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Influence of Blade Flexibility on the Dynamic Response 
Simulation of a Turbomolecular Pump

on Magnetic Bearings
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Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecully 74320, France

Fabrice Thouverez
Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, Ecully 74320, France

This paper proposes the simulation of a complete mechanical model of a turbomolecular pump rotor, including rotor and blades 
flexibility, suspended by controlled active mag-netic bearings. The mechanical model is composed of an eight stage blisk, attached to a 
shaft. Magnetic forces are linearized by the first-order Taylor expansion around a given point. Including blades and rotor flexibility 
makes the mechanical system asymmetric, so the equations of motion for the coupled system have periodic terms. A modal controller 
was designed to control rigid body modes, since the number of sensors is limited and no state observer is implemented. PID controllers 
are used for low frequency modes com-bined with the second order filters to damp high frequency modes. First of all, stability analysis 
was carried out for the axisymmetric case. Second, blades flexibility was included. Forced response of the whole system to an 
impulsive force was studied. Diver-gent responses for the system in rotation were obtained as a second order filter pole pos-sibly 
interacting with blades modes. Taking the second order filters off the control loop allowed the system to be stable. These results show 
that the analysis method developed here is efficient to evaluate the performance of a controller in closed loop with the com-plete 
flexible system. This method may be used in industrial design processes as computa-tion times for the complete system are very short.

Introduction

Turbomolecular pumps generate high levels of vacuum via par-
ticle collision principle: blades rotating at high speed transfers
velocity component to the molecule pushing it out the vacuum
chamber. Such pumps are composed of a multistage blisk,
attached to a rotating shaft, supported by active magnetic bearings
(AMB). The advantages of this kind of bearings are their high reli-
ability, contamination free operation as no lubrication is needed,
and low levels of vibration at very high rotation speeds [1,2].

Since magnetic forces are inversely proportional to the square
of the distance between shaft and bearings, AMB realizations are
naturally unstable. Furthermore, the relation between current and
magnetic forces is nonlinear [3]. For those reasons, AMB support-
ing turbomolecular pumps are actively controlled. Additionally,
these controllers can be used to damp pump vibrations.

Dynamic response of rotors suspended by actively controlled
AMB has been studied by many researchers, the majority of them
aiming to design a control strategy or to evaluate its performance.
Most of the models used to simulate rotor structural dynamics can
be divided in two levels of complexity: those who consider rotor
as a rigid body and develop their control law based only on this
phenomenology and those who take into account the flexibility of
the shaft (see Refs. [3–8]). Very few works simulate rotating
blades flexibility in a system coupled with a controller acting in
the stationary frame, like magnetic bearings. The difficulties that
arise from this approach are due to the fact that since the rotor is
no longer axisymmetric, its equations of motion in the stationary
frame, where control forces actuate, are time periodic [9].

In a previous work [10], the authors have presented experimen-
tal data of a functioning pump which demonstrates that blades
dynamics may be a significant factor in controlled closed-loop
analysis. At some operating conditions, blades response has

significant amplitude, indicating that they are excited by the con-
troller. Such interaction may be of great interest for manufac-
turers, as it can reduce the machine’s lifetime or lead to
unpredicted structural failures.

The investigation of Christensen and Santos [11] is one exam-
ple of studies of rotating flexible bladed rotor supported by
actively controlled bearings. In this encouraging work, controller
is designed considering a rigid rotor on actively controlled linear
bearings. To the rotor is attached a flexible bladed disk. Only pla-
nar motions are considered (gyroscopy is neglected). Control
design was carried out using a periodic modal transformation ini-
tially proposed by Ref. [12]. In this respect, some works propose
methods for the stability analysis of linear time periodic variant
systems based on periodic modal analysis, like [13]. Terms such
as “pseudo-modes” and “pseudo-natural frequencies” are intro-
duced [14].

It has to be noted that such methods are not yet applied to
sophisticated multistage rotor-blisk systems such as turbomolecu-
lar pumps. Hence, for industrial applications, one may prefer con-
trol design methods that consider only shaft dynamics.
Nevertheless, simulating the response of the complete system is
time and money saving, as it allows to assess the interaction
between rotating mechanical parts (including blades flexible
motion) and controller before manufacturing and tests.

