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Abstract
Mitotic chromosomes of butterflies, which look like dots or short 
filaments in most published data, are generally considered to 
lack localised centromeres and thus to be holokinetic. This par-
ticularity, observed in a number of other invertebrates, is associ-
ated with meiotic particularities known as “inverted meiosis,” in 
which the first division is equational, i.e., centromere splitting-up 
and segregation of sister chromatids instead of homologous 
chromosomes. However, the accurate analysis of butterfly chro-
mosomes is difficult because (1) their size is very small, equiva-
lent to 2 bands of a mammalian metaphase chromosome, and 
(2) they lack satellite DNA/heterochromatin in putative centro-
mere regions and therefore marked primary constrictions. Our 
improved conditions for basic chromosome preparations, here 
applied to 6 butterfly species belonging to families Nymphalidae 
and Pieridae challenges the holocentricity of their chromo-
somes: in spite of the absence of primary constrictions, sister 
chromatids are recurrently held together at definite positions 
during mitotic metaphase, which makes possible to establish 
karyotypes composed of acrocentric and submetacentric 

chromosomes. The total number of chromosomes per karyo-
type is roughly inversely proportional to that of non-acrocentric 
chromosomes, which suggests the occurrence of frequent rob-
ertsonian-like fusions or fissions during evolution. Furthermore, 
the behaviour and morphological changes of chromosomes 
along the various phases of meiosis do not seem to differ much 
from those of canonical meiosis. In particular, at metaphase II 
chromosomes clearly have 2 sister chromatids, which refutes 
that anaphase I was equational. Thus, we propose an alternative 
mechanism to holocentricity for explaining the large variations 
in chromosome numbers in butterflies: (1) in the ancestral karyo-
type, composed of about 62 mostly acrocentric chromosomes, 
the centromeres, devoid of centromeric heterochromatin/satel-
lite DNA, were located at contact with telomeric heterochroma-
tin; (2) the instability of telomeric heterochromatin largely con-
tributed to drive the multiple rearrangements, principally chro-
mosome fusions, which occurred during butterfly evolution.

© 2023 S. Karger AG, Basel

Introduction

Lepidoptera are one of the largest insect orders, tradition-
ally divided into 2 groups based on morphological and 
ecological features: butterflies and moths. While butterflies 
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form the superfamily Papilionoidea, which comprises 
about 18,000 species, moths do not form a monophyletic 
group of species [Misof et al., 2014]. Nevertheless, the dis-
tinction between butterflies and moths remains practical. 
Both butterflies and moths are classically considered to 
have holokinetic chromosomes [Suomalainen, 1969; 
Murakami and Imai, 1974; Maeki, 1980a, b, 1981]. The 
haploid genome of Lepidoptera, with a mean C-value of 

0.66 ± 0.04 pg DNA, is one of the smallest ones amongst 
insects, and amongst Lepidoptera, the mean size of the 
butterfly genome (0.4 pg) is almost half that of the moth 
genome (0.7 pg) [calculated from Gregory and Herbert, 
2003; Gregory, 2011]. This suggests that some differences 
exist in the chromosome structure and composition of 
these 2 groups, but the question remains open because 
cytomolecular studies have essentially been limited to moths, 

a b
c d

Fig. 1. a–c Drosophila melanogaster mitotic 
chromosomes. a, b Same prometaphase after 
Giemsa staining (a) and C-banding (b).  
c Early anaphase. d Part of a Giemsa-
stained early anaphase of a Pieris brassicae 
caterpillar cerebral ganglion cell, in which 
indisputable primary constrictions exist on 
both acrocentric and submetacentric 
chromosomes. Scale bar, 10 μm (a–c) and 
5 μm (d).

