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Abstract
In a (parameterized) graph edge modification problem, we are given a graph G, an integer k and a
(usually well-structured) class G of graphs, and asked whether it is possible to transform G into a
graph G′ ∈ G by adding and/or removing at most k edges. Parameterized graph edge modification
problems received considerable attention in the last decades.

In this paper, we focus on finding small kernels for edge modification problems. One of the most
studied problems is the Cluster Editing problem, in which the goal is to partition the vertex set
into a disjoint union of cliques. Even if a 2k-vertex kernel exists for Cluster Editing, this kernel
does not reduce the size of the instance in most cases. Therefore, we explore the question of whether
linear kernels are a theoretical limit in edge modification problems, in particular when the target
graph class is very structured (such as a partition into cliques for instance). We prove, as far as we
know, the first sublinear kernel for an edge modification problem. Namely, we show that Clique +
Independent Set Deletion, which is a restriction of Cluster Deletion, admits a kernel of size
O(k/ log k).

We also obtain small kernels for several other edge modification problems. We first show that
Cluster Deletion admits a 2k-vertex kernel as Cluster Editing, improving the previous 4k-
vertex kernel. We prove that (Pseudo-)Split Completion (and the equivalent (Pseudo-)Split
Deletion) admits a linear kernel, improving the existing quadratic kernel. We also prove that
Trivially Perfect Completion admits a quadratic kernel (improving the cubic kernel), and
finally prove that its triangle-free version (Starforest Deletion) admits a linear kernel, which is
optimal under the Exponential Time Hypothesis.
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2 (Sub)linear kernels for edge modification problems

1 Introduction

A central problem in the context of data transmission, collection or storage, is to recover the
original information when the data have been altered. Although it is not possible to know
what the original data were in the general setting, it may be possible when we have some
knowledge of the structure of the original data. When we know that the alteration is limited,
it is reasonable to assume that the original data have the desired structure and is the closest
to the altered data.

When the data that we are recovering form a graph, the problem becomes the following:
given a graph G (the altered data) and a class G of graphs (the structure of the data), find a
graph in G that is the “closest” to G (candidate for the original data). There are multiple
ways to define the distance between two graphs, but the most widely used is the minimum
number of vertex modifications or edge modifications needed to turn one into the other. This
type of problem, called graph modification problems, received considerable attention, for
instance in computational biology [2], machine learning [1], and image processing [31].

In this work, we focus on edge modification problems, i.e., the distance is the minimum
number of edge modifications (see Section 2 for formal definitions of these problems). A line
of work, initiated by Yannakakis [33], showed that deciding whether a graph G is at distance
at most k from G is NP-complete for most classes of graphs, even for very restricted classes
such as bipartite graphs. See [5, 27, 28] for an overview of the different results.

Therefore, in the last decades, edge modification problems received considerable attention
from the point of view of parameterized complexity, which studies the resources required to
solve NP-complete problems in a fine-grained way. See for example [3, 4, 6, 11, 15, 19, 29], and
see [9] for a recent survey on the topic. In this paper, we will consider problems parameterized
by the size k of the solution (that is, the set of edges to add or remove).

In this work, we focus on graph classes that can be characterized by a finite number
of forbidden induced subgraphs. In his seminal paper, Cai [6] showed that, for every class
G of graphs that can be characterized by a finite number of forbidden induced subgraphs,
the G-edge modifications problems are FPT parameterized by k. In other words, there
exists a constant c, a function f (that only depend on G), and an algorithm running in time
f(k) ·nc that either finds a solution of size at most k, or returns that there is no such solution.
Therefore, most of the subsequent efforts focused on determining for which G these problems
admit a polynomial kernel. Intuitively, a kernel is a polynomial-time preprocessing algorithm
that extracts the “hard” part of an instance (G, k): it solves easy parts of the instance and
returns an equivalent instance (G′, k′), whose size is bounded by f(k′), for some function f .
A kernel is a polynomial kernel if f is a polynomial. The interested reader is referred to [18]
for more details.

One of the most studied edge modification problems is Cluster Editing, in which the
goal is to partition the graph into a disjoint union of cliques. This problem is known to
admit a kernel with at most 2k vertices [7]. While this result seems impressive at first glance
(for many parameterized problems, a linear kernel is asymptotically optimal), we can remark
that here, we are comparing the number of vertices of the kernel with the number of edges in
the solution. It turns out that for most graphs in practice, the number of edges that have to
be modified to obtain a cluster graph is larger than the number of vertices. For example, it
is the case for most of the public instances of the PACE challenge 2021 on cluster editing2.

This raises the question of whether linear kernels are optimal, in particular for Cluster

2 See https://pacechallenge.org/2021/ for more information.

https://pacechallenge.org/2021/
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Editing. We partially answer this question by giving a sublinear kernel for the closely
related Clique + IS Deletion problem. It provides a “proof of concept” that linear kernels
are not always optimal. As far as we know, it is the first example of a sublinear kernel for a
graph edge modification problem. We provide linear kernels for several well-studied edge
modification problems, with the only exception of the Trivially Perfect Completion
problem, for which we can only obtain a quadratic-vertex kernel.

Our results. In this work, our goal is to understand when it is possible to obtain small,
and in particular linear or sublinear kernels for edge modification problems. We focus in
particular on graph classes where the vertex set can be partitioned into highly structured
classes such as cliques or independent sets. A typical example of such a graph class is the
class of split graphs, i.e., graphs that can be partitioned into a clique and an independent set.

Most of our results are based on a high-level technique, that we call Label-And-Reduce,
which helps to design efficient kernelization algorithms for edge modification problems. The
key idea is to use the strong structure of each of the graphs of G to find a highly structured
partition X1, . . . , Xℓ of the graphs of G (e.g., a partition in cliques or independent sets,
complete bipartition between subsets...). We then define rules that label vertices x as
belonging to Xi, in such a way that if there is a solution, there is one for which x ∈ Xi.
We finally show that 1) when no rule can be applied, the number of unlabeled vertices is
O(poly(k)) when (G, k) is a positive instance and 2) the number of labeled vertices in each
class Xi can be reduced to O(poly(k)).

(Sub)linear kernels for Cluster deletion and Clique+Independent Set deletion. Since
cluster graphs are P3-free graphs, edge modification problems toward cluster graphs seem to
be the simplest among all nontrivial graph modification problems toward H-free classes. Both
Cluster Deletion and Cluster Editing have indeed received considerable attention in
the last two decades in parameterized complexity, see e.g., [4, 7, 8, 17, 29].

After a sequence of results, Cao and Chen [7] devised a 2k-vertex kernel for Cluster
Editing. Their algorithm actually implies a 2k-vertex kernel for Cluster Deletion,
improving on the 4k-vertex kernel [20]. We record this simple result for future reference.
Less trivially, we show that the same algorithm produces a kernel of the same size for
the Strong Triadic Closure problem, which, though originally not posed as an edge
modification problem, is closely related to cluster edge deletion [25]. We introduce this
problem in Section 3 and prove the following.

▶ Theorem 1.1. Cluster Deletion and Strong Triadic Closure both admit 2k-vertex
kernels.

As the original results [7], both algorithms work for the weighted versions of the problems
as well.

We then focus on a restricted class of cluster graphs, where all clusters but at most
one have size 1. It corresponds to graphs that are the disjoint union of a clique and an
independent set. In what follows, we will refer to this class as the class of Clique + IS graphs.
While Clique + IS Completion is trivial, (since the optimal solution is found by changing
each connected component into a clique,) both Clique + IS Deletion and Clique + IS
Editing are NP-complete (reduction from the Clique problem), and both can be solved
in subexponential time (O∗(1.64

√
k ln k) and O∗(2

√
k ln k) respectively3) [11]. Since Clique +

3 Recall that O∗ denotes the complexity up to polynomial factors.
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IS graphs are (P3, 2K2)-free graphs, Clique + IS Deletion is FPT by [6]. We prove the
following result in Section 4.

▶ Theorem 1.2. Clique + IS Deletion admits a kernel of 2k/ log k + 1 vertices.

Our algorithm uses the structure of clique+IS graphs to remove vertices with small
degree and to reduce the instance when the minimum degree of the input graph is large.
Theorem 1.2 is, as far as we know, the first sublinear kernel for edge modification problems.
We conjecture that the size of this kernel is not optimal, and ask the following:

▶ Open Problem 1. Is there an O(k1−ε)-vertex kernel for Clique + IS Deletion for some
ε > 0?

Moreover, it is plausible that other edge modification problems toward highly structured
classes also admit a sublinear kernel. A natural candidate is the closely related Cluster
Editing problem, which already admits a 2k kernel [7, 8].