In this context, the aim of this work is to propose the forced
response simulation of the complete turbomolecular pump rotor,
including blades flexibility, coupled with a controller that has
been proven to stabilize the axisymmetric system. Such simula-
tions are able to describe the closed-loop full system behavior,
allowing the interactions between the control law and all the struc-
tural components to be studied.

The implemented control law is designed based on a rigid body
model of the pump. A modal controller including rigid body
modes is proposed. With the above simulations, one can evaluate
the effects of a rigid body-based controller on the rotor and blades
flexibility. This avoids the implementation of sophisticated meth-
ods for periodic time-dependent systems stability analysis.
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This paper is organized as follows: first, the mechanical part of
the rotor and positioning of sensor and actuators are described and
the equations of motions derived in a previous work are recalled.
Then, magnetic forces linearized equations are derived as a func-
tion of rotor displacements and control currents. Coupling of mag-
netic forces and mechanical equations of motion is proposed in
the section Coupling of the Mechanical System and Magnetic
Bearings. Thereafter, the control law used to stabilize the axisym-
metric system is described and the stability analysis results for the
rotating system are presented. Finally, forced response to an
impulse excitation of the complete flexible bladed rotating system
is presented and the results are discussed.

Description of the Rotor’s Model

The model that describes the pump’s dynamic behavior is pre-
sented in Fig. 1. It is composed of a flexible shaft on which a
bladed disk is attached with a flexible element (km). The disk is
considered rigid and axisymmetric, only its mass and moments of
inertia are included in the model. Eight stages of flexible blades
are attached to the disk. At last, another rigid axisymmetric disk is
considered to represent the axial bearing, which is used to levitate
the pump when it is setup in the vertical position.

The equations of motion are developed in Ref. [10] in the rotat-
ing frame, based on the works of Refs. [15–17]. The phenomenol-
ogy of flexible parts is described by rotating Euler–Bernoulli
beams, their continuous displacements are approximated by Ritz
functions, and Rayleigh–Ritz method is used for calculating natu-
ral frequencies and mode shapes.

The equations of motion for the complete structure are written
in Eq. (1). M, D, K, G Xð Þ; N X

2ð Þ, and Kstiff X
2ð Þ are the mass,

structural damping, structural stiffness, gyroscopic, spin softening,
and spin stiffening matrices, respectively,

M €q þ DþG Xð Þð Þ _q þ KþKstiff X
2ð Þ þ N X

2ð Þ
� �

q ¼ f (1)

By introducing blades dynamics to the model, the system becomes
asymmetric. This is the reason why Eq. (1) is written in the

rotating frame R to avoid time-dependent periodic terms in struc-
tural matrices [18]. On the other side, magnetic bearings are
described in the stationary frame, as shown in the section Mag-
netic Forces. As the control forces are not assumed to be the same
on both xz and yz planes, their projection on rotating frame would
result in time periodic terms. This problem is treated further in
this article as well as the description of how it is included in the
control loop.

Magnetic Forces. Magnetic bearings dynamics are introduced
to the mechanical model as excitation forces in Eq. (1). Their
model is developed from the concepts of magnetic circuits and
Lorentz forces [3]. Figure 2 shows a schematic description of such
circuits. The magnetic flux U that passes by the rotor and stator
through a cross section Am generates the magnetic force Fmag.
This flux is induced by electric current I passing by n turns of a
solenoid. The expression of Fmag is given by

Fmag ¼ 4Amn
2 l0
la

I2

lm

lm
þ

2r

la

� �2
(2)

where lm is the mean magnetic flux path length through metallic
part, l0, la, and lm are the magnetic permeability at vacuum, air,
and the magnetic circuit material, respectively. r is the distance
between stator and rotor in its displaced position. For further
details, see Ref. [19].