Table 1. Chromosome numbers and DNA content in 4 reference species

Whole genome Average chromosome (HSA8, DME2)

Species diploid chromosome 
number

diploid DNA 
content, Mb

size, 
Mb

percent of 
HSA8

percent of 
DME2

Homo sapiens 46 6,400 145 (8) 100 330
Bombyx mori 56 864a 15.4 11 35
Pieris rapae 50 492a 10 7 23
Drosophila melanogaster 8 279b 44 (2) 30 100

A medium-sized chromosome of P. rapae is about 15-fold smaller than a human chromosome 8 (HSA8); 4.5-fold smaller than a  
D. melanogaster chromosome 2 (DME2), and almost 2-fold smaller than an average chromosome of B. mori. a Shen et al. [2016]. b Carvalho 
[2002].
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which have a larger economic importance than butterflies 
[Wolf et al., 1997; Mediouni et al., 2004; Fukova et al., 
2005]. Compared to the mammalian genome (±3.5 pg), 
the small size of the Lepidoptera genome is partly due to 
the relative paucity in the various types of repeated DNA 
sequences, including transposable elements [d’Alençon 
et al., 2010]. In spite of their small genome, their modal 
number of chromosomes (2n = 62) is among the highest 
in animals. A direct consequence is that butterfly chro-
mosomes are very small, about 1/15 of medium-sized 
mammalian chromosomes, and lack structures harbour-
ing DNA repeats such as primary constrictions (pericen-
tromeric heterochromatin) and euchromatin banding. 
Most cytogenetic data on butterflies have used male 
gonads and the techniques often privileged squashes or 
direct fixation without previous hypotonic shock and 
colchicine treatment. In such conditions, mitotic chro-
mosomes often look like dots at metaphase and short 
shapeless filaments at prometaphase. The difficulty to ob-
serve distinct sister chromatids and primary constrictions 
led to the notion that the chromosomes of butterflies lack 
localized centromeres and are thus holokinetic, a particu-
larity reported in other insect orders such as Dermaptera, 
Ephemeroptera, Hemiptera, Heteroptera, Homoptera, 
Odonata, Psocoptera, Thysanoptera, and Trichoptera 
[for review, see Mola and Papeschi, 2006]. Comparisons 
of DNA sequences provide convincing evidence that 
these orders are scattered across the phylogenetic tree of 
insects [Drinnenberg et al., 2014; Misof et al., 2014; Kjer 
et al., 2016]. Thus, holocentricity has not evolved once, 
but rather derived from multiple convergent events from 
the widely spread centric chromosomes [Bauer, 1967; 
Melters et al., 2012]. In butterflies as in other taxa, the ho-
locentric nature of chromosomes was confirmed by the 
lack of centromeric histone H3 variant CenH3 [Drinnen-
berg et al., 2014]. In spite of real advances, as in the nem-
atode Caenorhabditis elegans [Howe et al., 2001; Zedek 
and Bures, 2012], the structure of holocentric chromo-
somes remains largely unknown, in particular in insects, 
and there is no strong argument to consider that identical 
structures replaced localised centromeres in the various 
taxonomic groups which independently acquired holo-
centricity during evolution. Consequently, holochromo-
somes may differ from order to order, and even among 
various taxa inside a given order, as butterflies and moths 
amongst Lepidoptera. Another difficulty is that the ap-
pearance of chromosomes may depend on several param-
eters such as their size, the phase in the cell cycle, the tis-
sue studied, and the technique used. It is well known that 
the primary constrictions marking the centromeres, 

