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Abstract

Given a set of integers A ⊂ Z, we consider the smallest family BAn−1

invariant by translation which contains the rectangles

Ra = Ia1
× · · · × Ian−1

× I−(a1+···+an−1)

for any a = (a1, . . . , an−1) ∈ An−1 and where Ik = [0, 2k] for k integer.
We prove that if the set A contains arbitrary large arithmetic progression
then the maximal operator MB

An−1
associated to the family BAn−1 is

sharply bounded from L1
(

1 + log+ L1
)n−1

to L1,∞.

We work in the Euclidean space R
n and for U ⊂ R

n we denote by |U |
its n-dimensional Lebesgue measure. We let I be the family containing every
bounded intervals of the real line so that the family In defined as

In := I × · · · × I

stands for the family containing every axis parallel rectangles in R
n. Given an

integer k ∈ Z, we let Ik be the dyadic interval [0, 2k] and we use the following
notations:

• for â in Z
n, we consider the dyadic rectangle Râ defined as

Râ := Ia1
× · · · × Ian

,

• for a in Z
n−1, we consider the dyadic rectangle Ra defined as

Ra := Ia1
× · · · × Ian−1

× I−(a1+···+an−1).

1 Introduction

The strong maximal operator Mn associated to the family In is a fundamental
operator in harmonic analysis: it is defined for f ∈ L∞ and x ∈ R

n as

Mnf(x) := sup
x∈R∈In

1

|R|

∫

R

|f |.
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In their seminal work [8], Jessen, Marcinkiewicz, and Zygmund proved the so-
called strong maximal Theorem which specifies the sharp boundedness property
of Mn near L1.

Theorem 1 (Strong maximal Theorem). For any function f and any t > 0,
the following estimate holds

|{Mnf > t}| .n

∫

Rn

|f |
t

(

1 + log+
|f |
t

)n−1

.

It is not difficult to see that Theorem 1 is optimal in the following sense:
given any convex increasing function φ : [0,∞) → [0,∞) such that

lim
∞

φ(x)

x(1 + log+ x)n−1
= 0,

the operator Mn cannot be bounded from the Orlicz space Lφ to L1,∞ that is
to say we cannot have for any f and t

|{Mnf > t}| .n

∫

Rn

φ

( |f |
t

)

.

Indeed, it is simple to check that given any integerm ≥ 1, the following estimate
holds

∣

∣

{

Mn1Q ≥ 2−m
}∣

∣ &n mn−12m |Q|
where Q is any axis parallel cube in R

n. Obviously more general maximal
operators associated to geometric sets can be considered: given a family B
included in In and invariant by translations, one can form in the same fashion
the maximal operator MB defined as

MBf(x) := sup
x∈R∈B

1

|R|

∫

R

|f |.

For example in R
3, motivated by problematics arising in the theory of singu-

lar integrals, Zygmund considered the family BZ composed of axis every axis
parallel rectangles whose side lengths are of the form

t× s×
√
ts

for any t, s > 0. Zygmund asked if one could prove that the maximal operator
MBZ

associated to the family BZ is bounded from L1
(

1 + log+ L1
)

to L1,∞

? Loosely speaking, Zygmund expected such result because a rectangle in BZ ,
as a plane rectangle, is only defined by two parameters (up to translations).
Cordoba answered positively to the question and the following conjecture was
formulated.

Conjecture 1 (Zygmund’s conjecture I). Let {φi : i ≤ n} be n positive real

functions depending on k variables, increasing in each variable separately and
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assuming arbitrarily small values. Consider then basis Bφ of all axis parallel

rectangles in R
n whose side lengths are of the form

φ1(t)× · · · × φn(t)

for any t ∈ R
k. In this situation, the maximal operator MBφ

is bounded from

L1
(

1 + log+ L1
)k−1

to L1,∞

It appears that stated in this form, Zygmund’s conjecture is false and this
was proved by Soria in the simplest case n = 3 and k = 2. More recently, Rey
exhibited new class of counter examples to this conjecture in [4]. However, those
negative results do not necessarily indicate that the idea behind Zygmund’s
conjecture is false but rather that it is not correctly formulated. Indeed, in
his beautiful article [6], Stokolos proved the following Theorem (for the sake of
clarity, we omit the geometric description of this Theorem) thanks to the key
idea of crystallisation that he developed.

Theorem 2 (Stokolos). Given any family B of axis parallel rectangles in R
2

which is invariant by translations, there exists an integer k ∈ {1, 2} such that

the maximal operator MB is sharply bounded from L1
(

1 + log+ L1
)k−1

to L1,∞.

