral ar-
tery may lead to visuospatial neglect,24 just like different perisylvian 
white matter disconnections can lead to aphasia.20 Despite its im-
portance,25 current methodologies do not systematically capture 
the potential overlap between brain signatures and clinical manifes-
tations nor the distributed nature of their neural substrate. 
Therefore, a comprehensive framework that systematically associ-
ates brain disconnections with cognitive-behavioural assessments 
is needed for accurate and reliable precision medicine.26–31

We hypothesize that quantifying brain connections will provide 
more accurate predictors of long-term brain functioning. This hy-
pothesis is based on previous stroke recovery investigations32 and 
on the rationale that our brains work as an interconnected network, 
and not as segregated entities.33

Beneath the surface complexity, there may lie a simpler order 
that can be described within a compact representational space. 
Namely, an anatomical lesion described by the presence or absence 
of damage across thousands of anatomical circuits in imaging 
space can be reduced to a two-dimensional Cartesian space. The 
patient’s coordinate, in this case, summarizes the lesion load on 
the surrounding white matter tracts. As such, dimensionality re-
duction algorithms allow defining low-dimensional spaces that 
can embed multivariate data. In embedding spaces, also known 
as morphospace,34,35 patients with similar disconnectivity patterns 

will cluster together, while dissimilar disconnectivity patterns will 
be located far apart.21,36,37 Morphospaces render lesion-deficit rela-
tions more easily surveyable, allowing correlation analyses based 
on patients’ embedding coordinates. Hence, specific brain features 
can define territories within a morphospace and help predict symp-
toms and brain pathologies, similar to typical machine learning ap-
proaches.38,39 Artificial intelligence (AI) has recently progressed in 
modelling the association of symptom severity with medical im-
aging modalities, e.g. reaching high accuracy and sensitivity in 
the characterization of tumour tissues.40 However, AI models 
need to be refined with a broader spectrum of clinically practical 
end points, including neuropsychological measures. The next chal-
lenge will be making AI patient-centric for a more effective deploy-
ment into the clinical routine and potentially benefiting patients’ 
quality of life.41

To drive this challenge forward, we propose a modelling ap-
proach that employs a morphospace to predict neuropsychological 

assessments of one of the most common neurological disorders: 

stroke.42 We first mapped the distribution of 1333 brain disconnec-

tion patterns in stroke—the disconnectome morphospace. A se-

cond dataset (training set) with rich neuropsychological measures 

1 year after stroke was imported into this disconnectome morpho-

space. This second dataset enriched the morphospace with clinical 

symptoms obtained from 86 neuropsychological assessments. An 

out-of-sample validation set with the same neuropsychological 

data assessed prediction accuracy. This procedure, referred to as 

Disconnectome Symptoms Discoverer (DSD), reliably predicted 

the performance of patients with a mean absolute error below 

20%. To make the DSD tool readily available to the clinical–academ-

ic community and facilitate its translation and incorporation into 

the clinic, we provide an open-access web application (http:// 

disconnectomestudio.bcblab.com), in which individual disconnec-

tion patterns can be uploaded to predict the expected 1-year neuro-

psychological scores. We also demonstrated the DSD model 

mailto:liatalozzi@gmail.com
mailto:michel.thiebaut@gmail.com
http://disconnectomestudio.bcblab.com
http://disconnectomestudio.bcblab.com
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generalizability by including three external cohorts. The web ap-
plication will be interactively updated, thanks to future crowd-
sourcing, informing the DSD model with any newly available 
datasets.

Materials and methods
Bash and Python programming languages were used for automatiz-
ing all the processing steps summarized in Fig. 1 and with more de-
tails in Supplementary Fig. 1.

Stroke lesions

Information on datasets is summarized in Table 1.
Lesion data were derived from five different international cen-

tres (datasets 1–5). Across all five datasets acute MRI data was ac-
quired within 2 weeks of stroke onset. Dataset 1: (n = 1333 
participants) MRI scans acquired at University College London 
Hospitals.37,43 MRI scans (1.5 T and 3 T) were acquired across sev-
eral scanners during the routine clinical care of patients presenting 
with acute ischaemic stroke. Patients were on average 64 ± 16 years 
old (age range: 18–97 years) and 56% were male. This cohort was re-
cruited as part of a study approved by the West London and GTAC 
Research Ethics Committee. Dataset 2 was recruited at the School of 
Medicine at Washington University in St. Louis and included both 
MRI and neuropsychological assessments.25 The MRI clinical scans 

were acquired with a standardized 3 T protocol. The MRI clinical 
scans were acquired with a standardized 3 T protocol. The neuro-
psychological assessments evaluated for dataset 2 were conducted 
on average 1 year post-stroke onset (see Table 1 for more informa-
tion). All dataset 2 participants provided informed consent follow-
ing the Declaration of Helsinki (2013) and procedures established by 
the Washington University in Saint Louis Institutional Review 
Board. Dataset 2 was divided into two independent subgroups: da-
taset 2-training and dataset 2-validation. From dataset 2 a subgroup 
of patients (dataset 2-validation) was randomly selected with the 
constraint that the subgroup’s lesion variability map was balanced 
across brain hemispheres and vascular territories (Supplementary 
Fig. 2) and the dataset 2-validation gender and age distributions 
were comparable to dataset 2-training. As such, dataset 2-valid-
ation was used as a patient population representative external da-
taset. For dataset 2-training (n = 119 participants), the patient 
average age was 54 ± 11 years (age range: 19–83 years) and 54.6% 
were male. The average education level was 13 ± 2.5 years and 
91.6% were right-handed. For dataset 2-validation (n = 20 partici-
pants), the average age was 58 ± 12 years (age range: 34–95 years), 
with 60% male; average education level was 14 ± 2.6 years and 
85% were right-handed.