hardly visible at early prometaphase, become obvious at 
metaphase when chromatids are condensed and cohesins 
are cleaved. Similar to butterflies, other insect cytogenet-
ic studies were generally performed on male germinal 
cells [Smith and Virkki, 1978]. Working on both beetles 
and mouse male germinal cells, we were surprised to oc-
casionally observe similar atypical morphologies of their 
monocentric chromosomes. A more systematic study was 
then performed on mouse spermatogenesis, which 
showed that the appearance of mitotic chromosomes 
deeply changes along divisions from gonocytes to late 
spermatogonia [Coffigny et al., 1999]. While chromo-
somes have hypercohesive, long and thin chromatids 
with hypermethylated DNA in gonocytes, they become 
shorter with more fuzzy and separated chromatids con-
comitantly with their hypermethylation loss in spermato-
gonia [Bernardino-Sgherri et al., 2002]. The strong rela-
tionship between DNA methylation status and chromatid 
compaction and cohesion remained unexplained, but the 
similarity of transient morphological changes of chromo-
somes in both mouse and beetles [personal data] suggests 
that they may occur in a large range of animals. These tis-
sue and developmental stage changes may render difficult 
the interpretation of chromosome morphology in germ 
cells. Electron microscopy also showed that the size of the 
kinetochore plate could vary at different stages of game-
togenesis [Wolf et al., 1997].

During meiosis, the behaviour of monocentric and holo-
kinetic chromosomes was found to be different. Meiosis is 
described as inverted in many species with holochromo-

SM

SM

A

A

A

A

Fig. 2. Mitotic metaphase of Anaea eurypyle. Most chromosomes 
look acrocentric and a few look submetacentric (some of them are 
labelled A and SM, respectively). The DNA content of each D. me-
lanogaster metacentric autosome (Fig. 1) is equivalent to that of 
about 10 A. eurypyle chromosomes. Scale bar, 10 µm.
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somes [Mola and Papeschi, 2006; Lukhtanov et al., 2018]: at 
metaphase I, bivalents are disposed perpendicularly to the 
spindle, each homologue is attached to several spindle fibres 
and sister chromatids, instead of homologous chromosomes, 
segregate at anaphase I (pre-reduction) as in the post-reduc-
tion of canonical meiosis in species with monocentric chro-
mosomes. Consequently, the typical morphology of chro-
mosomes at metaphase II (MII), with 1 centromere linking 
2 well-separated fuzzy sister chromatids, may not be ob-
served in species with true holochromosomes, but the diffi-
culty to observe the morphology of the small MII butterfly 
chromosomes prevented assessment of the occurrence of in-
verted meiosis. However, some authors [Lukhtanov et al., 
2020] consider that meiosis can be flexible, canonical or in-
verted, within the same individual. The presence of holo-
chromosomes was questioned in some butterfly species [Ri-
shi and Rishi, 1977, 1979; Gus et al., 1983] and monocentric 
mitotic chromosomes with “G-banded” chromatids were 
even described in Pieridae [Bigger, 1975], but the photos 
shown were much less convincing than the drawings, a flaw 
also shared by many reports on holochromosomes. With the 

purpose of studying the karyotypes of some butterfly species, 
we adapted our usual technique to this particular material 
[McClure et al., 2017]. After some additional improvements, 
we describe here a very simple technique for the study of 
Lepidoptera chromosomes, particularly adapted to small cell 
samples. It allowed us to observe in mitotic cells not only 
atypical monocentric chromosomes, but also bi-chromatidic 
chromosomes at meiotic metaphase II, hardly compatible 
with the occurrence of an inverted meiosis. Chromosomes 
of some selected species of butterflies are shown and com-
pared to those of Drosophila melanogaster, whose chromo-
somes are well known and whose DNA content is not very 
different. The meaning of these basic cytogenetic observa-
tions is discussed.

Materials and Methods

Species
D. melanogaster Melgen, 1930, obtained from a laboratory 

strain, was selected for chromosome size comparisons.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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Fig. 3. Pieris brassicae. a, b Karyotypes from caterpillar brain cells. Sex chromosomes are not identified. c “Brother” 
spermatocytes II displaying acrocentric (a) and submetacentric (sm) chromosomes. Their morphology, with strong-
ly stained and highly compacted proximal and poorly stained fuzzy distal regions, seems to be typical for butterflies. 
Scale bars, 10 µm.
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Butterfly species included in this study are the following:
Anaea eurypyle Hübner, 1819 (Pointed Leafwing, Nymphali-

dae, Charaxinae) is a Neotropical species. Specimens were  
obtained as pupae from a butterfly farm. This species was selected 
amongst those we studied because its chromosome number of 62 
is presumed to be that or very close to that of butterfly ancestors.