▶ Open Problem 2. Does Cluster Editing (resp. Cluster Deletion) admit a sublinear
kernel?

Let us remark that Komusiewicz and Uhlmann [24] have proved that neither of the two
problems can be solved in subexponential time.

A linear kernel for (Pseudo-)Split Completion. Split graphs are graphs whose vertex set
can be partitioned into a clique K and an independent set I (with no constraint on the set
of edges between K and I). Since split graphs are closed under complementation, the Split
Completion and Split Deletion problems are equivalent. Natanzon et al. [28] showed
that these two problems are NP-complete. Since split graphs are (2K2, P4, C5)-free graphs,
the latter problems are FPT [6]. Ghosh et al. [19] later showed that these problems can be
solved in subexponential O∗(2O(

√
k log k)) time, and that they admit a quadratic-vertex kernel.

Cygan et al. [10] improved the complexity to O∗(2
√

k). A classic result of Hammer and
Simeone [22] states that the related Split Editing problem can be decided in polynomial
time.

We improve upon the result of Ghosh et al. [19] by showing that the Split Completion
(and therefore Split Deletion) problem admits a linear kernel in Section 5.

▶ Theorem 1.3. Split Completion and Split Deletion admit a kernel with at most
11k + 6

√
2k + 4 vertices.

This result is the main technical contribution of the paper. From a very high-level
perspective, our algorithm works as follows. Let (G, k) be a positive instance. If the clique of
the solution is large enough, the neighborhood of many vertices of that clique has not been
modified and we show that we can detect some of them and label them as clique vertices.
Since the number of unlabeled clique vertices of the solution is bounded by a linear function,
we can prove via a tricky and short argument that the number of unlabeled vertices of
the independent set can be bounded. While the reduction rules are not very complicated,
showing that the answer is negative when the number of unlabeled vertices is too large is the
core of the proof. We finally show that we reduce the number of labeled vertices to O(k)
vertices.

While we use a tricky argument to bound the number of unlabeled vertices of the
independent set of a solution, our bound on the number of unlabeled clique vertices is quite
harsh. This leads to the following question.
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▶ Open Problem 3. Does Split Completion admit a sublinear kernel, or at least with a
subquadratic number of edges?

With minor tweaks, our algorithm produces a linear kernel of roughly the same size
for the pseudo-split ((2K2, C4)-free graphs) deletion problem. Equivalently, a pseudo-split
graph is either a split graph or a split graph plus a C5 such that every vertex on the C5
is adjacent to every vertex in the clique part of the split graph and is non adjacent to any
vertex in the independent part of the split graph. Similarly to edge modification problems
toward split graphs, Pseudo-split Editing can be decided in polynomial time [12], and
only subexponential algorithms are known for the equivalent Pseudo-split Completion
and Pseudo-split Deletion [10, 13].

A quadratic kernel for trivially perfect graphs. A trivially perfect graph is a graph such
that for any pair of adjacent vertices u, v satisfies N(u) ⊆ N(v) or N(v) ⊆ N(u). The class of
trivially perfect graphs can equivalently be characterized as the class of (P4, C4)-free graphs.
Drange et al. [13, 14] showed that, under the Exponential Time Hypothesis (ETH), Trivially
Perfect Deletion and Trivially Perfect Editing cannot be solved in subexponential
time. Liu et al. [26] gave an FPT algorithm for Trivially Perfect Deletion running in
time O∗(2.42k). On the other hand, the Trivially Perfect Completion problem does
not admit such lower bounds. Drange et al. [13] designed a subexponential O(2

√
k log k))

algorithm for the problem, and Bliznets et al. [3] showed that assuming the ETH, this cannot
be improved beyond O(2k1/4). In 2018, Drange and Pilipczuk [14] showed that the three
problems admit a polynomial kernel of size O(k7), recently improved by Dumas et al. [16]
into O(k3).

In the specific case of Trivially Perfect Completion, a cubic-vertex kernel was
already provided by Guo [21]. Our kernel is based on one of its claims, which states that
the instance can be reduced to vertices that belong to at least one obstruction (that is,
an induced P4 or C4). By counting obstructions more precisely, we improve this result in
Section 6 by showing the following.

▶ Theorem 1.4. Trivially Perfect Completion admits a kernel with 2k2 + 2k vertices.

Note moreover that in the extended abstract of [21], the existence of the cubic kernel is
based on a lemma whose proof has, to the best of our knowledge, never been published nor
made accessible. We give a proof of this statement of Guo in this article.

A linear kernelization of starforests. We finally focus on triangle-free trivially perfect
graphs, also known as starforests. A star is a tree with at most one internal vertex. A star
with n vertices is called an n-star. Note that the single vertex graph, as well as a K2, are
stars. The class of starforests is the class of graphs that are a disjoint union of stars, that is
every connected component is a star.

One can remark that removing an edge from a starforest yields another starforest,
hence it is never interesting to add edges to obtain a star forest. Therefore, Starforest
Completion is trivial, and Starforest Editing is equivalent to Starforest Deletion.
Drange et al. [15] showed that Starforest Deletion is NP-complete and cannot be solved
in subexponential time (that is in time O(2o(k) poly(n))), assuming the ETH [23].

In Section 7, we prove the following result.

▶ Theorem 1.5. Starforest Deletion admits a kernel with at most 4k + 2 vertices.
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We also show that, under the ETH, Starforest Deletion does not admit a sublinear
kernel. To the best of our knowledge, this work is the first formally published work on
kernelization of Starforest Deletion.

2 Preliminaries

Elementary definitions. In this work, all the graphs are undirected and simple (i.e., with
no parallel edges or self-loops). When G is a graph, V (G) denotes the set of vertices of G,
and E(G) denotes its set of edges. Throughout the paper, we use n (resp. m) to denote the
size of V (G) (resp. E(G)). If uv ∈ E(G), we say that u and v are adjacent. Given a vertex
u ∈ V (G), the set N(u) = {v such that uv is an edge} is the open neighborhood of u, and
N [u] = N(u) ∪ {u} is the closed neighborhood of u. The degree of u in G, denoted d(u), is the
size of N(u). We use δ(G) to denote the minimum degree of G. The complement graph Ḡ of
G is the graph with vertex set V (G) and edge set {uv | u ̸= v and uv /∈ E(G)}. A clique of
G is a set of vertices that are pairwise adjacent. An independent set of G is a set of vertices
of G that are pairwise not adjacent. For two sets X and Y , we use X△Y = (X \ Y ) ∪ (Y \ X)
to denote their symmetric difference.

Kernelization algorithms. A kernelization algorithm (in short, a kernel) is a polynomial-
time algorithm that takes as input an instance (G, k) of a parameterized problem Π and
outputs an instance (G′, k′) that is positive if and only if (G, k) is positive, the size of G′ is
at most f(k′) for some computable function f . When f is a polynomial, we say that the
algorithm is a polynomial kernel. When dealing with graph problems, the size of the instance
is often measured in terms of the number of vertices of G′. Most kernelization algorithms
(including those presented in this work) consist of the iterative application of reduction rules.
A reduction rule is an algorithm that transforms an instance (G, k) of Π into an instance
(G′, k′) of Π in polynomial time. We say that a reduction rule R is safe if (G, k) is positive if
and only if (G′, k′) is.

Graph edge modification problems. Given a set F of edges, we use the notation G + F ,
G − F , and G∆F to denote the graphs with vertex set V (G) and respective set of edges
E(G) ∪ F , E(G) \ F , and E(G)∆F . Let G be a class of graphs. In a (parameterized) G-graph
edge modification problem, we are given a graph G, an integer k and a class G of graphs,
and ask whether it is possible to transform G into a graph G′ ∈ G by modifying (adding,
removing, or doing both, which is called editing) at most k edges.

Formally, we will consider the following problems:

Input: A graph G and a nonnegative integer k.
Output: Is there a set F of at most k edges of G such that G + F (resp. G − F ,

resp. G∆F ) is in G?

G-Completion (resp. Deletion, resp. Editing)

Given a graph G, we say that a set F of edges is a solution when G + F (resp. G − F ,
G∆F ) lies in G. We denote by opt(G) the minimum size of a solution (the considered problem
should be clear from the context). We sometimes abuse the notation to use a solution to
denote the resulting graph obtained after applying a solution.

Here, we focus on cases where G is characterized by a finite set of forbidden induced
subgraphs. An example of such graphs is the class of split graphs, which are (2K2, P4, C5)-free
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graphs. Hence we only consider hereditary graph classes G, that is, if G ∈ G, then any
induced subgraph H of G is also in G. As a result, if (G, k) is a positive instance of a G-edge
modification problem, then for any subgraph H of G, (H, k) is also a positive instance.