Dataset 3 contains n = 26 stroke patients [average age 55 ± 15.7 
years (age range: 14–92 years), with 46% male, average education le-
vel was 12.4 ± 2.7 years and 96% were right-handed] selected from 
the Iowa Neurological Patient Registry (USA).44

Figure 1 Graphical summary of the analysis workflow. Normative disconnectomes were derived from Human Connectome Project (HCP) participants 
and the patient’s lesion location. Dataset 1 defined the disconnectome morphospace (a latent space of two dimensions). Dataset 2 was imported into 
dataset 1’s morphospace to capture the neuropsychological scores’ variability and their voxel-wise correlations —the Disconnectome Symptoms 
Discoverer (DSD). This analysis extended to the 86 neuropsychological scores and allowed us to create a Neuropsychological White Matter Atlas 
(NWMA). Dataset 3 served as an out-of-sample validation of the DSD prediction. As an external cohorts’ model replication, dataset 4 served as a training 
set of the DSD method and dataset 5 as external validation. For broader model testing, the DSD calculation was integrated into an open-access inter-
active web application (http://disconnectomestudio.bcblab.com). Full details are provided in Supplementary Fig. 1 and the Supplementary material.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://disconnectomestudio.bcblab.com
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
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Dataset 4 contains n = 190 stroke patients (average age 58.4 ± 
15.4 years [age range: 8–84 years], with 45% male and 93% right- 
handed) recruited from the Centre Hospitalier Universitaire Lille 
(France).

Dataset 5 contains n = 193 stroke patients (average age 63.7 ± 12 
years [age range: 18–79 years], with 65% male and 92% right- 
handed) recruited from the Centre Hospitalier Universitaire 
Grenoble Alpes (France). MRI clinical scans were acquired with a 
standardized 1.5 T protocol within 15–30 days after stroke onset. 
In these datasets the Bells Test was performed between 30 and 
90 days after stroke onset.45 Each cohort was approved by the local 
institutional review board (CHU de Lille for DISCONEGLECT, CHU 
Grenoble Alpes for DOBRAS) and registered at the National 
Committee for Informatics and Freedom (Commission Nationale 
Informatique et Liberté). According to French Law, observational 
studies do not require approval by a national ethics committee.

Neuropsychological scores

A total of n = 86 neuropsychological scores were available for data-
set 2. The details of each neuropsychological evaluation (grading, 
test battery, administration) are reported in the Supplementary 
material, Section C. In brief, motor abilities (Section C.1) were as-
sessed for upper limb hand grasping, gripping, pinching, grip 
strength, peg replacement, motion shoulder flexion, wrist exten-
sion, and lower limb walking. Language abilities (Section C.2) 
were assessed using picture naming, non-word repetition, com-
mands, sentence reading, sentence comprehension and semantic 
fluency. Visuospatial abilities (Section C.3) were tested for using 
discrimination accuracy, reaction time, subbing, behavioural in-
attention, and unstructured symbol cancellation. Visuospatial 
memory (Section C.4) was evaluated using abstract figures retrieval 
scores and verbal memory (Section C.5) for listed word recognition 
scores. A pain scale during the MRI scanning was recorded (Section 
C.6) and a stroke sickness questionnaire administered, investigat-
ing physical and psychosocial daily sickness (Section C.7). Despite 
some scores’ collinearity, most evident for visuospatial abilities, 
we chose to use single score measures instead of combined score 
indices,46,47 to remain data-driven and clinically compatible with 
individual patients’ measures.

Semantic fluency (animals) was the only comparable test be-
tween dataset 2 and dataset 3 and, accordingly, was chosen to per-
form the external validation of the prediction model. On average, 
the time of assessment after stroke was 11.1 ± 7.2 months (3.7– 
29.4 months).

For datasets 4 and 5, the Bells Test, a cancellation test, was cho-
sen to validate the external training and out-of-sample prediction. 
Participants are asked to circle 35 bells among 280 distractors in this 
test.45,48

All participants gave written informed consent to participate in 
the conducted study, which was approved by the respective 
Institutional Review Boards.

Disconnectome

Patients’ diffusion-weighted data were not required for the discon-
nection analyses. Instead, white matter disconnection maps were 
derived from a normative diffusion-weighted dataset composed 
of n = 176 healthy participants, 45% males with 7 T MRI diffusion- 
weighted scans (HCP). Whole-brain tractography was recon-
structed using the same procedure reported in Thiebaut de 
Schotten et al.21 Briefly, the default HCP preprocessing pipeline 

(v3.19.0),49 including TOPUP and EDDY corrections (https://fsl. 
fmrib.ox.ac.uk), was applied to the participants’ diffusion-weighted 
images, selecting the 65 volumes of uniformly distributed gradient 
directions with b-value = 2000 s/mm2 (1.05 mm isotropic voxel, 131 
near-axial slices, acceleration factor of 3, echo time = 71.2 ms, re-
laxation time = 7000 ms and phase encoding direction paired anter-
ior–posterior and reverse). Deterministic tractography was 
performed in the native diffusion MRI space using the software 
StartTrack (Version ST_20170905, https://www.mr-startrack.com). 
For the damped Richardson–Lucy algorithm,50 a fixed fibre re-
sponse factor of α = 1.5 × 10–3 mm2/s was set with a geometric 
damping parameter of 8 and 200 interactions. For the spherical fibre 
orientation distribution, an absolute threshold of three times a grey 
matter isotropic voxel was set, and a relative threshold of 8% of its 
maximum amplitude.51 Whole-brain tractography streamline 
propagation was performed with a modified Euler algorithm (angle 
threshold of 35°, step size of 0.5 mm and minimum streamline 
length of 15 mm). Subsequently, first the subject tractography 
was converted into streamline density volumes where the inten-
sities corresponded to the number of streamlines crossing each 
voxel. Second, a study-specific template of streamline density vo-
lumes was generated using the Greedy symmetric diffeomorphic 
normalization (GreedySyN) pipeline distributed with the 
Advanced Normalization Tools (ANTs) library.52 The template 
was then co-registered to the MNI152 space (2 mm resolution). 
Third, individual streamline density volumes were registered to 
the streamline density template in the MNI152 space and the 
same transformation was applied to the individual whole-brain 
streamline tractography using the trackmath tool distributed 
with the software package Tract Querier53 using ANTs 
GreedySyN. This step produced whole-brain streamline tractogra-
phies in the standard MNI152 space.