Here naturally, given an arbitrary positive number k ≥ 0, we say that the

maximal operator MB is sharply bounded from L1
(

1 log+ L1
)k

to L1,∞ when:

• For any function f and any t > 0, the following estimate holds

|{MBf > t}| .n,B

∫

Rn

|f |
t

(

1 + log+
|f |
t

)k

.

• given any convex increasing function φ : [0,∞) → [0,∞) such that

lim
∞

φ(x)

x(1 + log+ x)k
= 0,

the operator MB is not bounded from the Orlicz space Lφ to L1,∞.

In regards of Theorem 2, Stokolos proposed the following reformulation of Zyg-
mund’s conjecture in [2].

Conjecture 2 (Zygmund’s conjecture II). Given any family B invariant by

translations included in In, there exists an integer 1 ≤ k ≤ n such that the

maximal operator MB is sharply bounded from L1
(

1 + log+ L1
)k−1

to L1,∞.

So far, this conjecture has not been refuted and let us give non trivial ex-
amples:

• In R
n, given an integer 1 ≤ k ≤ n, consider the family In(k) defined as

In(k) := {I1 × · · · × In ∈ In : # {|Ij | : 1 ≤ j ≤ n} ≤ k} .
In [7], Zygmund proved that the maximal operator Mn,k associated to

the family In(k) is bounded from L1
(

1 + log+ L1
)k−1

to L1,∞ and easy
computations show that those bounds are actually sharp.
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• In R
n, fix n arbitrary infinite sets of integers {Ai : 1 ≤ i ≤ n} and de-

note by B the smallest family invariant by translations which contains the
dyadic rectangles

Ra = Ia1
× · · · × Ian

for any a = (a1, . . . , an) ∈ A1 × · · · × An. In [3], Stokolos proved the
maximal operator MB associated to the family B is sharply bounded from

L1
(

1 + log+ L1
)n−1

to L1,∞. As explained by Stokolos, this classical re-
sult illustrates the fact that a simple rarefaction of the family In into a
family of the form B does not improve the boundedness property of the
maximal operator MB associated.

• In R
3, given an infinite set of integers S ⊂ N, consider the family B

composed of every axis parallel rectangles whose side lengths are of the
form

t× s× 2js

for any t, s > 0 and j ∈ S. In [5], Hagelstein and Stokolos proved
that the maximal operator MB is sharply bounded sharply bounded from

L1
(

1 + log+ L1
)2

to L1,∞.

• In R
3, given an infinite set of integers S ⊂ N, consider the family B

composed of every axis parallel rectangles whose side lengths are of the
form

s× 2j

s
× t

for any t, s > 0 and j ∈ S. In [9], Dmitrishin, Hagelstein and Stokolos
proved that the maximal operatorMB is sharply bounded sharply bounded

from L1
(

1 + log+ L1
)2

to L1,∞.

2 Result

When studying maximal operators of the above type, a classic argument shows
that given an arbitrary family B included in In and invariant by translations,
one can suppose that any rectangle R ∈ B is - up to translations - of the form

Râ = Ia1
× · · · × Ian

,

for some â ∈ Z
n. Hence, given an arbitrary infinite set of integer A ⊂ Z, let us

denote by BAn−1 the smallest family invariant by translations which contains
the dyadic rectangle

Ra = Ia1
× · · · × Ian−1

× I−(a1+···+an−1)

for any a = (a1, . . . , an−1) ∈ An−1. We will detail why it seems interesting to
study families of the form BAn−1 for infinite A ⊂ Z but observe for the moment
that for any a ∈ An−1, we have

|Ra| = 1.
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We prove the following Theorem.

Theorem 3. If the set A ⊂ Z contains arbitrarily large arithmetic progressions

then for any integer m ≥ 1, there exists a set E such that

∣

∣

{

MB
An−1

1E ≥ 2−m
}
∣

∣ &n mn−12m |E| .

In particular, the maximal operator MB
An−1

associated to the family BAn−1 is

sharply bounded from L1
(

1 + log+ L1
)n−1

to L1,∞.

Thanks to the inclusion BAn−1 ⊂ In and the strong maximal Theorem 1,
it suffices to focus on the sharpness of this bound. Let us discuss about the
arithmetic condition: given any integer m, we suppose that A contains a set
{u0 < · · · < um−1} such that for any 0 ≤ k ≤ m− 1

uk = u0 + k(u1 − u0).