Equation (2) shows the magnetic force nonlinear dependence
on r2 and I2. Besides, magnetic forces present a saturation point
due to magnets physical properties. Furthermore, Fmag and r have
the same sign, which make the magnetic bearings unstable. In our
study, the magnetic forces are linearized around an operating
point by a first-order Taylor expansion of Fmag. For that, two vari-
ables’ transformations are performed

r ¼ eþ x�

I ¼ io þ i

Fig. 1 Model description: mechanical parts and magnetic bearings positioning
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where e is the initial distance from rotor to bearing, x* is the dis-
placement of the rotor in the stationary frame,1 i0 is the bias cur-
rent, and i the control current.

This leads to magnetic forces linearized expression

Fmag ¼ �Ks x
� þ Ki i (3)

The expression (3) is valid for one direction of one actuator. The
rotor is equipped with two sensors and actuators on each xz and yz
plane. The integration of these four forces to the mechanical sys-
tem is proposed in the section Coupling of the Mechanical System
and Magnetic Bearings.

Coupling of the Mechanical System and Magnetic Bearings.
As described in Fig. 1, two magnetic bearings are mounted on the
shaft, defining two control planes (identified by A and B). For
each plane, displacement sensors in the x* and y* directions are
mounted. The forces delivered by the magnetic bearings are noted

as F�
a ¼ f �Ax

; f �Bx
; f �Ay

; f �By

n oT

, and the displacements meas-

ured by the sensors are noted as x�s ¼ x�sA ; x�sB ; y�sA ; y�sB
� �T

.

As sensors and actuators are not colocalized, displacements of the
shaft at sensors and actuators positions are not the same, and for

the latter, they are noted as x�p ¼ x�pA ; x�pB ; y�pA ; y�pB
� �T

. The

expression of the magnetic forces vector is then

F�
a ¼ �Ks x

�
p þKi ia (4)

where

Ks ¼ diag ksA ; ksB ; ksA ; ksB½ �ð Þ

and

Ki ¼ diag kiA ; kiB ; kiA ; kiB½ �ð Þ

The integration of the expression (4) into the equations of motion
(1) needs two major adaptations: (1) forces must be projected on
the rotating frame and (2) physical displacements must be written
in Rayleigh–Ritz basis. Projection from stationary to rotating

frame is made by means of R Xtð Þ matrix (see Eq. (A1) in the
Appendix A)

Fa ¼ R Xtð ÞF�
a (5)

xp ¼ R Xtð Þ x�p (6)

The relations between physical and generalized coordinates are
given by (matrices Hs and Hp are described in the Appendix)

xs ¼ Hs q (7)

xp ¼ Hp q (8)

Generalized forces are the result of the derivative of the work
with respect to the generalized coordinates [20]. The work of the
magnetic forces is defined in the stationary frame as

dWFa
¼ d x�p

� �T
F�
a (9)

Combining Eqs. (4), (8), and (9) and considering that
R Xtð ÞKsR

T
Xtð Þ ¼ Ks, the work expression in terms of displace-

ments described in the rotating frame is obtained

WFa
¼ �qTHT

pKsHpqþ qTHT
pR

T
Xtð ÞKiia (10)

The expression of the generalized magnetic forces described in
the rotating frame is then

Fa ¼ �H
T
pKsHpqþH

T
pR

T
Xtð ÞKiia (11)

Combining Eqs. (11) and (1) leads to the expression of the electro-
mechanical system, written in a state-space form in Eq. (12). It is
clear from this equation that the dynamic characteristics of the
coupled system depend on the control current vector ia. To stabi-
lize the system and reach good dynamic performances, the control
law that defines ia is described in section Control Law

_q
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0 I

�M�1 KþKmag þKstiff þ Nð Þ �M�1 DþGð Þ
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(12)

with Kmag ¼ H
T
pKsHp

B ¼
0

M�1
H

T
pR

T
Xtð Þ

2

4

3

5

The complete system has dimension 452, which is a very small
model compared to the phenomenology it is able to describe: the
overall dynamics of an eight stage flexible bladed rotor with gyro-
scopic effects, spin softening, blades centrifugal stiffening, and
the possibility of including a mistuning pattern, since all of the
blades are modeled. This point is very important in industrial
design processes, since small models need short computation time
to be simulated.