3 Cluster Deletion and Strong Triadic Closure

The goal of this section is to prove Theorem 1.1, which we recall here.

▶ Theorem 1.1. Cluster Deletion and Strong Triadic Closure both admit 2k-vertex
kernels.

We first prove the kernel for Cluster Deletion following the ideas of [7]. A trivial but
crucial fact is that a solution F is incident to at most 2|F | endpoints. If a vertex v is not
incident to any edge in F , then v has to be simplicial (i.e., N [v] is a clique in G). The first
rule allows us to reduce some simplicial vertices. We then show that when this rule cannot
be applied, every positive instance is small, that is we can reject every big instance.

For a vertex set U ⊆ V (G), we write d(U) = |E(U, V (G) \ U)|, i.e., the number of edges
between U and V (G) \ U ; note that d({v}) is precisely d(v), so we use the shorter form.

▶ Rule 3.1. If there is a simplicial vertex v such that d(N [v]) ≤ d(v), then remove N [v] and
decrease k by d(N [v]).

The safeness of this rule comes from the following lemma.

▶ Lemma 3.2. If v satisfies the hypothesis of Rule 3.1, then adding all edges between N [v]
and V (G) \ N [v] to an optimal solution of G − N [v] yields an optimal solution for G.

Proof. Clearly, the construction yields a solution for G of size opt(G − N [v]) + d(N [v]). To
prove that it yields an optimal solution, we show that opt(G) ⩾ opt(G − N [v]) + d(N [v]).

Let F be an optimal solution to the graph G. Let X be the clique of G − F containing v.
Note that X ⊆ N [v]. Moreover, if X = N [v], then we are done hence we can assume that
X ⊂ N [v]. In other words, neither X nor N [v] \ X is empty. Since any induced subgraph of
G − F is a cluster graph, the subset of edges in F with both endpoints in V (G) \ N [v] is a
solution to G − N [v]. Noting that this solution is disjoint from E(X, V (G) \ X), we have

opt(G) = |F | ⩾ |F ∩ E(G − N [v])| + d(X)
⩾ opt(G − N [v]) + |X| · |N [v] \ X|
⩾ opt(G − N [v]) + |X| + |N [v] \ X| − 1 (1)
= opt(G − N [v]) + d(v)
⩾ opt(G − N [v]) + d(N [v]),

where the third inequality holds because both |X| and |N [v] \ X| are positive integers. ◀

Let us mention that the condition of Rule 3.1 can be weakened to d(N [v]) < 2d(v) − 1.
We do not prove the stronger statement because it does not improve the analysis of the kernel
size, but let us briefly explain why it is true. The bound opt(G) ≥ opt(G − N [v]) + 2d(v) − 1
holds unless |X| = 1 or |N [v] \ X| = 1; see the third inequality of (1). In the first case, v

itself makes a trivial component, and all the vertices in N(v) are in the same component;
this can only happen when there exists another vertex u with N(v) ⊆ N(u). In the second
case, a vertex u ∈ N(v) is incident to all the edges between N(v) and V (G) \ N [v]. If
d(N [v]) < 2d(v) − 1, then opt(G) ≥ opt(G − N [v]) + 2d(v) − 1 holds in both cases.

We may now show that every positive instance is small.
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▶ Lemma 3.3. If (G, k) is a yes-instance where Rule 3.1 is not applicable, then |V (G)| ⩽ 2k.

Proof. Let F be an optimal solution to G, and let {v1, v2, . . . , vr} be the vertices that are
not incident to any edge in F ; they have to be simplicial in G. For i = 1, . . . , r, the set N [vi]
forms a component of G − F , therefore for i, j ∈ {1, . . . , r}, the sets N [vi] and N [vj ] are
either the same or mutually disjoint.

We now double count the number of endpoints of edges in F (with multiplicity). On
the one hand, there are 2|F | of them. On the other hand, note that for i = 1, . . . , r, the
number of such endpoints that lie in N [vi] is d(N [vi]). Moreover, each of the vertices not in⋃r

i=1 N [vi] is an end of at least one edge in F . Therefore, we get a lower bound for 2|F |:

2|F | ⩾
r∑

i=1
d(N [vi]) +

∣∣∣∣∣V (G) \
r⋃

i=1
N [vi]

∣∣∣∣∣ ⩾
r∑

i=1
|N [vi]| +

∣∣∣∣∣V (G) \
r⋃

i=1
N [vi]

∣∣∣∣∣ ⩾ |V (G)|.

The second inequality holds because Rule 3.1 does not apply to vi for i = 1, . . . , r, hence
d(N [vi]) ⩾ d(vi) = |N [vi]|. We finally obtain that |V (G)| ⩽ 2|F | ⩽ 2k. ◀

Therefore the following rule is safe, which gives a 2k-vertex kernel for Cluster Deletion.

▶ Rule 3.4. If Rule 3.1 cannot be applied and the size of the instance is at least 2k + 1,
return a trivially negative instance.

To conclude the proof of Theorem 1.1, we show that the same rules apply to the Strong
Triadic Closure problem we introduce hereafter.

In the original definition, which was motivated by applications in social networks, the
strong triadic closure problem asks for a partition of the edge set of the input graph into
strong edges and weak ones, such that for every two vertices that are linked to a common
neighbor with strong edges are adjacent. The objective is to maximize the number of strong
edges. For our purpose, it is more convenient to define the problem as follows.

Input: A graph G and a nonnegative integer k.
Output: Is there a set F of at most k edges such that the missing edge of

every P3 of G − F is in E(G)?

Strong Triadic Closure

Thus, we call the set of weak edges the solution to the strong triadic closure problem.
For any set F ⊆ E(G), if G − F is a cluster graph, then F is also a solution to the strong
triadic closure problem: setting all edges in F weak, and all other edges strong is a feasible
partition of E(G). However, as illustrated in Figure 1, a strong triadic closure of a graph
can have fewer weak edges than an optimal solution to the Cluster Deletion problem on
the same graph.

Surprisingly, as we show below, Rule 3.1 works for Strong Triadic Closure without
change. Moreover, a word-for-word copy of the proof of Lemma 3.3 shows that this is also
the case for Rule 3.4, which concludes the proof of Theorem 1.1.

▶ Lemma 3.5. Rule 3.1 is safe for Strong Triadic Closure.

Proof. Similarly to the proof of Lemma 3.2, we show that adding all the edges from
E(N [v], V (G) \ N [v]) to an optimal solution for G − N [v] yields an optimal solution for
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(a) (b) (c)

Figure 1 The example given by Konstantinidis et al. [25]: (a) the input graph; (b) a maximum
cluster subgraph with seven edges; and (c) a maximum strong triadic closure with eight edges.

G. It is still clear that it is a solution, and we show that it is optimal by proving that
opt(G) ⩾ opt(G − N [v]) + d(N [v]).

Let F be an optimal solution to the graph G. We may assume that N [v] is not a
separate component of G − F , otherwise the inequality already holds. Let X = {w ∈ V (G) |
N [w] = N [v]} denote the set of “true twins” of v, and Y ⊆ N [v] the endpoints of edges in
E(N [v], V (G) \ N [v]) \ F . Note that X, Y are disjoint; X ̸= ∅ because v ∈ X; and Y ̸= ∅
because E(N [v], V (G) \ N [v]) ̸⊆ F (otherwise N [v] would be a component of G − F ).

We will now lower bound |F | by counting how many edges from F can lie in E(G − N [v]),
E(N [v], V (G) \ N [v]), and E(N [v]).

First observe that by definition, the subset of edges in F with both endpoints in V (G)\N [v]
is a solution to G − N [v]. Therefore |F ∩ E(G − N [v])| ⩾ opt(G − N [v]).
Let w ∈ N [v] \ (X ∪ Y ). Since v is simplicial and by definition of X, w must be incident
to an edge from E(N [v], V (G) \ N [v]). Moreover, by definition of Y , all such edges must
lie in F . Therefore, every vertex in N [v] \ (X ∪ Y ) is incident to at least one edge in
F ∩ E(N [v], V (G) \ N [v]). Therefore, |F ∩ E(N [v], V (G) \ N [v])| ⩾ |N [v] \ (X ∪ Y )|.
Finally, |F ∩ E(N [v])| ⩾ |X| · |Y | since all the edges between X and Y lie in F . Indeed,
assume that there is x ∈ X and y ∈ Y such that xy /∈ F . By definition, there exists
z ∈ V (G) \ N [v] such that yz ∈ E(G) \ F , and since z /∈ N [v], z is not adjacent to a
vertex in x. Therefore, xyz is a P3 in G − F but xz /∈ E(G), a contradiction.