Stroke lesions were manually delineated in MRI scans and sub-
sequently normalized to the MNI152 space (2 mm resolution) using 
the enantiomorphic normalization tool in the BCBtoolkit (http:// 
toolkit.bcblab.com). Accordingly, before registering the patient’s 
T1-weighted image to the MNI152, the lesioned areas were replaced 
with the contralateral healthy tissues to calculate the normaliza-
tion transformation.54 Then, disconnectome profiles were pro-
cessed with the BCBtoolkit.55 HCP tractography was filtered 
considering only streamlines passing through each stroke lesion. 
To obtain a normative population group statistic, every filtered 
tractography was binarized. Thus, if at least one streamline passed 
in a voxel, the voxel value would be one. This step allowed the cre-
ation of a summarising percentage (%) map. Namely, for each 
stroke patient, a map ranging from 0 to 1 was obtained according 
to the number of HCP participants who would have reported a 
streamline disconnection in that voxel.

The disconnectome morphospace

Dimensionality reduction of patients’ disconnectome was obtained 
using the Uniform Manifold Approximation and Projection (UMAP) 
method,56 a non-linear embedding method that distributes data 
variability along major axes. Specifically, UMAP projects data into 
a newly constructed manifold while preserving the original pair-
wise distance between the input data structure over the global dis-
tance. The UMAP manifold obtained will follow the theoretical 
framework of Riemannian geometry and algebraic topology. 
Accordingly, patients with a similar disconnection profile cluster 
together in the UMAP morphospace and patients with different dis-
connection profiles are located further apart. For dataset 1 the 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk
https://www.mr-startrack.com
http://toolkit.bcblab.com
http://toolkit.bcblab.com
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three-dimensional disconnectome maps were vectorized and im-
ported as features of the embedding methods. UMAP parameters 
were set to default parameters (i.e. an approximation of 15 
neighbours and a minimum 0.1 Euclidean distance to obtain a two- 
dimensional embedding of dataset 1). A two-latent variable config-
uration was preferred to provide a more intuitive space facilitating 
clinically meaningful interpretation, a space locally connected as 
Riemannian manifold that we addressed in the paper as the discon-
nectome morphospace.56 The UMAP embedding transformation 
was stored as a Python object, using the Pickle library, to apply 
the same low-dimensional transformation when new patients are 
imported into the model. Subsequently, coordinate scales were 
shifted to only have positive coordinates with zero as origin.

The Disconnectome Symptom Discoverer

Statistical correlations between patient localization in the discon-
nectome morphospace and neuropsychological scores were con-
ducted. Before the multiple regression formula, UMAP coordinates 
were converted into a 2D nifti image (260 × 260 matrix, 0.05 mm pixel 
size), and a Gaussian kernel spatial smoothing of 1 mm was applied 
(using FSL libraries https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). We used a 
high resolution (0.05 mm) to avoid an overlap between embedded 
coordinates; subsequently, a spatial smoothing of 20 pixels (i.e. 
Gaussian kernel sigma 1 mm) was chosen to ensure coverage of 
the whole morphospace. This step was conducted to model for the 
uncertainty of UMAP coordinates and to obtain a spatial distribution 
of patient localization in the disconnectome morphospace. 
Pixel-wise Pearson correlations between the patient probability of lo-
calization and neuropsychological scores were conducted with itera-
tive loops in Python (python numpy.corrcoef). Medium effect size 
correlation results only were considered informative (R > |0.2|). 
Subsequently, because multiple clusters of voxels survived the 
threshold, a principal component analysis (PCA) was run to 
compress the patient coordinate distribution variability. Three 
main principal components have been considered (Python 
sklearn.decomposition.PCA). The number of principal components 
was chosen considering the amount of variance explained (always 
higher than 80%) and the number of morphospace clusters surviving 
the |R| > 0.2 threshold that included patients’ UMAP projection data- 
points (no more than three). Subsequently, patients’ principal com-
ponents have been entered, as dependent variables, in the multiple 
regression model (Python sklearn.linear_model.LinearRegression) to 
predict neuropsychological scores:

score1−year prediction = c +
3

i=1
wi PCA patient score (1) 

where c is the intercept of the linear regression model, wi  are the 
model weights and PCApatient score the model variables obtained as 
the inner product between the patient distribution of localization 
and PCA components.

The multiple regression formula was trained with dataset 
2-training disconnectomes and validated using the out-of-sample 
dataset 2-validation and dataset 3 patients, and independently 
trained with dataset 4 and tested with dataset 5.

Accuracy of prediction was assessed as the mean absolute error 
(MAE)57 normalized by the maximum score obtained in the neuro-
psychological evaluation (MAE %):

MAE % =
N

i=1 |measured − predicted|/N
max(score)

(2) 

Such normalization allows the comparison of prediction accuracy 
across different clinical scales, and it offers an intuitive interpret-
ation for error measures of individual scores—the per cent of error 
(MAE %).