In this section, the equations of the electromechanical coupled
system were obtained in state-space form, defining the mechanical

Fig. 2 Magnetic circuit

1Also valid for y*.
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system behavior dependence on control currents. In the next sec-
tion, the control law used to define currents that stabilize the
coupled system is presented.

Control Law. The control loop strategy used for the simula-
tions is inspired from the work of Ref. [21] and is represented in
Fig. 3. It consists of decoupled modal controllers acting independ-
ently on each rigid body mode. These independent controllers are
composed of a proportional–integral–derivative (PID) set, as well
as the second order lag and lead-lag filters that damp the flexible
modes. Gyroscopic compensation is implemented in order to min-
imize variations in plant characteristics and guarantee controller
performance for the whole spin speed range.

In order to control independently the modes, displacements xs
are expanded on the modal basis, without the magnetic bearings.
The dimension of this modal basis defines the number of control-
lable modes and is limited by the number of sensors available
[22], unless a state observer is implemented. On the other side,
modal controller output must be projected to the physical basis, so
that AMB forces can be calculated. Such transformations are rep-
resented by Ti and To before and after the modal controller block
in Fig. 3.

To define the control law, system is considered axisymmetric:
blades flexibility is not taken into account, disk’s mass and
moment of inertia are increased to integrate blades’ influence. In
that way, the equations of the coupled system do not present time-
periodic terms in both stationary and rotating frames. Thus, stabil-
ity of the system can be assessed by traditional methods. To do so,
only structural matrices corresponding to shaft and disk are
included in Eq. (12), and projection to stationary frame is possible
thanks to Eqs. (C1a)–(C1e), given in Appendix C. Once this con-
trol law has proven its performance and stability for the axisym-
metric system, it will be tested on the complete mechanical
model, including blades flexibility.

The obtained modal controller is composed of independent PID
controller combined with lag and lead-lag filters for each con-
trolled mode. PID parameters are tuned to define rigid body
modes frequency and damping. The second order filters are tuned
to damp flexible modes by shifting the phase at specific frequen-
cies. The following paragraphs focus on the stability analysis of
the obtained controller for the axisymmetric system.

Results for the Axisymmetric System

This section shows a first step of analysis before considering
the complete asymmetric model. The objective is to verify that
the closed-loop simulations are stable for the axisymmetric system
before the integration of blades flexibility, which increases con-
siderably the model’s complexity. For the axisymmetric system,
the control loop is slightly different from the one described in
Fig. 3: plant model is written in the stationary frame, as well as
the magnetic bearings forces, so blocks R Xtð Þ and RT

Xtð Þ are not
necessary. The control loop is implemented in MATLAB using tools
from the control system toolbox.

For the stability analysis, the closed-loop poles were calculated
for each spin speed (X) and plotted in Figs. 4 and 5. For

confidentiality issues, all frequencies in paper are normalized by
an arbitrary value xref.

Stability Analysis and Influence of the Gyroscopic Compen-
sation. First of all, we focus on the impact of gyroscopic compen-
sation on the system. For that, simulations were done without this
control block. Figure 4 shows the closed-loop poles evolution for
this case. Rigid body modes’ frequencies are indicated by RB and
the shaft flexible modes by S. We notice the gyroscopic effects by
the split of the natural frequency evolution in two branches, repre-
senting the forward (ascending) and backward (descending) whirl-
ing modes. One of the rigid body modes interacts with a controller
pole at about 48% of nominal spin speed (Xn). Such interaction
creates an instability on the system that is observable in Fig. 4(b).
Indeed, at about 50% of Xn, a controller pole is located on the
right half of the complex plane. Such results illustrate the fact that
spin speed is likely to affect the efficiency of the controller, and
therefore, the closed-loop stability.

The results for the gyroscopic compensated case are shown in
Fig. 5. It can be noticed in Fig. 5(a) that controller poles are less
sensitive to spin speed. Rigid body modes remain almost constant
for all operating speeds. There is no interaction between rigid
body modes and controller poles. To prove stability, Fig. 5(b)
shows the closed-loop poles for all spin speeds located on the left
half of the complex plane. These results show that gyroscopic
compensation is effective to counteract the effects of spin speed
on the mechanical behavior of the rotor. Indeed, the natural fre-
quencies stay almost constant along spin speed allowing the con-
troller to be efficient for the whole operating range.