Let us insist that without this arithmetic condition on the set A, it is for the mo-

ment difficult to study the sharp boundedness property of the operator MB
An−1

.

We will exploit the additive structure of A in order to create a resonance on n-th
axis: given an arbitrary m ≥ 1, the set E will be constructed as the Cartesian
product of one dimensional crystals i.e. we will set

E = C1 × · · · × Cn.

A one dimensional crystal is a Cantor-like set whose structure is adapted to
the specific scales ; we precise this in the following. If it is clear that the
first crystals {Ci : i ≤ n− 1} should be defined according to the set A, the last
crystal Cn must be defined with great care since we do not have freedom on
this axis. Finally, the fact that A contains arbitrarily large arithmetic condition
is assured if, for example, it has a strictly positive asymptotic upper density
thanks to Szemerédi’s Theorem.

3 Cartesian families

The family BAn−1 defined above is a specific type of Cartesian families of rectan-
gles and it would be desirable to obtain more informations on maximal operators
associated to such families in order to progress on Zygmund’s problem. More
precisely, one could try to tackle Zygmund’s problem with the additional hy-

pothesis that the family B is invariant by central dilations i.e. if for any R ∈ B
and any λ > 0, we suppose that we have

λR ∈ B.

In the same spirit than the dyadic reduction made above, one can show that
such a family B is always generated by a family of dyadic rectangles of unit
volume

{Râ : â ∈ F}
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and so where the set F ⊂ Z
n is included in

F ⊂ {x1 + · · ·+ xn = 0} .

In the following, let us denote by Dn,1(0) the family {x1 + · · ·+ xn = 0} that
we identify with dyadic rectangles of unit volume anchored at 0. One can easily
inject Z

n−1 into Dn,1(0) as follow: given a ∈ Z
n−1, it suffices to define the

rectangle Ra ∈ Dn,1(0) defined as

Ra := Ia1
× · · · × Ian−1

× I−(a1+···+an−1).

The fact that we have normalized along the n-th axis is not canonical but this is
irrelevant for our problem. It would be interesting to give the sharp boundedness
properties of maximal operators associated to Cartesian families.

Definition 4 (Cartesian family). Given (n− 1) arbitrary sets of integers

{Ai ⊂ Z : 1 ≤ i ≤ n− 1} ,

we say that the smallest family invariant by translations and central dilations

that contains the family of dyadic rectangles of unit volume

{Ra : ∀a ∈ A1 × · · · ×An−1} ⊂ Dn,1(0)

is a Cartesian family. We denote this family BA1×···×An−1
and the maximal

operator associated by MBA1×···×An−1
or MA1×···×An−1

.

It turns out that even in dimension n = 3, it is difficult to handle Cartesian
families. Shall we understand if Zygmund’s problem is purely geometric or
requires arithmetic tools, the following problems should be addressed:

• Can one specify the sharp boundedness property of the operator ML×Z

where the set L is defined as

L =
{

2k : k ≥ 1
}

.

The set L is a typical example of set of integers which do not have additive
structure.

• Can one specify the sharp boundedness property of the operator ML×L

associated to the family L× L ?

• Generally, can one specify the sharp boundedness property of the operator
MA×B where A and B are arbitrary (infinite) sets of integers?

4 Crystal

The concept of crystallisation was developed by Stokolos in [6] and is funda-
mental for our purpose: we introduce the notion of crystal in dimension 1 and
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n and we detail then different geometric properties of those sets that will be
useful in the following.

Given an integer a ∈ Z, we denote by Ia the dyadic interval [0, 2a] and by
Oa the oscillation at scale a which is a subset of R defined as

Oa :=
⋃

k∈Z

(k2a+1 + Ia).

A one dimensional crystal is defined as follow.

Definition 5 (Crystal). Fix a finite set A in Z that we denote

A = {a1 < · · · < am}.

We define the crystal C(A) as

C(A) := Iam
∩

⋂

1≤i<m

Oai
.

An n-dimensional crystal is simply by definition the Cartesian product of n
one dimensional crystals i.e. a set E of the form

E := C1 × · · · × Cn.

We will usually denote a n-dimensional crystal by the letter E or Y and one
dimensional crystal by C. We define the notion of primitive rectangle associated
to a n-dimensional crystal.

Definition 6 (Primitive rectangle). Given an n-dimensional crystal E, there

exists a biggest dyadic rectangle R anchored at 0 included in E: we say that it

is the primitive rectangle of associated to the crystal E.

