PACE Solver Description: µSolver - Heuristic Track *
Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, Ulysse Prieto

To cite this version:
Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, et al.. PACE Solver Description: µSolver - Heuristic Track *. 16th International Symposium on Parameterized and Exact Computation (IPEC 2021), Nov 2021, Lisbon, Portugal. 10.4230/LIPIcs.IPEC.2021.33 . hal-04084587

HAL Id: hal-04084587
https://hal.science/hal-04084587
Submitted on 9 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PACE Solver Description: $\mu$Solver – Heuristic Track

Valentin Bartier
G-SCOP, Université Grenoble Alpes, France

Gabriel Bathie
École Normale Supérieure de Lyon, France

Nicolas Bousquet
LIRIS, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, France

Marc Heinrich
University of Leeds, UK

Théo Pierron
LIRIS, CNRS, Université Claude Bernard Lyon 1, Université de Lyon, France

Ulysse Prieto
Independent researcher, Paris, France

Abstract

This document describes our heuristic CLUSTER EDITING solver, $\mu$Solver, which got the third place in the 2021 PACE Challenge. We present the local search and kernelization techniques for CLUSTER EDITING that are implemented in the solver.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases kernelization, graph editing, clustering, local search

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.33


Funding This work was supported by ANR project GrR (ANR-18-CE40-0032).

1 Large neighborhood local search for Cluster Editing

Our solver, $\mu$Solver [1], uses various local moves to iteratively improve a solution (that is, a partition of the input into clusters) during the allotted time. The initial solution is a trivial solution with $n$ clusters: all vertices belong to the same cluster and the remaining $n-1$ clusters are empty.

The first local move that we use is the best_move: it takes as parameter a vertex $v$ and a solution $S$, and returns a solution $S'$ in which $v$ has been moved to the cluster $c$ that minimizes the cost of $S'$. One can notice that $c$ is either the cluster of a neighbor of $v$ or an empty cluster. Therefore, the best_move function can be implemented to run in $O(d(v))$ time, where $d(v)$ is the degree of $v$. This local move is not sufficient to obtain good solutions, as it is very sensitive to local minima.

Our second local move, bfs_greedy, aims to avoid these local minima by making larger moves. Instead of moving a single vertex at a time, we select a random subset $X$ of $t$ vertices, isolate them in the graph (by moving them to a cluster of size 0), and then insert them back using best_move. In order to maximize the efficiency of this move, we fill $X$ with vertices

* This is a brief description of one of the highest ranked solvers of PACE Challenge 2021. It has been made public for the benefit of the community and was selected based on the ranking. PACE encourages publication of work building on the ideas presented in this description in peer-reviewed venues.
that are close to one another. Namely, we call the function `select_BFS` on a vertex \( v \), which performs a BFS starting from \( v \), and returns the first \( t \) vertices that it visits. We then use this move on every vertex of the graph: the `select_BFS` function only returns vertices that were not returned before. Running `bfs_greedy` on every vertex can be done in \( O(n + m) \).

Our final algorithm works in passes: a pass runs the `bfs_greedy` move on every vertex of every connected component, and runs passes until it timeouts.

## 2 Parameter learning

Notice that our `bfs_greedy` heuristic requires a parameter \( t \). Our experiments showed a trade-off: setting \( t \approx 15 \) yields good results on sparse instances, while setting \( t \approx 50 \) yields good results on dense instances. Instead of settling on a single value for every instance, we opted for a learning algorithm: we specify a set of values \( t_1, \ldots, t_\ell \) with associated weights \( w_1, \ldots, w_\ell \). At each step, we sample a value \( t_s \) according to the weights \( (w_i) \) and select a set \( X \) of size \( t_s \). If the call to the heuristic with this choice of \( t \) yields an improved solution, we add 1 to the value \( w_s \).

## 3 Overview

We combine our local search with some kernelization rules, that apply mostly on sparse instances (see next section). Moreover, we process each connected component of the graph separately, as it is easy to see that vertices from different connected components cannot be in the same cluster of an optimal cluster editing.