Comparisons between Figs. 4(a) and 5(a) reveal that the angle
between the two flexible shaft modes is considerably larger for the
gyroscopic compensated case, yet the expected results would be
the opposite. Such effect is a consequence of the modal basis size
used for the displacements projection. Since it is only composed
of rigid body modes, flexible modes are not controlled but are sub-
ject to the controller’s action: in this case, controllers increase
gyroscopic effects for shaft flexible modes.

With all of these results, the stability of the axisymmetric sys-
tem for the whole spin speed range is proven. We will now intro-
duce the blades flexibility and evaluate how the closed-loop
system performances may be affected.

Controlled Complete Model Simulation

In this section, the complete rotating model simulation is pre-
sented. The influence of blades flexibility on the closed-loop for
the rotating model is studied by the response of an impulsive force
applied by magnetic bearings. From these results, interaction
between the blades dynamics and the controller is shown.

Figure 6 presents the time results for (a) X¼ 0 and (b) 20% of
the nominal speed (Xn). The plotted displacements correspond to
the ones measured by sensor A in the x direction, in the stationary
frame. For X¼ 0, time response shows a transient phase that is
very quickly damped and the rotor tends to its center position
(xsA ¼ 0). However, the rotating system response is divergent,
which means that it is unstable for this spin speed. These results
do not agree with the stability analysis carried out with the axi-
symmetric system shown in Fig. 5, as all of the poles are on the
left half complex plane. This behavior indicates that an interaction
between the controller poles and the flexible blades modes occurs,
which destabilizes the system.

In paper [10], an equivalent flexible model was studied with lin-
ear bearings instead of AMB. Results of these analysis are repro-
duced in Fig. 7 in dotted lines. The axisymmetric system poles
evolution are plotted in full lines, as in Fig. 5(a). Comparison of
these two curves is focused on the region near the normalized fre-
quency of 0.4. There is a superposition of a controller pole, corre-
sponding to a second order filter, with the blade modes for all the
speed range. This indicates that there must be an interaction
between these two modes, in a similar way than the one observedFig. 3 Control loop
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Fig. 4 Axisymmetric system poles without gyroscopic compensation. C—controller poles, RB—rigid body
modes, and S—flexible shaft modes: (a) evolution of the poles norm versus normalized spin speed (X/Xm) and
(b) evolution of the poles versus normalized spin speed (X/Xm) in the complex plane. Real and imaginary parts
are normalized by xref.

Fig. 5 Axisymmetric system poles with gyroscopic compensation. C—controller poles, RB—rigid body modes,
and S—flexible shaft modes: (a) Evolution of the poles norm versus normalized spinspeed (X/Xn) and (b) Evolu-
tion of the poles versus normalized spin speed (X/Xn) in complex plane. Real and imaginary parts arenormal-
ized by xref.

Fig. 6 Impulse response of the complete model: (a) Time Response (x�
sA
) 2 X ¼ 0. Amplitudes are nor-malized

by x �
ref and (b) Time Response (x �

sA
)2 20% of Xn. Amplitudes are normalized by x �

ref.
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in Fig. 4(a) between a controller pole and a rigid body mode.
Since stability analysis is not yet carried out for the complete sys-
tem in rotation, it is not possible to reproduce this interaction.
Thus, to sustain this hypothesis, a simulation of the complete
AMB suspended system in rotation is carried out, without the
second order filters.

Results of this simulation at 20% of the nominal speed are
shown in Fig. 8. The time response is no longer divergent
(Fig. 6(b)). The transient phase is very clear, and the rotor

converges to its center of rotation, though more oscillation is
observed than for X¼ 0. Figure 8(b) presents the frequency
domain response, normalized by the input force. The typical high-
level responses at low frequencies are present, and at higher
frequencies, the peaks corresponding to blades (identified by the
letter B) and shaft forward (S-FW) and backward (S-BW) modes
are highlighted.