We may now conclude the proof by wrapping up these three inequalities:

opt(G) = |F | = |F ∩ E(G − N [v])| + |F ∩ E(N [v], V (G) \ N [v])| + |F ∩ E(N [v])|
⩾ opt(G − N [v]) + |N [v] \ (X ∪ Y )| + |X| · |Y |
⩾ opt(G − N [v]) + |N [v]| − |X| − |Y | + |X| + |Y | − 1
⩾ opt(G − N [v]) + |N [v]| − 1
= opt(G − N [v]) + d(v)
⩾ opt(G − N [v]) + d(N [v]),

where |X| · |Y | ≥ |X| + |Y | − 1 because both |X| and |Y | are positive integers. ◀

We conclude this section with two remarks. First, for Strong Triadic Closure, we
may alternatively state Rule 3.1 as follows.

▶ Rule 3.6. If there is a simplicial vertex v such that d(N [v]) ≤ d(v), then set all the edges
in G[N [v]] strong, set all the edges between N [v] and V (G) \ N [v] weak, and delete N [v].

Finally, we claim that our kernelization algorithms for Cluster Deletion and Strong
Triadic Closure work for the weighted versions as well; see [7].
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4 Sublinear-vertex kernel for Clique + Independent Set Deletion

The goal of this section is to prove Theorem 1.2, which we recall here.

▶ Theorem 1.2. Clique + IS Deletion admits a kernel of 2k/ log k + 1 vertices.

In order to obtain the announced kernel, we apply the Label-And-Reduce technique.
For this problem, the labeling rules aim to identify vertices that will be in the independent
set of a solution, assuming that a solution exists. We can then delete all the edges incident to
these vertices, decrease the parameter accordingly, and remove these vertices from the graph.

We assume that k is smaller than m since otherwise, the instance is trivial: we obtain an
independent set (which is a clique+IS graph) by deleting all the edges in G.

▶ Rule 4.1 (Low degree reduction rule 1). If there exists v ∈ V (G) with d(v) <
√

2(m − k)−1,
delete v from G and decrease the parameter by d(v).

This rule can be implemented to run in linear time. It is moreover safe. Indeed, since
we consider the deletion problem, any vertex v deleted by the rule has degree smaller than√

2(m − k) − 1 in G − F , hence cannot be in the clique of any optimal solution according to
the following lemma.

▶ Lemma 4.2. Let (G, k) is a positive instance of Clique + IS Deletion. If F is a
solution of (G, k), then the clique in G − F has at least

√
2(m − k) vertices.

Proof. Since F contains at most k edges, the graph G−F has at least m−k edges. Moreover,
G − F is a clique+IS graph, and all its edges are the edges of a unique clique. Therefore, the
order c of the clique of G − F satisfies

(
c
2
)
⩾ m − k, hence c ⩾

√
2(m − k). ◀

One can prove that this first rule can be extended to obtain a linear kernel. Indeed, when
this rule cannot be applied, then all the vertices have degree at least

√
2(m − k). Assuming

m ⩾ 2k (otherwise we are done), we have
√

2(m − k) ⩾
√

m. The handshaking lemma then
gives that 2m ⩾ n

√
m i.e. n = O(

√
m). Therefore, we get a linear kernel when m = O(k2).

Otherwise, m = Ω(k2) hence the minimum degree of the graph is Ω(
√

2(m − k)) = Ω(k) and
at most O(1) vertices can be removed. In that case, the existence of a solution can be tested
in polynomial time.

To further reduce the size of the kernel, we use two more rules to take care of very sparse
or very dense instances.

▶ Rule 4.3 (Low degree reduction rule 2). Let v be a vertex of degree at most 2 log k − 1. If
there is no solution F of (G, k) such that v is in the clique of G − F , remove v from G and
decrease k by d(v).

This rule is trivially safe. Moreover, it can be performed in polynomial time. Indeed, since
we consider an edge-deletion problem, if v lies in the clique K of G − F , then every vertex of
K is adjacent to v in G, i.e., K ⊆ N [v]. Since the degree of v is at most 2 log k − 1, there
are at most k2 subsets in N [v]. We can therefore try all of them and decide in polynomial
time whether there exists a solution F of (G, k) such that v is in the clique in G − F .

▶ Rule 4.4 (High degree reduction rule). If G has minimum degree δ(G) ≥ k/(2 log k), solve
the instance and output a trivial equivalent instance.

Again, this rule is clearly safe. The not-so-easy part is to show that Clique + IS
Deletion can be decided in polynomial time when δ(G) ≥ k/(2 log k).
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▶ Lemma 4.5. Rule 4.4 can be applied in polynomial time.

Proof. Note that removing an edge from G reduces by one the degree of two vertices.
Therefore, if δ(G) ≥ k/(2 log k), then for every solution F of at most k edges, the independent
set part in G−F contains at most 4 log k vertices. Moreover, Damaschke and Mogren showed
in [11, Lemma 3] that a set F is an optimal solution of G if and only if I is a minimum
vertex cover of Ḡ, where I is the independent set part of G − F . In our case, this means that
the minimum vertex cover of Ḡ has at most 4 log k vertices. As shown below, we can find
such a minimum vertex cover in polynomial time in our case by combining an approximation
algorithm with an exhaustive search on the approximate solution.

Using a greedy 2-approximation algorithm for Vertex Cover, we can compute a vertex
cover J of Ḡ such that I ⊆ J and |J | ≤ 2 · |I|. If |J | > 8 log k, then |I| > 4 log k, and hence
the instance is negative. Otherwise, we can check if one of the k8 subsets of J is the set of
isolated vertices of a solution. Rule 4.4 can therefore be performed in polynomial time. ◀

To finish the proof of Theorem 1.2, it remains to bound the order of the reduced graph.
This is the goal of the following lemma.

▶ Lemma 4.6. If (G, k) is a positive instance and none of the rules can be applied, then
|V (G)| ≤ 2 · k

log k + 1.

Proof. Observe that due to Rules 4.1 and 4.4, we have
√

2(m − k) − 1 ⩽ δ(G) < k
2 log k ,

which implies that m ⩽ k2

2 log2 k
when k > 257. Note that we can assume without loss of

generality that this last condition is satisfied since otherwise, we can solve the instance in
polynomial time by taking every subset of k edges as a candidate for F ; this can be done in
time O(nk) = O(n257) (note that this degree can be reduced to the cost of increasing the
multiplicative constant of our kernel).

Similarly to Lemma 4.2, we can show that the clique in G − F has at most
√

2m + 1 ≤
k/ log k + 1 vertices.

Furthermore, Rule 4.3 ensures that δ(G) ⩾ 2 log k. Removing an edge from G reduces by
one the degree of two vertices. Therefore, by removing k edges from G, we can make at most
k/ log k vertices isolated. Since all the vertices of G are either in the clique or isolated, G

has at most k/ log k + 1 + k/ log k = 2k/ log k + 1 vertices. ◀

Concluding remarks. The number of vertices in the kernel for a graph edge modification
problem usually comes from an upper bound on the number of edges in a positive instance,
which translates into a similar upper bound on the number of vertices. However, this is often
far from tight. To obtain our sublinear kernel, we use the fact that a linear upper bound on
the number of edges yields a sublinear upper bound on the number of vertices.

For example, in clique graphs with few isolated vertices (e.g., o(n) isolated vertices), we
have m = Θ(n2), hence such a graph with O(f(k)) edges has O(

√
f(k)) vertices. Therefore,

one could hope that Clique + IS Deletion admits a kernel of size O(
√

k). However, we
were not able to obtain such a result. Note that our reduction rules ensure that when the
number of edges is far from k and the number of missing edges is far from k, we indeed have
an O(

√
k)-vertex kernel. Hence, in order to improve the size of the kernel, one only needs to

take into account instances where the number of edges (or non-edges) is close to k.
Finally, one can easily show that Rule 4.1 can be adapted for the Clique + IS Editing

problem by modifying the constant. On the other hand, it seems that Rules 4.3 and 4.4
do not readily generalize to Clique + IS Editing, therefore we were not able to obtain
an O(k/ log k)-vertex kernel for this problem. However, it is an easy exercise to show that
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we can weaken them in order to obtain a kernel with at most k/c vertices for any possible
constant c > 1, at the cost of a running time in O(nc).

5 Linear-vertex kernels for (Pseudo-)Split Completion

The goal of this section is to prove Theorem 1.3, which we recall here.

▶ Theorem 1.3. Split Completion and Split Deletion admit a kernel with at most
11k + 6

√
2k + 4 vertices.