Pieris brassicae Linnaeus, 1758 (Large White, Pieridae) was 
caught (eggs, caterpillars, and imagine) at Bois-le-Roi, France 
(48.28.25 N, 02.41.50 E). This species was selected because the ho-
locentricity of its chromosomes was previously questioned [Bigger, 
1975; Rishi and Rishi, 1977].

Pieris rapae Linnaeus, 1758 (Small White, Pieridae), caught 
at Bois-le-Roi, was selected because its genome size is known.

Archaeoprepona demophon Linnaeus, 1758 (One-spotted 
Demophon, Nymphalidae, Charaxinae). This neotropical species, 
obtained as pupae from a butterfly farm, was selected for its small 
number of chromosomes.

Melinaea menophilus n. ssp. Hewitson, 1856 (Hewitson’s ti-
ger, Nymphalidae, Danainae). Specimens of this neotropical spe-
cies, obtained from eggs laid in captivity by wild-caught females, 
were also selected for their small chromosome number.

Ithomia salapia aquinia Hopffer, 1874 (Nymphalidae, Danainae). 
This neotropical species was selected among those studied because 
its chromosomes exhibit many C-bands. Specimens were obtained 
from eggs laid in captivity by wild-caught females.

Methods
Dividing cells were obtained from either cerebral ganglia of caterpil-

lar (Pieris species) or testes from freshly killed male imagine (all species). 
All dissections were performed on a glass slide in 1 or 2 drops of a solu-
tion of 0.88 g KCl in 100 mL distilled water. Important remark: fresh KCl 
powder is not stable and becomes more or less quickly hydrated, espe-
cially in the field. We deliberately used hydrated KCl, more stable for 
weighing. All centrifugations were performed at about 7 g for 7 min. 
After all centrifugations and settling, cells were suspended by gently tap-
ping the tube. Carnoy I fixative was used for all fixations. Staining was 
performed in 2% Giemsa in tap water for 7–10 min, and occasionally 
with DAPI. C-banding was performed as described by Angus [1982].

Cerebral Ganglia and Eggs
Eggs or freshly dissected ganglia cells were placed and ruptured 

inside an Eppendorf tube where they were maintained in 1 mL of 
the 0.88 g/L KCl solution added with colchicine (5 μL of a 4 mg/L 
solution) for 45 min. After centrifugation, the supernatant was re-
placed by either an aqueous solution of 0.55 g/L KCl or foetal calf 
serum diluted in water (1 vol:4 vol) for 10 min. One drop of Carnoy 
fixative was added just before centrifugation. The pellet obtained 
was not always visible and about 100 μL was left in the tube before 
immediate addition of 1 mL fixative. After a new centrifugation, 
about 75–100 μL of supernatant were left in which cells were gen-
tly suspended with a Pasteur pipette and dropped from about 20 
cm on glass slides special for FISH.

Testicle
Immediately after dissection, the unique testicle was placed in 

an Eppendorf tube containing 0.6 mL of an aqueous solution of 
KCl (0.85 g/L), to which colchicine was eventually added, as 
above. The testicle was then ruptured using a piston adapted to 
the internal diameter of the tube, which was gently turned for 
about 10 s. For salvaging adhering cells, the piston was rinsed 
with 2–3 drops of the 0.85 g/L KCl solution, of which 0.5 mL was 
added. The tube was gently tapped, left for 1 h, tapped again and 
1 drop of fixative was added. Centrifugation, fixation, and spread-
ing of the cells were as above.