Finally, a comparison between the closed-loop system with and
without the second order filters at X¼ 0 is shown in Fig. 9. In fre-
quency response (9b), pics corresponding to structural modes are
well defined: a high modal density region corresponding to blades
modes has been identified by letter B. The shaft mode was identi-
fied by the letter S. Responses without the second order filters
have higher amplitude than those with these controller elements,
specially at the frequencies near the blades’ natural frequencies.

These differences are also observed in time domain. In a global
view of Fig. 9(a), both curves are almost superposed. Indeed, the
high amplitude, low frequency response is not affected by the fil-
ter since its action is at higher frequencies only. Focusing on the
zoom shown in this figure, which includes a late transient phase
portion, the amplitudes for the case without the second order fil-
ters are greater than those for the case with the second order fil-
ters. This indicates that such controller elements are efficient on
damping high frequency response corresponding to flexible
modes. Since it does not act at low frequencies, frequency
response curves are almost identical in this region, as well as the
time response.

Those results show that blades flexibility is an important factor
to assess the stability of turbomolecular pumps on AMB. Indeed,
a controller that is stable and well damped for all the spin speed
range for the axisymmetric case may not present satisfactory
dynamic behavior for the flexible blades case: either instability is
present or time response is very oscillatory, indicating very small
damping for the case without the second order filters.

Fig. 7 Comparison of full model on linear bearings and axi-
symmetric model on AMB. Frequencies are normalized by xref.

Fig. 9 Comparison of frequency responses with and without the second order filters. Complete model, B—
blade modes, and S—shaft modes: (a) Time response (x �

sA
)2X5 0. Amplitudes are normalized by x�

ref and (b)
Frequency Response (x�

sA
/f �
Ax
)2X ¼ 0.

Fig. 8 Impulse response of the complete model without the second order filters. B—blade modes, S-BW—shaft
backward whirl mode, and S-FW—shaft forward whirl mode: (a) time response (x �

sA
)220% of Xn. Amplitudes are

normalized by x �
ref and (b) frequency response (x�

sA
/f �
Ax
)2 20% ofXn. Amplitudes are normalized by x�

ref.
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In real applications, it is important to keep those filters. Besides
damping flexible modes, they limit the controller bandwidth,
avoiding excitation of high frequency modes that are not taken
into account in the controller design. It is then necessary to rede-
sign them in order to avoid the interactions mentioned in the pre-
vious paragraphs. To do so, time-periodic systems analysis could
be used, as linear time-invariant (LTI) control design theories
(classical, optimal, or robust control theories, for example) are not
sufficient to integrate blades flexibility analysis. Nevertheless, this
kind of analysis is not presented in this article as it is outside the
scope of our work.

Conclusions and Perspectives

This paper describes the simulations of a complete rotating
model on controlled active magnetic bearings including shaft and
blades flexibility. Response to an impulse excitation is studied.
The simulations involve frame changes within the control loop,
since magnetic bearings and mechanical parts are not modeled in
the same frame. The rotor equations of motion are derived in the
rotating frame in order to avoid time-periodic matrices due to
blades flexibility. Magnetic bearing forces are defined in the sta-
tionary frame, and their projection on the rotating frame is also
periodic time dependent.

The developed turbomolecular pump’s rotor model has small
dimensions, which allows very short calculations for the complete
system. In addition, results from simulations of this model on lin-
ear mechanical bearings have shown good correlation with experi-
mental data. Thanks to this, tackle the complete closed-loop
system behavior in the presence of a controller is straightforward.
In addition, it can be integrated to the controller design phase.
Anticipating the interactions between the controller and all the
rotor parts may help in the design to prevent instabilities.

The results at rest for the complete system have shown stable
behavior, and the frequency response reproduces fairly the pics
corresponding to structural modes. When the system is in rotation,
its response is divergent due to the interaction between blade
modes and one pole of the controller that would be responsible for
damping the shaft flexible modes. When this element of the con-
troller is taken out of the control loop, the response of the system
is very oscillatory, weakly damped.

Our simulations underline the impact of blades and shaft flexibility
on a classical stable controller (derived from the axisymmetric case).
Indeed, the loss of stability of such controller leads to the controller
design modifications in order to achieve acceptable performances.