Since the class of split graphs is closed under complementation, it is sufficient to prove
that Theorem 1.3 holds for Split Completion.

We use the structure of the input graph to detect and label vertices that will be in the
clique or the independent set part of a split decomposition of a well-chosen solution. More
precisely, we show that, if the instance (G, k) is positive, the labeling constructed by our
algorithm satisfies that there exists a solution F of (G, k) and a split decomposition (K∗, I∗)
of G + F such that all the vertices labeled as “clique” (resp. “independent set”) are in K∗

(resp. I∗). We then prove that if (G, k) is a positive instance, then the number of unlabeled
vertices at the end of the algorithm is O(k). Moreover, we show that we can reduce the
number of labeled vertices to O(k). Combining the above yields a linear kernel.

We present our reduction rules in Section 5.1 and prove their correctness and consequence
in subsequent sections.

5.1 Labeling and reduction rules
Our algorithm keeps track of a partition (K, I, D) of V (G), which corresponds to the labels
of the vertices of G. The set K (resp. I) stands for the vertices already labeled “clique”
(resp. “independent set”) while D (for “do not know”) contains the vertices that are not yet
labeled. Initially, no vertex is labeled, hence K = ∅, I = ∅ and D = V (G).

We will apply the following reduction rules, whose correctness is postponed in Section 5.2.

▶ Rule 5.1 (I-rules). Move v ∈ D to I whenever at least one of the following holds:
(a) v has all of its neighbors in K,
(b) v is non-adjacent to at least k + 1 vertices of K.

Notice that this rule applies to isolated vertices, since whenever v is isolated, N(v) = ∅ ⊆
K.

We say that a vertex v dominates a vertex set X if X ⊆ N [v].

▶ Rule 5.2 (K-rules). Move v ∈ D to K whenever at least one of the following holds:
(a) v has a neighbor in I,
(b) N(v) contains at least k + 1 non-edges,
(c) v dominates K ∪ D.

The following reduction rule simply ensures that K is a clique and I an independent set.

▶ Rule 5.3. Apply one of the following operations as long as possible:
(a) if there is a non-edge e between vertices of K, then add e to E(G) and decrease k by 1.
(b) if k < 0 then return a trivially negative instance.
(c) if there is an edge between vertices of I, then return a trivially negative instance.
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We apply these rules exhaustively, and stop when none can be applied. At each step, we
remove a vertex from D or we add an edge to G. Then the algorithm stops after at most
n2 steps. Moreover, one can easily apply the rules in polynomial time. When none of the
previous rules can be applied, we apply the following reduction rule.

▶ Rule 5.4 (Delabeling rule). (a) If K contains at least k + 1 vertices, replace K by a set
K ′ = {v′

1, . . . , v′
k} of k vertices and denote by G′ the resulting graph. Moreover, for each

vertex v ∈ D, if v is non-adjacent to t vertices of K in G, then connect v to v′
t+1, . . . , v′

k

and do not connect it to v1, . . . , vt.
(b) Replace I by an independent set I ′ of

√
2k vertices and make them completely adjacent

to K ′, and not connected to D.

With this rule, we can bound the number of vertices of the resulting graph by |D| plus at
most k vertices (for K ′), plus at most

√
2k vertices (for I ′). Therefore, Theorem 1.3 boils

down to the following lemma.

▶ Lemma 5.5. If (G, k) is a positive instance, then |D| ≤ 10k + 5
√

2k + 4.

While it is not very difficult to prove that the reduction rules are safe, the main technical
contribution of this section consists in proving Lemma 5.5. We divide the proof into two
parts: we separately give a linear upper bound on the size of D ∩ K∗ and D ∩ I∗.

First, we prove that the number of vertices of D in the clique K∗ of the solution is linear
in k. Namely, we show that if too many vertices of K∗ are in D, the neighborhood of many
of them is not modified. Hence, one of them must be complete to K ∪ D, a contradiction
with Rule 5.2.

Arguing that the number of vertices of D in the independent set I∗ of the solution is O(k)
is more involved. First note that if a vertex has an independent set of size larger than O(

√
k)

in its neighborhood, it is added to K by Rule 5.2-b. Since D only contains O(k) vertices in
the clique, the number of vertices of D in the independent set is at most O(k3/2). To obtain
a better upper bound on the size of D, we carefully distinguish the size of the neighborhood
of the vertices of D ∩ K∗ in I∗. Very roughly, we prove that the number of vertices in D ∩ K∗

with many neighbors in I∗ is bounded by a sublinear function which permits to improve the
size of the kernel. The proof of Lemma 5.5 is postponed to Section 5.3.

Lemma 5.5 together with Rule 5.4 ensure that the following reduction rule is correct,
which completes the proof of Theorem 1.3:

▶ Rule 5.6 (Final Rule). If none of the previous rules can be applied, and the graph contains
at least 11k + 6

√
2k + 5 vertices, return a trivially negative instance.

5.2 Correctness of the reduction rules
To analyze our algorithm, we study the evolution of the instance (G, k) with the partition
P = (K, I, D) after the application of each rule. We will refer to the tuple (G, k, P ) as an
annotated instance of Split Completion.

The following definition formalizes when a labeling of G is compatible with a solution F .

▶ Definition 5.7. Let H be a graph, let F be a set of edges such that H + F is a split graph,
and let P = (K, I, D) be a partition of V (H). We say that P is compatible with F , and
denote it P ⊨ F , if there exists a split decomposition (K∗, I∗) of H + F such that K ⊆ K∗

and I ⊆ I∗. In that case, we say that the decomposition (K∗, I∗) witnesses the fact that
P ⊨ F .
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An annotated instance comprises a graph along with a partial labeling of the vertices.
Such an instance is positive when there exists a solution that is compatible with the labeling.
This leads to the following definition.

▶ Definition 5.8 (Positive annotated instance). An annotated instance (G, k, P ) is positive if
there exists a solution F of (G, k) such that P ⊨ F .

This allows us to extend safeness properties to reduction rules operating on annotated
instances. We now show that the labeling and reduction rules preserve the existence of a
solution.

▶ Lemma 5.9. Rules 5.1 to 5.3 are safe.

Proof. Let (G′, k′, P ′) be the instance obtained by applying one of the rules to an instance
(G, k, P ). We prove that (G, k, P ) is a positive annotated instance if and only if (G′, k′, P ′)
is. We first prove the direct implication. By hypothesis, there exists a solution F of (G, k)
such that P ⊨ F ; and let (K∗, I∗) be a split decomposition of G + F witnessing that P is
compatible with F . We write P ′ = (K ′, I ′, D′) and P = (K, I, D) and we consider three
cases depending on the type of the rule that was applied.

Rule 5.1. Assume that some vertex v ∈ D is moved to I ′. If v ∈ I∗, then I ′ = I ∪{v} ⊆ I∗

and K ′ = K ⊆ K∗, hence P ′ ⊨ F . Therefore, we can assume that v ∈ K∗.
If v is moved to I ′ in application of Rule 5.1-a, then, for every neighbor w of v in G + F ,
either w ∈ K or vw ∈ F . Removing from F the edges incident to v provides a smaller
solution F ′ such that G′ + F ′ is a split graph, and all the neighbors of v in G′ + F ′ are
in the clique. Therefore, G′ has a split decomposition where v is in the independent set,
i.e., P ′ ⊨ F ′.
If v is moved to I ′ in application of Rule 5.1-b, then v is non-adjacent to at least k + 1
vertices of K ⊆ K∗. Since K∗ is a clique in G+F , all the edges between v and K must be
added and then F must contain at least k + 1 edges. This is a contradiction, as |F | ≤ k.
Rule 5.2. Assume that some vertex v ∈ D is moved to K ′. If v ∈ K∗, then K ′ =
K ∪ {v} ⊆ K∗ and I ′ = I ⊆ I∗, hence P ′ ⊨ F . Therefore, we can assume that v ∈ I∗.
If v is moved to K ′ in application of Rule 5.2-a, then v has a neighbor u which belongs
to I ⊆ I∗. Therefore, there is an edge uv between two vertices that must belong to the
independent set. As we can only add edges, this is a contradiction.
If v is moved to K ′ in application of Rule 5.2-b, then there are at least k + 1 non-edges
in the graph induced by N(v). Since v ∈ I∗ and I∗ is an independent set, N(v) ⊆ K∗

must be in K∗. Since K∗ is a clique in G + F , F must contain the k + 1 missing edges of
N(v), a contradiction with |F | ≤ k.
If v is moved to K ′ in application of Rule 5.2-c, then v is adjacent to K ∪ D ⊇ K∗.
Observe that (K∗ ∪ {v}, I∗ \ {v}) is a split decomposition of G′ + F . Moreover, since
K ⊆ K∗ and K ′ = K ∪ {v}, K ′ is a subset of K∗ ∪ {v}, hence P ′ ⊨ F . Therefore, F is a
solution of (G′, k′) and P ′ ⊨ F , as desired.
Rule 5.3. Assume that Rule 5.3-a was applied, i.e., some edge e has been added (the other
cases are trivial since the instance (G, k, P ) cannot be positive). No vertex has moved,
therefore we have P ′ = P , and k′ = k − 1. Since K ⊂ K∗ and the endpoints of e lie in
K, e is an edge in G + F but not in G, hence e ∈ F . Let F ′ = F \ {e}. By construction,
F ′ is a solution of (G′, k′). Since G + F = G′ + F ′, (K∗, I∗) is a split decomposition of
G′ + F ′, and therefore P ′ ⊨ F ′.