a

b

Fig. 4. a Confocal image of a DAPI-stained ganglion cell at meta-
phase/anaphase transition. b Higher magnification of a small 
acrocentric chromosome from another cell.
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Fig. 5. Pieris rapae. a Metaphase of a caterpillar brain cell. Most 
chromosomes look acrocentric, some are indicated (A). b Meta-
phase I/anaphase I transition. Homologues in most bivalents are 
in end-to-end association. Some of them are more or less dissoci-
ated and look acrocentric and pulled by a single point, their cen-
tromere, and not by multiple points along the chromatids, as ex-
pected for holochromosomes. Scale bars, 10 µm.
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Confocal Microscopy
We employed a recent method developed by Zeiss corporation 

for studying specimens in thin sections, using confocal laser scan-
ning microscopy and image processing software that allowed us to 
produce high-resolution 3-dimensional visualizations. We acquired 
confocal images with a Zeiss LSM 880 laser-scanning confocal mi-
croscope using a 63×/1.4 oil DIC objective. The DAPI fluorescence 
signal was collected with an Airyscan head using a 32 GASP detec-
tor array (quantum efficiency of the detector was about 50%) in 
super resolution mode, which increases the SNR and the resolu-
tion by a factor 1.7. DAPI fluorescence of the samples was excited 
by the 405 nm diode laser (power 1% with pixel dwell 2.52 μs). Emis-
sion was collected with a band pass filter 420–480 + 495–550 nm. 
Images were acquired with 16-bit depth and 0.2 airy unit for each 
elementary detector of the Airyscan head and recorded with pixel 
size of 35 nm. Typically producing 11 slice z-stacks comprising in-
dividual focal planes, each separated by a 160-nm z-step, corre-
sponding to a z-depth of 1.75 μm. The fluorescence signal from 
each z-plane was projected onto a maximum projection image by 
the software Zen Black version 2.3 (Zeiss corporation). Images were 
processed using the Fiji software [Schindelin et al., 2012].

Results

Drosophila melanogaster
Its well-known male diploid karyotype (2n = 8), obtained 

with a technique close to that of butterflies, is shown for com-
parison in Figure 1a. Its diploid DNA content is 279 Mb 

[Adams et al., 2000] (Table 1). C-banded heterochromatin, 
which represents about one sixth (chromosome 2) to nine 
tenths (chromosomes 4 and Y) of whole chromosome 
lengths, largely corresponds to regions of sister chromatid 
joining, independently of the immediate centromere prox-
imity (Fig. 1b). At metaphase/anaphase transition (Fig. 1c), 
heterochromatin disjoins but sister chromatids remain 
loosely attached, presumably by their centromeric regions.

Anaea eurypyle
The male karyotype is composed of 62 chromosomes 

(62,ZZ), the very small size of which makes the analysis 
of their morphology difficult. However, most of them 
look acrocentric (Fig. 2), alongside with some submeta-
centric chromosomes. At diakinesis, all but 2 bivalents 
display 1 chiasma, most frequently in interstitial position 
(not shown).

Pieris brassicae
As previously described [Bigger, 1975], the male karyo-

type of P. brassicae is composed of 30 chromosomes: 
30,ZZ. The discrimination of sister chromatids in mi-
totic chromosomes is easier in caterpillar ganglia cells and 
eggs, but is occasionally possible in germ cells. After 
Giemsa staining, chromosomes generally have no clear 
primary constriction, i.e., no lighter staining regions, 