To assess how well our model, the DSD, fits group observations, 
we report the goodness of fit of predictions R2. Such a measure was 
calculated only when the number of subjects included was more 
than 20. Thus, R2 is provided for all the datasets except dataset 
2-validation, where individual MAE % measures are reported.

Disconnectome Symptom Discoverer comparison 
with lesion and functional connectivity models

We statistically compared the DSD’s R2 with six other commonly 
used prediction models. These models included (i) the disconnec-
tome voxel-based approach (D-VB)46; (ii) the symptom discoverer 
(SD) embedding of the lesion data21 (L-SD); (iii) the lesion voxel- 
based symptoms mapping (L-VB)4,58; (iv) the functional disconnec-
tome voxel-based symptoms mapping (f-VB); (v) the lesion volume 
and age SD (VolAge-SD); and (vi) the mean of the group. The D-VB 
approach allows the comparison of the DSD prediction power to 
the classic disconnection voxel-based approaches. The UMAP em-
bedding of the lesion data (L-SD) is the same sophisticated frame-
work as the DSD applied directly to the patients’ lesion data, to 
test the DSD added predictive value of disconnection to lesion top-
ology in a comparable framework. L-VB allows the comparison of 
the DSD prediction power to the classic lesion approaches. The 
fourth model exploits functional dysconnectivity maps in a voxel- 
based association with clinical symptoms. The fifth model com-
pares the DSD to predictions that consider two factors commonly 
argued as a primary determinant for recovery after stroke (i.e. le-
sion size and age)32,59 and the sixth model simply considers the 
mean of the neuropsychological scores.

Functional disconnectivity maps were analysed following the 
procedure of Boes and colleagues.60 We processed the same HCP co-
hort (n = 176, 7 T) to estimate the synchronous activity of the le-
sioned area and the rest of the brain. Subsequently, similarly to 
the disconnectome maps procedure (see the ‘Disconnectome’ sec-
tion), an HCP group average was calculated in the MNI space to pro-
duce functional disconnection maps, in which each voxel ranged 
between −1 and 1. Negative and positive values correspond to the 
Pearson correlation between the lesion and other areas of the 
brain.46

For the SD methods (DSD, L-SD and VolAge-SD), for which mul-
tiple regressions used a training set, a k-fold validation was as-
sessed by randomly assigning 70% of the Washington St. Louis 
cohort (dataset 2) as the training set in each iteration (n = 100). For 
the voxel-based (VB) approaches (D-VB, L-VB, f-VB) we ran 5000 per-
mutations and estimated the goodness of fit of the model (R2) for 
the most significant voxels (98th percentile). This code is openly 
available in a previous publication of our group21: https://github. 
com/chrisfoulon/BCBlib/blob/devel/bcblib/scripts/effectsize_T2R. 
py. VB correlations included all the Washington St. Louis patients 
(dataset 2). Finally, we compared the DSD R2 results to the other 
methods using a two-tailed paired t-test and applying the 
Bonferroni correction for multiple comparisons.

Disconnectome studio web application

The DSD web application (http://disconnectomestudio.bcblab.com) 
was built using the Django framework (https://www.djangoproject. 
com). This web framework allows database manipulation and is 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://github.com/chrisfoulon/BCBlib/blob/devel/bcblib/scripts/effectsize_T2R.py
https://github.com/chrisfoulon/BCBlib/blob/devel/bcblib/scripts/effectsize_T2R.py
https://github.com/chrisfoulon/BCBlib/blob/devel/bcblib/scripts/effectsize_T2R.py
http://disconnectomestudio.bcblab.com
https://www.djangoproject.com
https://www.djangoproject.com
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Python-based. The DSD front end was created with standard 
Javascript and css templates, whereas the backend is hosted in a 
DigitalOcean web server (https://www.digitalocean.com). 
Gunicorn and Ngnix are used for the web application live 
production.

The Neuropsychological White Matter Atlas

To create a white matter atlas of the evaluated neuropsychological 
assessments, white matter disconnectomes (dataset 1) were corre-
lated with patients’ PCA scores, evaluated by running the predic-
tion model on dataset 1. The disconnectome data were used in 
defining the UMAP space, whereas the DSD model weights as vari-
ables of the multiple regression model to predict long-term neuro-
psychological symptoms. Using randomise (FSL libraries) a 
generalized voxel-based linear regression model was run, with dis-
connectome maps as independent variables and PCA scores as de-
pendent variables. To address the result of replicability this 
procedure was repeated twice, splitting the dataset 1 into two 
halves of n = 666 subjects each.

The randomise T-maps obtained were used to calculate the cor-
respondent effect size maps (f2, python code available in the open 
data section at http://www.bcblab.com). For each neuropsycho-
logical score, the three PCA scores, obtained from the DSD model, 
were evaluated and the maximum effect size across the compo-
nents was considered. Subsequently, the highest effect size across 
neuropsychological assessments was reported in the NWMA sum-
mary map (FSL libraries find_the_biggest function). The replicability 
of the NWMA was quantified by means of Pearson correlations be-
tween the two dataset 1 summary maps.

Data availability

All neuropsychological score maps used for defining the white mat-
ter atlas of neuropsychological components are freely available at 
https://neurovault.org/collections/11260/. The raw dataset im-
ported in the BCBtoolkit software to calculate individual patient 
disconnectomes is available at https://www.humanconnectome. 
org (7 T diffusion data). In addition, processed data are available 
on request to the corresponding author or directly at https://osf. 
io/5zqwg/. The code used in the analyses is available as part of 
the BCBtoolkit package http://toolkit.bcblab.com and the DSD web 
application http://disconnectomestudio.bcblab.com. Any addition-
al information is available upon request to L.T. and M.T.S.