We now prove the converse: assume that (G′, k′, P ′) is positive. In the case of Rule 5.1
and Rule 5.2, remark that any solution of (G′, k′) is a solution of (G, k), since the instance is
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unchanged. Hence, if P ′ is compatible with a solution F ′ of (G′, k′), then P is also compatible
with F ′, as K ⊆ K ′ and I ⊆ I ′. Therefore, we have a solution F ′ of (G, k) that P respects,
i.e., (G, k, P ) is positive.

The case of Rule 5.3 follows by reversing the construction done in the same case of the
other direction. ◀

Note that the initial labeling P = (∅, ∅, V (G)) is compatible with every solution of
(G, k) (if any). Therefore, by applying transitively Lemma 5.9, we get that the labeling and
reduction process is safe.

We finally show that Rule 5.4 is safe.

▶ Lemma 5.10. Rule 5.4 is safe.

Proof. Let (G, k, P ) be the annotated instance before Rule 5.4 is applied, and let (G′, k′) be
the instance that it returns. Let us prove that there exists a solution F of (G, k) such that
P ⊨ F if and only if (G′, k′) has a solution.

First, assume that there exists a solution F of (G, k) such that P ⊨ F . Let (K∗, I∗) be a
split decomposition of G + F that witnesses the fact that P ⊨ F . Let KD = K∗ ∩ D and
ID = I∗ ∩ D. We can extract from F a solution F ′ of (G, k) that only adds edges between
vertices of K∗. Notice that, by construction, K∗ = K ⊔ KD.

Recall that (G′, k′) is obtained by replacing the subset of vertices K in G with a set K ′

of k vertices. Moreover, by construction, vertices of KD that are non-adjacent to t vertices
of K in G are non-adjacent to t vertices of K ′ in G′. Rule 5.1-b ensures that t ≤ k, and
Rule 5.3-a ensures that K induces a clique in G. Therefore, since K ′ induces a clique in G′,
the number of edges needed to turn KD ∪ K into a clique is the same as the number of edges
needed to turn KD ∪ K ′ into a clique.

For every u ∈ KD, let uv1, . . . , uvt be all the edges in F that are adjacent to u and some
vertex vi ∈ K. We construct a solution F ′ of (G′, k′) by replacing every such edge uvi of
F by uv′

i, where v′
i ∈ K ′ is defined in Rule 5.3-b. Since k′ = k, (G′, k′) is also a positive

instance.
Conversely, assume that (G′, k′) has a solution F ′. Since every vertex of K ′ is adjacent

to every vertex of I ′, for any split decomposition of (K∗, I∗) of G′ + F ′, we have K ′ ⊆ K∗.
Otherwise, if some vertex of K ′ were in I∗, which would imply that F ′ contains more than
k′ edges, a contradiction. Indeed, I ′ is an independent set of size

√
2k′, and therefore, one

requires more than k′ edge additions to turn it into a clique. As vertices of I ′ are only
adjacent to vertices of K ′, up to removing some edges from F ′, we can assume that I ′ ⊆ I∗.

Hence, by performing the same process as in the other direction in reverse, we can
construct a solution F of (G, k) such that G + F admits a clique decomposition (A, B) that
satisfies K ⊆ A and I ⊆ B. In other words, we have P ⊨ F , which concludes the proof. ◀

5.3 Structure of positive instances
This section is devoted to the proof of Lemma 5.5, restated below.

▶ Lemma 5.5. If (G, k) is a positive instance, then |D| ≤ 10k + 5
√

2k + 4.

In what follows, we assume that the input is a positive instance and the labeling/reduction
process stopped and returned a generalized instance (G, k, P ). In particular, Rules 5.1 to 5.3
cannot be applied. By Lemma 5.9, we get that there exists a solution F of (G, k) such
that |F | ≤ k and P ⊨ F . Unrolling the definition, this means that there exists a split
decomposition (K∗, I∗) of G + F such that K ⊆ K∗ and I ⊆ I∗. Let KD = D ∩ K∗ be the
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set of unlabeled vertices that belong to the clique, and let ID = D ∩ I∗ be the set of the
unlabeled vertices that belong to the independent set. For every v ∈ D, let Iv = N(v) ∩ ID.
We give an upper bound on the cardinality of D by giving separate upper bounds on the
respective cardinalities of KD and ID.

Before diving into the details of the proof, let us make two observations on the structure
of D, that follow from the fact that the labeling rules cannot be applied.

▶ Observation 5.11. For every vertex v ∈ KD, |Iv| ≤
√

2k + 1.

Proof. If |Iv| >
√

2k + 1, then N(v) contains more than
(√

2k+1
2

)
= k +

√
k/2 non-edges.

Hence, we can apply Rule 5.2-b, a contradiction. ◀

▶ Observation 5.12. Every vertex v ∈ ID has a neighbor in KD.

Proof. A vertex v ∈ ID can only have neighbors in K and KD. If v does not have neighbors
in KD, it only has neighbors in K, hence we can apply Rule 5.1-a, a contradiction. ◀

We first prove that |KD| = O(k).

▶ Lemma 5.13. We have |KD| ≤ 4k.

Proof. Let us prove this statement by contradiction: we prove that if |KD| ≥ 4k + 1, then
there is a vertex in D that dominates D ∪ K, which contradicts the fact that Rule 5.2-c
cannot be applied.

By assumption, K∗ is a clique in G + F . Since F contains at most k edges, there are
at most 2k vertices of KD that are adjacent to edges of F . Since |KD| ≥ 4k + 1, there are
at least 2k + 1 vertices in KD that dominate K∗ = KD ∪ K. Let X denote the set of such
vertices. We will now show that there is a vertex in X that also dominates ID, that is, a
vertex of KD that dominates KD ∪ ID ∪ K = D ∪ K. To prove the existence of this vertex,
we will prove that for any vertex u in X such that Iu ≠ ID, there exists a vertex v ∈ X such
that |Iv| > |Iu|. By applying this property repeatedly, we eventually find a vertex v such
that Iv = ID.

Let u be a vertex of X such that Iu ̸= ID. Since KD ⊆ N [u] and Rule 5.2-b cannot
be applied, there are at most k non-edges between Iu and KD. Hence, these non-edges
are adjacent to at most k vertices of X (X being a clique, every non-edge is incident to at
most one vertex of X), and then at least k + 1 vertices of X dominate Iu. Let X ′ be the
subset of vertices of X that dominate K∗ ∪ Iu. Let w be a vertex of ID \ Iu. As noted in
Observation 5.12, w is adjacent to some vertex v ∈ KD.

Assume that w is anticomplete to X ′, so that v /∈ X ′. Since v ∈ K∗, every vertex of X ′

is adjacent to v. Therefore v contains at least k + 1 non-edges in its neighborhood, namely
the edges between w and X ′, a contradiction.

Therefore, v ∈ X ′ and the conclusion follows since Iv contains Iu and w. ◀

By bounding locally the size of the neighborhood of each vertex in KD using Observation 5.11,
Lemma 5.13 directly provides an O(k 3

2 ) kernel. However, as we will show, this is not tight.
Using a more global counting argument, we can show that |ID| = O(k).

▶ Lemma 5.14. We have |ID| ≤ 6k + 5
√

2k + 4.

Proof. First, notice that Observation 5.12 implies that ID ⊆
⋃

v∈KD N(v). Therefore, if
|KD| ≤

√
8k, Observation 5.11 implies the following upper bound on the cardinality of ID:

|ID| ≤ |KD| · (
√

2k + 1) ≤ 4k + 2
√

2k ≤ 6k + 5
√

2k + 4.
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In what follows, we assume that |KD| >
√

8k. We partition ID into two sets: I+, the set
of vertices that have degree least |KD|/4, i.e., vertices that are adjacent to at least |KD|/4
vertices of KD, and I− = ID \ I+. We bound their sizes independently.