Algorithms 1 and 2 give a global overview of the pseudo code of our solver.

### Algorithm 1 Main solver.

**Input:** \( G, t, w \)

1. \( G \leftarrow \text{kernelize}(G) \)
2. for each connected component \( C_i \) do
3. \( S_i \leftarrow \text{trivial_solution}(C_i) \)
4. while timeout is not reached do
5. for each connected component \( C_i \) do
6. \( j \leftarrow \text{sample_weights}(w_1, \ldots, w_\ell) \)
7. \( S' \leftarrow \text{bfs_greedy}(C_i, S_i, t[j]) \)
8. if \( \text{cost}(S') < \text{cost}(S_i) \) then
9. \( S_i \leftarrow S' \)
10. \( w[j] \leftarrow w[j] + 1 \)
11. return \( S = \bigcup_i S_i \)

### Algorithm 2 bfs_greedy heuristic.

**Input:** \( C, S, t \)

1. \( \text{seen} \leftarrow [\text{false}] \ast n \)
2. for each \( v \in C \) in a random order do
3. if \( \text{seen}[v] \) then
4. go to the next vertex
5. \( X \leftarrow \text{select_BFS}(C, v, \text{seen}, t) \)
6. \( S' \leftarrow S \)
7. for \( u \in X \) do
8. \( S' \leftarrow \text{isolate}(u, S') \)
9. for \( u \in X \) do
10. \( S' \leftarrow \text{best_move}(u, S') \)
11. return \( S' \)

## 4 Kernelization rules

We present here our kernelization rules (see figure) without their safeness proofs due to space constraints. Our algorithm applies these rules until none of them can be applied.

- **Rule 4.1.** Let \( u \) be a vertex with either a 1-neighbor or two adjacent 2-neighbors. If \( u \) has another neighbor \( v \) such that \( u \) and \( v \) have no common neighbor, then delete \( uv \).

This implies that we delete all edges but one between each vertex and its 1-neighbors.
Rule 4.2. Let $uvwx$ be an induced $C_4$ where $v$ and $w$ have degree 2. Delete $uv$ and $wx$.

Rule 4.3. Let $u$ be a 3-vertex with neighbors $a, b, c$.
- If $ab, bc$ and $ac$ are edges, $a$ has degree 3 and $b, c$ both have degree at most 5, delete all edges $bx$ and $cx$ for $x \notin \{u, a, b, c\}$.
- If $ac$ and $bc$ are edges, $ab$ is a non-edge, and $a, b, c$ all have degree at most 3, delete all edges $ax$ and $bx$ for $x \notin \{u, c\}$.
- If $ab$ is an edge but not $ac$ and $bc$, and $a, b$ both have degree at most 3, delete $uc$ and all edges $ax$ and $bx$ for $x \notin \{u, a, b\}$.

The last item is actually a special case of a more general rule that we present below (with $k = 3$). The two other items are actually specification designed to handle the case where the disjointness hypothesis is not met anymore. However, we did not implement it since it does not provide a better kernelization on the public instances.

Rule 4.4. Let $K$ be a clique on $k$ vertices such that each vertex outside of $K$ has at most one neighbor in $K$. For every $u \in K$, denote by $f(u)$ the number of neighbors of $u$ outside of $K$. Write $K = \{u_1, \ldots, u_k\}$ where $f(u_1) \leq \cdots \leq f(u_k)$. If, for every $i \in [1, k]$, $\sum_{j=1}^{i} f(u_j) \leq \binom{i}{2} - \binom{i}{3}$, delete all edges with exactly one endpoint in $K$.

As a final remark, note that Rule 4.3 allows to solve the Cluster Editing problem in polynomial time on subcubic graphs. Indeed, applying Rule 4.3 removes all the triangles in subcubic graphs. It then remains to find a maximum matching problem in the kernel.

Figure 1 Kernelization rules. Vertices labeled by an integer $i$ are of degree $i$.

References