Results
The disconnectome morphospace

The latent disconnectome configuration was defined based on n = 
1333 stroke patients43 (see dataset 1 in Table 1) because its numer-
osity of >1000 stroke patients allowed for an ecological description 
of lesion variability for clinical translation.

Dataset 1 stroke lesions were processed to obtain disconnec-
tome maps. Disconnectome maps quantify the pattern of white 
matter connections interrupted by each lesion based on the 
high-resolution tractography of a healthy population.21,61,62

Subsequently, the UMAP56 method was used to embed the discon-
nection complexity. A latent two-dimensional configuration of the 
disconnectome maps was obtained. Subsequently, external patient 
cohorts were imported into the dataset 1 latent configuration to 
train (datasets 2-training and 4) and test (datasets 2-validation, 3 

and 5) the morphospace ability in predicting neuropsychological 
performance 1 year after the stroke.

Patient disconnectome profiles were distributed based on cor-
tical lesion location and commonly disconnected white matter 
tracts. Patients with major left or right hemisphere disconnections 
were embedded in the right and left half of the morphospace, re-
spectively. Similarly, patients with posterior or anterior disconnec-
tions were localized at the top or the bottom of the embedded 
space. For instance, patients with a prominent disconnection of 
the right inferior fronto-occipital fasciculus (IFOF) were located at 
the top left extremity of the morphospace. In contrast, left corti-
cospinal tract (CST) and arcuate fasciculus (AF) disconnections 
were located relatively more central and toward the bottom right 
side of the morphospace (Fig. 2). Importation of the different data-
sets showed consistency in the distribution of the disconnectivity 
pattern. These results demonstrate that  the morphospace appro-
priately segregated the different profiles of disconnections (see 
Supplementary Fig. 3 for more details).33,63

The composite morphospace

The extent to which the disconnectome morphospace can predict 
different neuropsychological performances is currently unknown. 
To answer this question, we took advantage of the second inde-
pendent dataset of stroke patients25 (n = 119; see dataset 2 in 
Table 1) who were extensively tested with standard neuropsycho-
logical assessments (n = 86,  Supplementary Table 1). For each pa-
tient of the second dataset, disconnectome maps were calculated 
and imported into the disconnectome morphospace using the 
UMAP-defined transformation. To tackle embedding uncertainty, 
patient coordinates were spatially smoothed in the 
morphospace (see the ‘Materials and methods’ section). In so doing, 
each patient’s coordinates in the disconnectome morphospace 
were converted into probabilities of localization. A Pearson correl-
ation approach was then used to estimate the association between 
each morphospace coordinate and neuropsychological perform-
ance (see Supplementary Fig. 1 for more details). Figure 3 indicates 
that a medium to large effect size association (all |R| > 0.2) existed 
between territories in the disconnectome morphospace and neuro-
psychological scores [Fig. 3A(i)–C(i)]. Importantly, for some scores, 
multiple clusters in the disconnectome morphospace, correspond-
ing to different disconnection profiles, apparently led to the 
same neuropsychological impairment. This confirmed that no 
one-to-one relationship exists between lesioned structures and 
clinical disorders, and likewise, different brain damage locations 
can lead to the same functional impairment. We did not perform 
a simple linear association between the morphospace coordinate 
scale and neuropsychological scores. However, to extensively cap-
ture data variance in the morphospace, patients’ probability of lo-
calization within the significant clusters was modelled by a PCA 
(later referred to as spatial PCA). For each patient, the first 
three components of the spatial PCA were entered into a multiple 
regression analysis to predict single-patient neuropsychological 
scores 1 year after symptom onset. The multiple regressions cre-
ated equations, modelling the relationship between each patient’s 
potential localization in the disconnectome morphospace (i.e. as 
defined by the first three components of the spatial PCA) and their 
neuropsychological scores. In so doing, we obtained a composite 
morphospace that takes advantage of the joint strengths of the 
two datasets. The composite morphospace accurately (with a me-
dium to large effect size) and reliably predicted 70 of 86 neuro-
psychological scores ( Supplementary Table 2).

https://www.digitalocean.com
http://www.bcblab.com
https://neurovault.org/collections/11260/
https://www.humanconnectome.org
https://www.humanconnectome.org
https://osf.io/5zqwg/
https://osf.io/5zqwg/
http://toolkit.bcblab.com
http://disconnectomestudio.bcblab.com
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
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Disconnection Symptoms Discovery web application

To make this resource and method available to the clinical- 
research community, we deployed an interactive web application 
platform, DSD  (http://disconnectomestudio.bcblab.com). The 
DSD platform requires the input of disconnection maps. The 
DSD tool returns the expected 1-year neuropsychological scores 
for individual disconnectome maps (see the user guide in the 
Supplementary material, Section E). The prediction model relies 
on the databases presented in this study and can be updated on- 
demand with new neuropsychological assessments and patients’ 
disconnectomes.