First, by counting the number ne of edges between KD and I+ from the point of view of
KD, we get ne ≤ |KD| · (

√
2k + 1). From the point of view of I+, we get ne ≥ |KD| · |I+|/4.

By combining the two inequalities, we get |I+| ≤ 4(
√

2k + 1).
It remains to show that |I−| ⩽ 6k +

√
2k. To this end, we consider two types of vertices

in KD: those that are adjacent to more than
√

2k edges of F in the solution, and the others.
We then bound the number of vertices in I− adjacent to (at least) a vertex of each type.

Since we add at most k edges to G, there are at most
√

2k vertices in KD incident
to more than

√
2k edges of F . By Observation 5.11, these vertices of KD have at most√

2k(
√

2k + 1) ≤ 2k +
√

2k neighbors in ID (and therefore in I−).
To conclude the proof, it is thus sufficient to show that there are at most 4k vertices in

I− that are adjacent to vertices of KD of the second type.
Let v be a vertex of KD of the second type. We write Kv = N(v)∩KD and I−

v = N(v)∩I−.
Observe that, by definition, |Kv| ⩾ |KD|−

√
2k ≥ |KD|/2. Let d̄ be the average degree in Kv

of vertices in I−
v . Since Rule 5.2-b cannot be applied, there are at least |Kv| · |I−

v | − k edges
between Kv and I−

v , hence d̄ ⩾ |Kv| − k/|I−
v | ⩾ |KD|/2 − k/|I−

v |. However, by definition of
I−, each vertex has degree at most |KD|/4 in Kv hence d̄ ⩽ |KD|/4. Combining the above
yields |I−

v | ⩽ 4k/|KD|. Since there are at most |KD| vertices of the second type, the union
of their neighborhoods has size at most |KD| · 4k/|KD| = 4k, which is the sought result. ◀

5.4 Pseudo-split graphs
The proof of the kernel for Split Deletion can be easily adapted to give a kernel of similar
size for Pseudo-split Deletion. Except for Rule 5.2-b where the k + 1 should be replaced
by k + 2, Rules 5.1 to 5.4 are still safe, and their safeness can be proven with almost identical
proofs. Moreover, Lemma 5.5 also extends (with a slightly worse but still linear bound), and
we obtain the following result.

▶ Theorem 5.15. Pseudo-split Deletion admits a 11k + 7
√

2k + 19-vertex kernel.

6 A quadratic-vertex kernel for Trivially Perfect Completion

The goal of this section is to prove Theorem 1.4 that we recall there:

▶ Theorem 1.4. Trivially Perfect Completion admits a kernel with 2k2 + 2k vertices.

Recall that trivially perfect graphs are (C4, P4)-free graphs. We also have the following
characterization.

▶ Theorem 6.1 ([30, 32]). H is a trivially perfect graph if and only if every connected
induced subgraph of H contains a universal vertex.

In what follows, we refer to induced P4 or C4 of a graph as its obstructions. We say that
a pair (u, v) of vertices is a diagonal if uv /∈ E and there exists two vertices a and b such
that uavb is a P4 or a C4. Given a diagonal (u, v), the number of obstructions containing
(u, v) is the number of distinct pairs (a, b) such that uavb is a P4 or a C4. Note that every
obstruction contains exactly two diagonals, and that any solution must contain at least one
of the two diagonals of each obstruction.

We first present a reduction rule that should be applied exhaustively, and then two
reduction rules that should be applied once.
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▶ Rule 6.2. Let u, v be two non-adjacent vertices. If the number of obstructions containing
u, v is at least k + 1, then add uv to E and decrease k by 1.

▶ Lemma 6.3. Rule 6.2 is safe.

Proof. If there is no solution, then indeed, the reduced instance still has no solution. Assume
now that (G, k) is positive. Let F be a solution of (G, k). If F contains uv the conclusion
follows. Assume by contradiction that uv is not in F . Since every obstruction contains exactly
two diagonals, for every obstruction containing u, v as a diagonal, the other diagonal is in F .
Since the other diagonal consists of the other pair of vertices of the obstruction and there
are at least k + 1 disjoint pairs, F must a contain at least k + 1 edges, a contradiction. ◀

Moreover, Rule 6.2 can easily be applied in polynomial time.
The modulator X(G) of G is the subset of vertices of G that are in at least one obstruction.

Guo [21, Theorem 4] stated without proof that the following rule is safe, i.e., that (G, k) is a
positive instance if and only if (G[X(G)], k) is.

▶ Rule 6.4 (Guo [21]). If X(G) ̸= V (G), remove all vertices of G that are not in X(G).

For completeness, we include a proof of the following lemma, which implies Guo’s result.

▶ Lemma 6.5. If v /∈ X(G), then opt(G) = opt(G − v).

Proof. It is trivial that opt(G − v) ≤ opt(G). For the other direction, let F be an optimal
solution of G − v. We show that it is also a solution for G, i.e., G + F is trivially perfect.
Note that we can assume that G is connected (up to considering only the component of v).

Let H be a connected induced subgraph of G + F . According to Theorem 6.1, our goal is
to show that H has a dominating vertex. If v /∈ V (H), then H is a connected subgraph of
G − v + F , hence has a dominating vertex.

We may thus assume that v ∈ V (H). If H − v is not connected, then v must dominate
H. Indeed, otherwise there is a P4 uvwx in H. Note that F ⊂ E(G − v) hence uv, vw /∈ F .
Therefore we must have wx ∈ F . But since G is connected, it contains a shortest path
of length at least 2 from v to x, and this yields either a P4 or a C4 containing v in G, a
contradiction.

Finally, assume that H −v is connected. Since G−v+F is trivially perfect, H −v contains
a dominating vertex u. We may assume that uv /∈ E(G) ∪ F , otherwise we are done. Let u′

be a neighbor of v in H. By construction uu′v induce a P3. We claim that u′ dominates H,
which concludes. Assume that this is not the case and there is w ∈ V (H) \ NH [u′]. Now
vu′uw is a P4 in H, hence uu′ or uw lie in F (again u′v /∈ F since F ⊂ E(G − v)). If uu′ ∈ F

then u′ and v are at distance at least two from u in G, hence a shortest path (in G) from
{u′, v} to u yields a P4 containing v in G. Similarly, if uw ∈ F , u, u′, v are all at distance at
least 2 from w in G and a shortest path from {u, u′, v} to w yields a P4 containing v in G, a
contradiction. ◀

When the first two rules cannot be applied, we perform the following rule which detects
trivially negative instances.

▶ Rule 6.6. If |V (G)| > 2k2 + 2k, output a trivially negative instance.

In order to complete our proof, we simply have to prove that after applying the first two
rules exhaustively, the size of a positive instance is quadratic. The next lemma ensures that
Rule 6.6 is safe, which concludes the proof of Theorem 1.4.
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▶ Lemma 6.7. If (G, k) is a positive instance and every diagonal belongs to at most k

obstructions, then |X(G)| ≤ 2k2 + 2k.

Proof. Since (G, k) is a positive instance, there exists a solution F containing at most k

edges. Moreover every edge e of F belongs to at most k obstructions in G. Therefore, the
number of vertices that are in an obstruction containing e as a diagonal is at most 2k + 2
(since all the obstructions contain the endpoints of e).

Let x be a vertex of X(G). Since all the vertices of X(G) belong to at least one obstruction
of G and F is a solution, F contains at least one of the two diagonals of some obstruction
containing x. Therefore, we can map each vertex of X(G) to an edge of F which is a diagonal
of an obstruction containing x. The first part of the proof ensures that the number of vertices
mapped to any edge of F is at most 2k + 2, therefore the total size of X(G) is at most
2k2 + 2k, which completes the proof. ◀

7 A linear-vertex kernel for Starforest Deletion

The goal of this section is to prove Theorem 1.5, which we recall here.

▶ Theorem 1.5. Starforest Deletion admits a kernel with at most 4k + 2 vertices.

Stars can be divided into two sets: centers and leaves. Let us define the notion of center
set of a star forest. We say that a set D of vertices of G is a dominating set of G if every
vertex of G is either in D or adjacent to a vertex of D.

▶ Definition 7.1 (Center set). Let S be a star-forest. A set C∗ ⊆ V (S) is a center set of S if
C∗ is a dominating set of S such that every star S of S contains exactly one vertex c of C∗.
This vertex is called the center of S.

Note that a center set is not necessarily unique since in 2-stars, both vertices can be
selected as a center. Given a star forest S with a set of centers C∗, the leaves of S are the
vertices outside of C∗. By definition, every leaf has degree 1 and its unique neighbor is in C∗.