We have the following disjointness property and we omit its proof since it is
well known in the literature, see [3] for example.

Proposition 1 (Disjointness property). Fix a finite number of n-dimensional

crystals {Ei : i ≤ N} and suppose that the primitive rectangles associated

{Ri : i ≤ N}

are independent i.e. for any i ≤ N we have

∣

∣

∣

∣

∣

∣

Ri −
⋃

j 6=i

Ri

∣

∣

∣

∣

∣

∣

≥ cn |Ri| .

In this situation, we have the following estimate

∣

∣

∣

∣

∣

∣

⋃

i≤N

Ei

∣

∣

∣

∣

∣

∣

≃n

∑

i≤N

|Ei| .
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In order to exploit n-dimensional crystals with a given maximal operator,
we need to detail a specific property of those sets which indicate that, in some
sense, they are well distributed at specific scales. The following notation will be
useful: given a set of integer A = {a1 < · · · < am} and 1 ≤ i ≤ m, we denote
by A[i] the set

A[i] := {ai < · · · < am} .
Consider an n-dimensional crystal E defined by n sets of integers {Ak : k ≤ n}
i.e. the crystal

E = C(A1)× · · · × C(An).

Fix then a multi-indice î ∈ N
n and consider the crystal

Y (̂i) := C(A1[i1])× · · · × C(An[in]).

Of coursed we have supposed that ik ≤ #Ak. It is clear that we have E ⊂ Y (̂i)
and denote then by m the integer satisfying

∣

∣

∣
Y (̂i)

∣

∣

∣
= 2m

∣

∣

∣
Y (̂i) ∩ E

∣

∣

∣
.

We claim the following.

Proposition 2 (Homogeneity property). If we denote by R the primitive rect-

angle associated to Y (̂i), we have

Y (̂i) ⊂
{

MR1E ≥ 2−m
}

.

Here, MR stands for the maximal operator associated to the smallest family

invariant by translations and which contains the dyadic rectangle R.

5 Proof of Theorem 3

With Propositions 1 and 2 at hands, we are ready to prove Theorem 3. Given
an arbitrary large integerm ≫ 1, we construct an n-dimensional crystal E ⊂ R

n

such that
∣

∣

{

MB
An−1

1E > 2−m
}
∣

∣ &n mn−12m |E| .
By hypothesis, A contains an arithmetic progression of length m that we denote

{u0 < · · · < um−1} .

For s ∈ {0, 1, . . . ,m− 1}, define

hs := (n− 1)u0 + (u1 − u0)s

and consider then the one dimensional crystals X := C(u0 < u1 < · · · < um−1)
and Z = C(−hm−1 < · · · < −h0). Thanks to the crystal X and Z, we define
the n-dimensional crystal E as

E := Xn−1 × Z ⊂ R
n.
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Let us prove as claimed that we have

∣

∣

{

MB
An−1

1E > 2−m
}∣

∣ & mn−12m |E| .

Given a positive multi-indice i = (i1, . . . , in−1) such that

i1 + · · ·+ in−1 = s ≤ m− 1

consider the crystal Y (i) defined as

Y (i) = C(ui1 < · · · < um−1)×· · ·×C(uin−1
< · · · < um−1)×C(−hs < · · · < −h0).

First observe that we have E ⊂ Y (i) and also

|Y (i)| ≃ 2−i1 . . . 2−in−12−(m−1−s) |E| ≃ 2−m |E| .

Observe now that the primitive rectangle associated to Y (i) is the rectangle

R(i) = Iui1
× · · · × Iuin−1

× I−hs
.

The crux of the argument lies in the fact that we have

hs = ui1 + · · ·+ uin−1

since i1+ · · ·+ in−1 = s and that {uk : 1 ≤ k ≤ m} is an arithmetic progression.
Hence the primitive rectangle R(i) satisfies

R(i) ∈ BAn−1

We apply now Proposition 2 which yields

Y (i) ⊂
{

MR(i)1E > 2−m
}

⊂
{

MB
An−1

1E > 2−m
}

.

To conclude, it is not difficult to see that the family of rectangles

{R(i) : i ≥ 0, i1 + · · ·+ in−1 ≤ m− 1}

is independent and so applying Proposition 1 we obtain

∣

∣

∣

∣

∣

⋃

i

Y (i)

∣

∣

∣

∣

∣

≃
∑

i

|Y (i)| ≃ mn−12m |E| .

This concludes the proof of Theorem 3.
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