Further work may extend the stability analysis studies for the
complete rotating system. To do so, it would be necessary to apply
linear time-periodic dependent systems stability analysis methods
[11–14]. Such analysis would be of great interest for the controller
design as all of the closed-loop poles placements would be
known.

In parallel, the presented model may be used for blade’s mistun-
ing analysis. As all of the blades are modeled, the introduction of
a mistuning pattern on it is straightforward. It would then be possi-
ble to examine its effects on the stability of the closed-loop system
and its influence on the controller’s interaction with the blades.
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Nomenclature

AMB ¼ active magnetic bearing
D ¼ global damping matrix (rotating frame)

f ¼ generalized forces (rotating frame)
Fa ¼ magnetic forces vector

Fmag ¼ magnetic force
G(X) ¼ global gyroscopic matrix (rotating frame)

ia ¼ vector of control currents
K ¼ global stiffness matrix (rotating frame)
Ki ¼ magnetic bearing electric stiffness matrix

Kmag ¼ negative stiffness matrix in Rayleigh-Ritz basis
Ks ¼ magnetic bearing negative stiffness matrix
M ¼ mass matrix (rotating frame)

N(X2) ¼ spin softening matrix (rotating frame)
q ¼ generalized coordinates (rotating frame)
R ¼ rotating frame

R(Xt) ¼ rotation matrix
WFa

¼ work of magnetic forces
xp ¼ displacement of the rotors at magnetic bearings position
xs ¼ displacement of the rotors at sensors positions
x�ref ¼ arbitrary normalization displacement. Used for all

graphical representations
Hp ¼ actuators transformation matrix from generalized to

physical coordinates
Hs ¼ sensors transformation matrix from generalized to physi-

cal coordinates
x ¼ frequency

xref ¼ arbitrary normalization frequency. Used for all graphical
representations

X ¼ spin speed
Xn ¼ nominal spin speed
•� ¼ variable described in the stationary frame. When varia-

bles are also described in rotating frame, they are not
noted with asterisk

Appendix A: Rotation Matrix R

R Xtð Þ ¼

cos Xtð Þ 0 sin Xtð Þ 0

�sin Xtð Þ 0 cos Xtð Þ 0

0 cos Xtð Þ 0 sin Xtð Þ

0 �sin Xtð Þ 0 cos Xtð Þ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(A1)

Matrix R Xtð Þ presents the following properties:

� R�1
Xtð Þ ¼ RT

Xtð Þ
� R�1

Xtð ÞR Xtð Þ ¼ RT
Xtð ÞR Xtð Þ ¼ I, where I is the identity

matrix.

Appendix B: Matrices for the Transformation Between
Physical and Generalized Coordinates

Hp ¼

W1 zp1ð Þ … Wmtot
zp1ð Þ 0 … 0 0 � � � 0

W1 zp2ð Þ … Wmtot
zp2ð Þ 0 … 0 0 � � � 0

0 … 0 W1 zp1ð Þ … Wmtot
zp1ð Þ 0 � � � 0

0 … 0 W1 zp2ð Þ … Wmtot
zp2ð Þ 0 � � � 0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

Hs ¼

W1 zs1ð Þ … Wmtot
zs1ð Þ 0 … 0 0 � � � 0

W1 zs2ð Þ … Wmtot
zs2ð Þ 0 … 0 0 � � � 0

0 … 0 W1 zs1ð Þ … Wmtot
zs1ð Þ 0 � � � 0

0 … 0 W1 zs2ð Þ … Wmtot
zs2ð Þ 0 � � � 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

7



In these matrices, W1 � � � Wmtot
are Ritz functions that describe

the displacements of the shaft; zp1 ; zp2 ; zs1 , and zs2 are the posi-
tions of actuators and sensors.

Appendix C: Relations Between Structural Matrices in
Stationary and Rotating Frame for the Axisymmetric
Case

M� ¼ M (C1a)

D� ¼ D (C1b)

G�
Xð Þ ¼ G Xð Þ þ 2MX

I (C1c)

K� ¼ K (C1d)

N�
X

2ð Þ ¼ N X
2ð Þ � X

2 MþGX
I ¼ 0 (C1e)
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