In what follows, we show how to use the structure of the input graph to identify and
label vertices that are centers of an optimal solution, which leads to a Label-And-Reduce
kernelization algorithm.

Let (G, k) be an instance of Starforest Deletion. Our first reduction rule, which is
indeed safe, removes trivial connected components.

▶ Rule 7.2 (Clean-up rule). Remove from G any connected component with 1 or 2 vertices.

Assume now that Rule 7.2 cannot be applied anymore.

▶ Rule 7.3 (Center labeling rule). Let C be the set of vertices of G that are adjacent to a
vertex of degree 1 in G.
(a) For every v /∈ C, if v is adjacent to a vertex u of C, delete all the other edges between v

and C, and decrease the parameter accordingly.
(b) For every u, v ∈ C, if u and v are adjacent then remove uv from G and decrease k by 1.

The fact that Rule 7.3 is safe is a consequence of the following lemma:

▶ Lemma 7.4. Let C be the set of vertices of G that are adjacent to a vertex of degree 1. If
(G, k) is a positive instance, then there exists a solution F of (G, k) and a center-set C∗ of
G − F such that C ⊆ C∗.
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Proof. Let F be a solution of (G, k) that maximizes the number of vertices of C in a center-
set C∗ of G − F . Let S = G − F . Assume by contradiction that C is not included in C∗.
We prove that there exists a solution F ′ of (G, k) and a center set C ′ of G − F ′ containing
more vertices from C than C∗, a contradiction.

Let v ∈ C \ C∗. Let w be a neighbor of v of degree 1 in G. Observe that v cannot have
degree 1 in G, otherwise {v, w} induces a 2-star in G. Therefore, v has degree at least 2 in G.
However, it has degree 1 in G − F since v /∈ C∗. Notice that w ∈ C∗, as it is either isolated
or adjacent to v in G − F , and v /∈ C∗.

If w is the center of the star containing v, that star is reduced to {v, w}. Hence, we can
replace w by v in C∗, which increases the size of C ∩ C∗, a contradiction.

Otherwise, let u ̸= w be the center of the star of v. We set F ′ = (F \ vw) ∪ uv (see
Figure 2). We have |F ′| ≤ |F | and F ′ is still a solution of (G, k). Moreover, G − F ′ has a
center set C ′ containing C∗ ∩ C and v, which contradicts the maximality of F . ◀

v wu

In G

v wu

In G − F

v wu

In G − F ′

Figure 2 Illustration of the transformation used to make v a center, where v is a vertex adjacent
to the degree-1 vertex w. Vertices of the center set (C∗ in G − F , C′ in G − F ′) are drawn in red.

Lemma 7.4 ensures that Rule 7.3 is safe. Indeed, if there exists a solution, then there
is also a solution where C is in the center-set. Hence we can safely remove all the edges
between the vertices of C, since each star only contains one vertex of the center-set of G − F .
Moreover, if an edge between v and a vertex w of C is kept in G − F , then we can choose to
keep any other edge between v and C instead of (v, w), since all the vertices of C are centers
of their stars.

When neither Rule 7.2 nor Rule 7.3 can be applied, we apply the following rule:

▶ Rule 7.5 (Center reduction rule). Merge all the vertices of C, and remove all but k + 2
vertices of degree 1.

▶ Lemma 7.6. Rule 7.5 is safe.

Proof. Assume that Rule 7.3 cannot be applied. Let (G0, k) be the instance before Rule 7.5
is applied, let (G1, k) be the instance after vertices of C have been merged to the vertex c,
and let (G2, k) be the instance that Rule 7.5 returns. Since Rule 7.3 cannot be applied, there
is no edge between vertices of C, and each vertex of G0 is adjacent to at most one vertex of
C. Therefore there are no loops nor parallel edges in G1.

The instances (G0, k) and (G1, k) are equivalent. Indeed, by Lemma 7.4, if G0 (resp. G1)
is positive, there exists a solution F (resp. F ′) such that C (resp. {c}) is in a center-set of
G0 − F (resp. G1 − F ′). For every vertex v of degree 1 in G0, let cv be its only neighbor
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(which is in C). We can then transform a solution of F of one instance, with a center set
that contains C or c, into a solution of the other instance by swapping edges of the form
(v, c) for edges (v, cv). This operation does not change the cardinality of the solution, and
the instances have the same parameter, therefore the instances are equivalent.

Let us finally prove that (G1, k) is positive if and only if (G2, k) is. Since G2 is a subgraph
of G1, if (G1, k) is positive then removing the same set of edges in G2 also gives a solution.

Now, assume that (G2, k) is positive. Let F be a solution of (G2, k). Without loss of
generality, c is adjacent to k + 2 leaves in G1 (otherwise G1 = G2, and the equivalence is
trivial). As |F | ≤ k, c is still adjacent to at least 2 leaves in G2 − F , and therefore, c is the
center of its star. This implies that the same set of edges F is a solution of G1, since G1 is
obtained from G2 by adding pendant vertices adjacent to c, and c is a center of any solution
of G2. ◀

When Rules 7.2 to 7.5 cannot be applied, we apply the following rule once.

▶ Rule 7.7 (Kernel size rule). If |V (G)| > 4k+3, return a trivial negative instance. Otherwise,
return (G, k).

Rule 7.7 ensures that the returned kernel has at most 4k + 3 vertices. In the remainder
of this section, we study positive instances of Starforest Deletion to prove that Rule 7.7
is safe.

In the two following lemmas, we assume that none of Rules 7.2 to 7.5 can be applied.
The following lemma uses the sparsity of starforests (they have many vertices of degree 1) to
get information on the structure of positive instances.

▶ Lemma 7.8. If (G, k) is a positive instance of Starforest Deletion with m edges, then
G contains at least m − 3k vertices of degree 1.

Proof. Since (G, k) is a positive instance, there exists a set F ⊆ E of size at most k and
a starforest S such that S = G − F . Let t denote the number of stars (i.e., of connected
components) in S. In each star of S, there is at most one vertex which does not have degree
1. Therefore, S has at least n − t vertices of degree 1. Let ℓ be the number of vertices in
G that have degree 1. We can obtain G from S by adding at most k edges, and adding
an edge can change the degree of at most two vertices. Therefore, we have ℓ ≥ n − t − 2k.
Moreover, S has n − t edges, hence m ≤ n − t + k. By combining the above, we obtain that
ℓ ≥ n − 2k + m − n − k = m − 3k. ◀

In the last step of Rule 7.3, we remove all but k + 2 vertices of degree 1. In the following
lemma, we apply Lemma 7.8 to show that the number of remaining vertices must be small.

▶ Lemma 7.9. If (G, k) is a positive instance where no rule can be applied, then |V (G)| ≤
4k + 3.

Proof. By Lemma 7.8, G contains at least m − 3k vertices of degree 1. Since Rule 7.2 cannot
be applied, G does not contain 2-stars, and therefore each edge is incident to at most one
vertex of degree 1. Hence, removing all vertices of degree 1 from G removes the same number
of edges, i.e., we obtain a graph H with at most 3k edges. As all the degree 1 vertices of G

are adjacent to a single vertex v, all vertices of H but v have degree at least 2. Hence, H

contains at most 3k + 1 vertices. Moreover, by Rule 7.5, G contains at most k + 2 vertices of
degree 1. Therefore, we have |V (G)| ≤ 3k + 1 + k + 2 = 4k + 3. ◀

By applying the contrapositive of Lemma 7.9, we get that Rule 7.7 is safe.
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Improving the multiplicative constant in the linear bound. In the proof of Lemma 7.9,
we use a simple argument based on the minimum degree to show that the 3k remaining
edges span at most 3k + 1 vertices. The worst case is when every vertex has degree 2, that
is, when every connected component is a cycle. In a cycle, an optimal solution can easily be
found in polynomial time, and therefore we can remove cycles. We can also show that long
induced paths can be reduced. Combining these results gives a smaller kernel, at the cost of
an increased running time and slightly more involved analysis.

However, these improvements do not yield a sublinear kernel. It turns out that, under the
ETH, Starforest Deletion does not have a sublinear kernel. Indeed, Drange et al. [15]
proved that, under the ETH, Starforest Deletion does not admit a subexponential
FPT algorithm, i.e., an algorithm running in time O∗(2o(k)). Moreover, there is an O∗(2n)
algorithm for Starforest Deletion: for each subset S of vertices, test whether there
exists a solution in which S is the center set. Therefore, a kernel with o(k) vertices would
imply an O∗(2o(k)) algorithm; a contradiction.
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