Disconnectome morphospace component mapping

In the next level, we brought the score prediction results back to the 
neuroimaging space to explore the neuroanatomical patterns lead-
ing to symptoms. The first dataset was split in half (2 × 666 discon-
nectome maps) to assess reproducibility. Latent patterns of 
predicted neuropsychological performances were statistically asso-
ciated with brain disconnection maps of the two halves of the first 
dataset using voxel-wise linear regressions. In doing so we obtained 
two sets of maps of brain disconnection for each neuropsychologic-
al score [see example in Fig. 3A(ii)–C(ii) and all maps together with 
their full discussion in Supplementary material, Section C]. We 
were able to produce a comprehensive atlas of the brain disconnec-
tions associated with neuropsychological scores and the statistical 

comparison of the two sets of maps indicated an excellent level of 
reproducibility (Pearson R = 0.82). Figure 4A summarizes the highest 
statistical associations spanning from medium (0.15 > f2> 0.35) to 
high effect size (0.35 > f2), intending to provide a white matter atlas 
framing the novel NWMA (https://neurovault.org/collections/ 
11260/). The highest effect sizes were in the left hemisphere, par-
ticularly in the frontal lobe connections, indicating the strongest as-
sociations between these disconnections and neuropsychological 
scores (Fig. 4B). Some areas can also be associated with multiple 
neuropsychological scores. To summarize this information, we cal-
culated a versatility map that indicates how many neuropsycho-
logical scores can be predicted with a large effect size per volume 
unit of white matter (Fig. 4C). The versatility maps revealed a clear 
asymmetry between the left and the right hemispheres. This lower 
effect size and higher versatility in the right hemisphere 
suggest that more work is required to finely measure and dissociate 
right hemisphere functions in neuropsychology.

External cohorts model validation

To assess the accuracy of the predictions, data derived from a 
third independent dataset25 (20 stroke patients withheld from 
the original dataset 2; see dataset 2-validation in Table 1) were 
projected into the morphospace. From there, equations derived 
from the composite morphospace were applied to predict individ-
ual neuropsychological scores. Prediction accuracy of individual 
neuropsychological scores was assessed using the MAE, which 

Figure 2 Disconnectome morphospace. Embedding of n = 1333 stroke disconnectomes (dataset 1) using the UMAP method (A). External cohort projec-
tions in the disconnectome morphospace for dataset 2-training (B) and dataset 2-validation (C); dataset 3-validation (D), dataset 4-training (E) and da-
taset 5-validation (F).

http://disconnectomestudio.bcblab.com
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
https://neurovault.org/collections/11260/
https://neurovault.org/collections/11260/
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reflects the difference between the observed and predicted scores 
normalized by the maximum score (MAE %; Fig. 5). The MAE is a 
standard metric for assessing machine learning accuracy 
(https://scikit-learn.org/stable/modules/model_evaluation.html) 
and it provides a clinically meaningful measure.57,64 Individual 
scores were predicted with an average MAE of 16.1 ± 7 (range 4.4, 
39.2) %. More than three-quarters (n = 65) of all scores available 
(n = 83) were predicted in this third independent dataset with an 
MAE < 20% (see Supplementary Table 3 for comprehensive 
statistics).

From a personalized clinical perspective, the neuropsychologic-
al profiles of these 20 patients were assessed by comparing the 
measured and predicted scores for each patient. Figure 5 displays 
a colour map of the predicted and measured scores for dataset 
2-validation.

Additionally, Fig. 6 illustrates three representative patients 
derived from dataset 2-validation. The radar plots demonstrate 
the correspondence of the DSD model prediction with the 
measured scores. The DSD prediction agreement with the pa-
tient’s recorded performances has been reported and discussed 
in the Supplementary material, Section F (Supplementary Figs 
58–77).

The DSD model was further tested in a third external cohort— 
dataset 3 (see Table 1 for demographics) for semantic fluency 
(animals) scores, the only test comparable across their different 
neuropsychological routine assessments. The DSD model predic-
tions for dataset 3 achieved R2 = 0.201 and MAE % of 13.71% 
(Fig. 7B).

Further, we demonstrated the DSD model generalizability by 
training and validating it in two different cohorts (datasets 4 and 

Figure 3 Composite morphospace. The composite morphospace corresponds to the disconnectome morphospace statistically combined with individ-
ual neuropsychological scores, A(i)–C(i) are three examples of different neuropsychological score associations with morphospace territories presented 
together with [A(ii)–C(ii)] their prototypical disconnection profile. In the morphospace background, Pearson correlations (R) with neuropsychological 
scores are shown location-wise; medium effect size territories (|R > 0.2|) have been delineated. All neuropsychological assessments and maps are re-
ported in the Supplementary material (Section C). f2 = effect size; laragrasp = left grasping Action Research Arm test test; boston_raw = Boston naming 
test; pos_acc_disengage = accuracy in the Posner orienting task; CC = corpus callosum; EC = external/extreme capsule; IFg = inferior frontal gyrus; Ins = 
insula; LSA = long segment of the arcuate fasciculus; MTg = middle temporal gyrus; STg = superior temporal gyrus; Str = striatum; Th = thalamus.

https://scikit-learn.org/stable/modules/model_evaluation.html
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
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5). We trained the DSD model for dataset 4, a French cohort of stroke 
patients comprising n = 190 participants, and we tested the trained 
DSD model on an external cohort, dataset 5 of n = 193 participants. 
For the Bells Test score predictions, in the training phase R2 = 0.2985 
and MAE of 16% were achieved, in the external validation R2 = 
0.1797 and MAE % of 13.69% (Fig. 7C).

R2 comparison with other predictive models

The goodness of fit (R2) has been calculated by regressing measured 

and predicted scores to assess the neuropsychological variance ex-

plained by the proposed prediction model. In the model training 

phase (dataset 2-training), the average R2 achieved was 0.19 ± 0.09 

Figure 4 NWMA. (A) The axial projection of the labelling of neuropsychological scores corresponds to the strongest white matter associations. Visit 
https://neurovault.org/collections/11260/ or Supplementary material, Section C to view individual neuropsychological white matter maps. The label-
ling text font size and curvature reported were manually set to suit the size of the significant clusters and to follow the orientation of the white matter 
(see Supplementary material,  Section D for high-resolution images). (B) The colour map corresponds to the highest effect size score (f2) across neuro-
psychological scores. (C) The colour map corresponds to the number (n) of neuropsychological scores overlapping their effect size map distributions. 
Such overlap will be addressed as versatility maps. MNI152 reference Z coordinates are reported below each axial slice.