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16

A

A A

a

b

Fig. 6. Archaeprepona demophon. a Karyo-
type of a spermatogonium, which displays 
10–11 submetacentic and 5–6 acrocentric 
pairs. b Spontaneous pseudo C-banding of 
a spermatocyte II with compacted proximal 
and fuzzy distal regions (2 chromosomes are 
missing). As in the karyotype, acrocentric 
chromosomes (A) are a minority. Scale bars, 
10 µm.
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but they often display one region where sister chroma-
tids are brought closer together, which suggests the pres-
ence of localized centromeres (Fig. 3a, b; online suppl. 
Fig. S1, S2; see www.karger.com/doi/10.1159/000526034 
for all online suppl. material). Somatic and germ cells 
roughly display similar chromosome patterns, with 7 
submetacentric and 8 acrocentric chromosomes (Fig. 3a–
c). The presence of monocentric chromosomes is clearer 
at metaphase/anaphase transition: at this stage, the mor-
phology of D. melanogaster and P. brassicae chromo-
somes is quite similar (compare with Fig. 1c, d). More or 
less discrete C-bands on either one or both homologues 
at many terminal but no interstitial regions indicate the 
presence of polymorphic juxtatelomeric heterochroma-
tin. In some eggs or ganglia cells, one chromosome is al-
most entirely C-banded (online suppl. Fig. S3). This par-
ticularity is not seen in homogametic ZZ spermatogonia, 
which may indicate that the W chromosome of ZW fe-
males is largely composed of C-banded heterochroma-
tin, which fits with the richness in repetitive DNA ele-
ments of the W described in some moths and butterflies 
[Sahara et al., 2012]. In meiotic cells at diakinesis/meta-
phase I, a majority of bivalents (10–12/15) have a ring 
configuration (2 chiasmata). All have at least 1 terminal 

chiasma, and about half of the second chiasmata are in-
terstitial. At metaphase I/anaphase I transition, chromo-
somes are very small and remain attached by the extrem-
ity of 1 or 2 chromatids but they have not the side-by-side 
position described for holochromosomes (online suppl. 
Fig. S4). At metaphase II, chromosomes remain very 
small and their compaction is unusual. Their sister chro-
matids are distally well separated, fuzzy, and lightly 
stained, but clearly linked at a position of locally highly 
compacted chromatin. They form submetacentric and 
acrocentric chromosomes in numbers comparable to 

G C

a

b

Fig. 7. Melinaea menophilus. a Metaphase I displaying 16 bivalents 
and 2 trivalents (arrows). b Sequentially Giemsa-stained (G) and 
C-banded (C) metaphase II in which many chromosomes look 
submetacentric. Scale bars, 10 µm.

G

T

C

T

a
b

Fig. 8. Ithomia salapia aquinia. a Giemsa-stained (G, left) and C-
banded (C, right) spermatogonial metaphase. b C-banded diaki-
nesis exhibiting 33 bivalents and 1 trivalent (T). C-bands are more 
intense than in the spermatogonium and located in up to 4 telomer-
ic regions per bivalent. Their frequent asymmetry (arrowheads) 
demonstrates strong polymorphism. They are located at interca-
lary positions in a few bivalents, possibly formed by 2 metacentric 
chromosomes. Scale bars, 10 µm.
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those of mitotic divisions (Fig. 3c). To further explore chro-
mosome morphologies, DAPI-stained mitotic cells at 
metaphase/anaphase transition were analysed through a 
high-resolution confocal microscope, which evidenced dis-
creet chromatin amounts linking the sister chromatids at 
the place of their putative centromere (Fig. 4).

Pieris rapae
The male karyotype is composed of 50 chromosomes: 

50,ZZ. Although the small size of chromosomes makes 
the analysis difficult, most mitotic chromosomes look ac-
rocentric, and thus monocentric (Fig. 5a). The acrocen-
tric morphology of many chromosomes is confirmed at 
metaphase I/anaphase I transition, when the homologues 
begin splitting (Fig. 5b). This stage contradicts the occur-
rence of an inverted meiosis.

Archaeoprepona demophon
The male karyotype is composed of 32 chromosomes: 

32,ZZ, including 11 pairs of submetacentrics (Fig. 6a). At 
diakinesis/metaphase I, most bivalents display 1 intersti-
tial chiasma (not shown). At metaphase II, largely sepa-
rated sister chromatids are pale and fuzzy, whereas they 
look compacted at their junction, which makes a pseudo 
C-banding (Fig. 6b).