https://neurovault.org/collections/11260/
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data


Latent disconnectome symptom predictions                                                                        BRAIN 2023: 146; 1963–1978 | 1973

Figure 5 Accuracy of the neuropsychological scores. Left: Predicted neuropsychological scores, according to the composite disconnectome morpho-
space modelling. Middle: Measured neuropsychological scores 1 year after the stroke onset. Right: Normalized error as the difference between predicted 
and measured scores. Columns correspond to single patients’ neuropsychological profiles. Rows correspond to different neuropsychological scores. 
Scores were normalized with respect to the maximum scale score for visual purposes. See Supplementary Fig. 4 for the same figure derived from 
the training set. Full names of the abbreviations used for the scores are available in Supplementary Table 1 and at http://disconnectomestudio. 
bcblab.com.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awad013#supplementary-data
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(range 0.05, 0.67). See Supplementary Table 2 for the prediction R2 of 
each neuropsychological score. Moreover, to assess model stability, 
we randomly assigned patients in the DSD model training and valid-
ation, with a 100 permutation k-fold validation (all dataset 2-training 
and -validation). The training set R2 distribution across permutations 
is reported in Supplementary Fig. 4C. On average the median R2 

achieved across iterations was 0.20 ± 0.14 (range 0.10, 0.83).
In Fig. 7C, the box plot of the individual R2 obtained for each 

model shows that the variance explained by the DSD model was 
significantly higher to all the six compared methods.

Discussion
Applying state-of-the-art data-embedding methods, we succeeded 
in combining complementary databases of stroke patients. We pro-
duced a novel atlas of neuropsychological scores associated with 
brain disconnections—the NWMA. The proposed atlas is associated 
with an openly available web application, the DSD, which capitalizes 
on our methods and provides new anatomical insights into cognitive 
symptoms for researchers and clinicians. Out-of-sample validation 
of the DSD model (dataset 2-validation) accurately predicted 65 
neuropsychological scores with a small prediction error below 20%.

Similar patterns of disconnections in our stroke cohorts were 
distributed closely in the embedding space, comparable to other re-
search fields using the UMAP method for data clusterization 
purposes,56 e.g. single-cell genetic transcriptomes.65,66 Such em-
bedded information allowed us to associate single-patient neuro-
psychological profiles at 1 year after a stroke with territories in 
the morphospace and patterns of disconnections. Therefore, the 
disconnectome morphospace acted as a reference to import and 
summarize new stroke disconnections.

By exploring white matter correlates systematically, we created a 
comprehensive atlas of the neuropsychological scores associated 
with brain disconnections. Our study evaluates single score mea-
sures. This rationale allowed us to discuss the similarities and differ-
ences in the white matter correlates of the individual scores and 
create a white matter neuropsychological atlas (NWMA; see 
Supplementary material, Section C). Additionally, in the context of 

external individual patients’ evaluation, single scores have the advan-
tage of being comparable with other cohorts. Classical functional as-
sociations were confirmed, such as the lateralization of motor 
functions, the left perisylvian language network, the frontoparietal at-
tentional networks or the right insula for sickness sensations. In add-
ition, new insights on brain functioning and disconnection were 
reported, such as the callosal connectivity related to visual neglect, 
a cerebellar hub for visuospatial memory and the lingual gyrus for ver-
bal memory (for individual results and discussion see Supplementary 
material, Section C). Of note, anatomical predictors of left and right 
motor dysfunctions were different. Widespread and bilateral white 
matter contribution including the left corticospinal tract was related 
to right motor dysfunctions 1 year after a stroke. However, long-term 
left motor dysfunctions were associated with the disconnection of 
right fronto-temporal and insular connections (Fig. 3 and 
Supplementary material, Section C.1). These findings agree with pre-
liminary reports for overall motricity indices47 and suggest an asym-
metrical neural bases for motor functions.15,47,67–69

Overall, NWMA’s greatest effect size in the left hemisphere high-
lights the left frontal lobe as a crucial hub for motor and language 
functions (Fig. 4B). On the contrary, the highest numerosity of func-
tion overlap on the right (Fig. 4C) is primarily due to pain and sickness 
NWMA maps extensively overlapping in the right frontoparietal and 
insular connections (Supplementary Figs 39–49). Only half of the 
visuospatial scores presented an exclusive right hemisphere involve-
ment, e.g. the Mesulam cancellation test presented left lateralized or 
bilateral distributions (Supplementary Fig. 23).

The NWMA we are providing allows exploiting acute MRI scans 
to predict long-term stroke symptoms severity. These results indi-
cate the suitability of the disconnectome model to predict a wide 
range of cognitive behavioural performances and identify a com-
plete personalized, individual patient profile. This information 
will be a valuable resource in clinical settings, for example for the 
planning of personalized therapeutics and rehabilitation strategies. 
This is a step forward in comparison to many previous stroke AI 
methods that have a merely diagnostic purpose.70 The DSD model 
has a prognostic vocation based on cross-modal data (neuroima-
ging input–neuropsychological outcome prediction).