Melinaea menophilus n. ssp.
An intraspecific polymorphism is present in karyo-

types of the males studied: 38,ZZ and 40,ZZ. Observed 
mitotic cells, which have long chromosomes with tightly 
associated chromatids, were probably in prometaphase 
and chromosome morphology was hardly visible. The 
polymorphism is confirmed at metaphase I of meiosis by 
varying numbers of bivalents (16 or 17) and the presence 
of trivalents, which indicates the heterozygous state for 
two chromosome rearrangements (Fig. 7a). Metaphases 
II display typical submetacentric and acrocentric chro-
mosomes (Fig. 7b). Such morphologies are hardly com-
patible with an inverted meiosis.

Ithomia salapia aquinia
The male mitotic karyotype is composed of 69 chro-

mosomes. After C-banding, many chromosomes exhib-
it one band, most often in a terminal region (Fig. 8a). 
Diakineses display 33 bivalents and 1 trivalent: the spec-
imen studied was probably heterozygous for 1 chromo-
some fusion or fission, which suggests that specimens 
with 68 or 70 chromosomes exist in the natural popula-
tion. As usual in our hands with insects, C-banding is 
more intense in meiotic than in mitotic cells and thus, 

many more chromosomes look C-banded at diakinesis 
(Fig. 8b). Individual chromosomes from each bivalent 
display 0, 1, or 2 C-bands. Differences between homo-
logues (arrowheads) demonstrate the existence of a 
polymorphism of C-banded heterochromatin reparti-
tion. Most bivalents exhibit 1 chiasma in median posi-
tion and do not differ from acrocentric bivalents of ca-
nonical meiosis. A few other bivalents form a distal chi-
asma, and each homologue exhibits a C-band in median 
position. On the whole, the location of C-bands at chro-
mosome ends characterizes telomeric rather than cen-
tromeric heterochromatin.

Discussion

Mitotic Chromosomes Exhibit Centromere-Like Regions
In a recent study of the genus Melinaea (Nymphalidae) 

in which presumed holocentric chromosomes were in-
volved in a complex evolution by multiple fissions and 
fusions, we were surprised to observe that each chromo-
some was apparently attached to a single and not to mul-
tiple spindle fibres, as would be expected for holochro-
mosomes at anaphase I of meiosis [McClure et al., 2017]. 
However, the lack of clear primary constrictions on the 
mitotic chromosomes prevented us to challenge their ho-
lokinetic nature. By using improved chromosome spread-
ing techniques, the classification of mitotic chromosomes 
based on their acrocentric or submetacentric morpholo-
gy was made possible in species with low chromosome 
numbers. Indeed, our images suggest that the chromo-
somes might not be holocentric. However, compared to 
classical monocentric chromosomes their morphology is 
particular: they do not exhibit the Giemsa-negative pri-
mary constrictions that typically mark centromeric re-
gions. Usually, these primary constrictions harbour, in 
addition to the proper centromere, large amounts of 
highly repeated (satellite) DNA resistant to denaturation 
and nested into so-called constitutive heterochromatin 
generally stained after C-banding. The putative centro-
mere regions of butterflies shown above are marked only 
by a well-localized, but loose coalescence of the chroma-
tids. The poorness in highly repeated sequences (satellite 
DNA) in the genome of butterflies may explain the fre-
quent paucity of heterochromatin, C-banding, and pri-
mary constrictions, but it does not demonstrate the lack 
of functional centromeres, which may be nested in other 
DNA sequences, more difficult to identify. At metaphase/
anaphase transition of mitotic cells, the use of a high-res-
olution confocal microscope on DAPI-stained chromo-
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somes discloses discreet chromatin, which links the 2 sis-
ter chromatids at the location of the putative centromere 
(Fig. 4). Yet, butterfly chromosomes lack the centromeric 
protein CenH3 (CENP-A of mammals), considered to be 
present in all centromeres of monocentric chromosomes 
[Drinnenberg et al., 2014]. Therefore, our observations 
suggest the presence of centromere-like regions, which 
display some centromere functions despite the loss of 
CenH3. Alternatively, some unknown localised chroma-
tin components may maintain the cohesion of sister chro-
matids until anaphase, inducing this recurrent morphol-
ogy. Only cytomolecular approaches would provide a 
convincing answer [Cabral et al., 2014; Heckmann et al., 
2014].