Figure 6 Personalized neuropsychological profile predictions. Predictions of neuropsychological profiles are reported for three representative patients 
from dataset 2-validation. For each profile, the outside ring indicates the correspondence with neuropsychological domains. Note that the polarity of 
some scores was inverted for readability so that higher scores always indicate better performance. A–C illustrate patients with a left inferior frontal 
lesion associated with chronic motor impairment (A); a left temporoparietal lesion suffering from chronic language impairment (B); and a right cere-
bellar stroke with chronic deficits in visuospatial and verbal memory processes (C). All radar plots from dataset 2-validation are reported in 
Supplementary Figs 58–77.
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However, predictions were not equally accurate across func-
tions (Supplementary Table 3). Three factors might explain these 
differences. First, some neuropsychological scores are more reli-
able than others in assessing performances.71 Second, plasticity 
and interindividual variability might interact with recov-
ery.20,32,72,73 Third, the disconnectome model may not capture all 
the variance of brain injuries. Indeed, hypoperfusion74 and hypo-
metabolism75 factors as well as acute imaging changes such as 
pseudonormalization4 are not currently accounted for. Moreover, 
we arbitrarily chose to create the disconnectome morphospace 
using two embedding dimensions for practical and intuitive pur-
poses. While this proved to be a reliable way to describe the latent 
data structure and predict symptoms, future research might ex-
plore higher dimensionality of the morphospace (data and code 
available on demand from the authors). Finally, we used one of 
the largest and the most comprehensively explored stroke dataset 
available in terms of neuropsychological score. However, as the val-
idation group represented about 20% of the training group, its mo-
dest numerosity limited the power of the validation step. In order to 
circumvent this potential limitation, the DSD web application al-
lows for a wider validation with crowdsourcing and the addition 
of new datasets.

In Fig. 7A, we compared the DSD with six other models using dif-
ferent predictivity frameworks. The DSD UMAP model leveraging 
structural dysconnectivity outperformed lesion and functional dys-
connectivity predictors. The statistical comparison was made 
across n = 86 neuropsychological scores recorded for dataset 2. 
The DSD achieved the highest R2 for motor scores (Supplementary 

Fig. 4C), in agreement with the structural dysconnectivity results re-
cently reported by Bowren et al.44 In contrast, Bowren et al.44 indi-
cated that functional connectivity was the best predictor for 
language scores. Our structural connectivity model, enriched with 
the UMAP method, outperformed f-VB results for language scores. 
This indicates that dimensionality reduction of white matter dis-
connections improves the variability estimation of the language 
network and its statistical association with language impairments. 
We further prove this point by predicting the semantic fluency (an-
imals) score for the same Bowren et al.44 cohort; out-sample predic-
tions achieved an R2 = 0.201 (Fig. 7B). Altogether, this evidence 
demonstrates that disconnectivity predictors may be an optimal 
strategy for neuropsychological scores 1 year after a stroke.

As a proof of concept, we tested the DSD model generalizability 
by training and testing in two entirely different cohorts (datasets 4 
and 5). Figure 7C indicates that the DSD model external cohort pre-
dictions agreed with the actual measurements with a medium ef-
fect size (goodness of fit R2 = 0.18 for the Bell’s score). Moreover, 
disconnectome and lesion data modelled with UMAP outperform 
voxel-based approaches (Fig. 7A). This result validates our initial 
observation, for which no one-to-one relationship between struc-
tures and clinical presentation is possible, but rather the integrated 
brain functioning necessitates high-order modelling for an accur-
ate description.26

In the current work, we aimed to propose a novel framework that 
leverages MRI data to predict patients’ long-term clinical/cognitive 
scores. We obtained access to five independent stroke cohorts 
thanks to a highly collaborative research network. Dataset 1 

Figure 7 DSD R2 and comparison with other predictive models. (A) The box plot reports all the R2 across the neuropsychological scores (dataset 2) by 
regressing measured and predicted scores as obtained from the DSD compared with six other models: the disconnectome voxel-based (VB) correlations 
(D-VB), the symptom discoverer (SD) UMAP embedding of the lesion data (L-SD), the lesion VB mapping (L-VB), the functional dysconnectivity VB (f-VB), 
the SD with variables lesion volume and age (VolAge-SD) and the mean of the group. The box shows the quartiles, and the whiskers extend to the rest of 
the distribution, excluding the interquartile range outliers. Inside the boxes, the line indicates the median R2: R2 = 0.20 for the DSD, R2 = 0.16 for the 
D-VB, R2 = 0.14 for the L-SD, R2 = 0.11 for L-VB, R2 = 0.03 for f-VB, R2 = 0.07 for lesion size and age as predictors and R2 = 0 for the group mean. The asterisks 
correspond to the P-value obtained from a paired t-test (2-tails, Bonferroni corrected for multiple comparisons): ***P < 0.001. (B) DSD out-of-sample pre-
dictions for the semantic fluency test, animal category, n = 26 stroke patients (dataset 3). (C) DSD replication and out-of-sample predictions for visuo-
spatial abilities, Bell’s score, n = 193 stroke patients (dataset 5).
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included MRI and was acquired in >1000 patients and informed the 
UMAP method on the variability of white matter damage subsequent 
to a stroke. With dataset 2, we trained a regression model for predict-
ing 86 neuropsychological scores. One of those, the semantic fluency 
test, was tested in an independent cohort, dataset 3. Datasets 4 and 5 
served to train and test the same datasets 2 and 3 models for visuo-
spatial abilities and demonstrated the proposed framework’s gener-
alizability to external cohorts. The commonality of clinical 
assessment across centres dictated the specific score choices. 
However, to promote future model testing and collaborative re-
search at the global level we developed the DSD web application, a 
free and user-friendly web browser tool that only requires an 
Internet connection and a lesion disconnection data. Instant soft-
ware access and automatic updates make the world-wide web the 
ideal medium for clinical translations. The application of the DSD 
method can potentially help the assessment of personalized progno-
sis. The developed web application has been released to facilitate a 
broader model validation critical for future global validation testing 
the DSD reliability. Only after this indispensable validation step 
should the DSD web application be considered for clinical trial test-
ing. Hence, the DSD aims to benefit the researchers’ understanding 
of brain functioning and patients’ treatments alike.
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