The difficulty for distinguishing butterfly chromo-
some morphology is materialised by comparing the 
(2n = 8) karyotype of D. melanogaster to the (2n = 50) 
karyotype of P. rapae, which has a slightly higher 
DNA content (Table 1). The DNA content of an aver-
age chromosome of P. rapae is about 9.8 Mb, whereas 
chromosome 2 of D. melanogaster is composed of 48.8 
Mb, hence a ratio of 1/5. Likewise, the average DNA 
content of a medium-sized butterfly chromosome 
represents about 8% of human chromosome 1. Ac-
cording to ISCN [1985] this chromosome exhibits 
about 27 bands at metaphase, 40 bands at prometa-
phase, and 50 bands at prophase. Thus, an average 
butterfly chromosome is scarcely larger than 2 (meta-
phase), 3 (prometaphase), or 4 (prophase) bands and 
is therefore very small compared to a mammalian 
chromosome. This may explain why, in the literature, 
butterfly chromosomes usually look like dots at meta-
phase and thin filaments with coalescent chromatids 
at prophase. As in any prophase, their chromatids are 
hardly discriminated. Furthermore, their putative 
centromeres, devoid of heterochromatin, are hardly 
detectable. Numerical variations of chromosomes 
may also be considered to challenge their holocentric-
ity, by comparing closely related species with very dif-
ferent chromosome numbers, as the 2 pierid species 
studied here. Proportionally, more submetacentric 
chromosomes are expected in karyotypes with a 
smaller number of chromosomes than values close to 
the presumed ancestral number (62). Indeed, sub-
metacentric chromosomes are observed in P. brassi-
cae (2n = 30) and A. demophon (2n = 32), but hardly 
in P. rapae (2n = 50) or A. eurypyle (2n = 62) karyo-
types, in which acrocentric chromosomes largely pre-
dominate. In butterfly species with such high chro-
mosome numbers, many chromosomes are expected 

to be acrocentric with their putative centromeres lo-
cated near or at contact with telomeric heterochro-
matin [Chawla and Azzalin, 2008; Schoeftner and 
Blasco, 2009], whose instability [Murnane, 2012] may 
be responsible for multiple chromosome rearrange-
ments, notably fusions. Another factor possibly in-
volved in butterfly chromosome evolution is the very 
frequent distal position of their 18S rRNA genes on 
one or multiple chromosomes [Provaznikova et al., 
2021]. In both beetles and primates, we showed that 
the terminal position of rRNA genes, which behave 
like fragile sites, is a major source of transmissible 
chromosome rearrangements [Dutrillaux et al., 2016; 
Gerbault-Seureau et al., 2017].

Meiosis Is Not Inverted
The large intra- and interspecific numerical variations 

of butterfly chromosomes usually represent indirect ar-
guments in favour of their holocentricity, supposed to fa-
cilitate the correct segregation of asymmetrical chromo-
somes via an inverted meiosis [Mola and Papeschi, 2006; 
Lukhtanov et al., 2018]. One particularity of holocentric-
ity is the attachment of chromosome bivalents to multiple 
spindle fibres at metaphase I/anaphase I of meiosis. A sec-
ond particularity is that the first division is equational 
(separation of the two chromatids of each homologue), 
instead of reductional (separation of the homologues 
with non-cleaved centromeres). The cytological conse-
quences should be visible at each stage of the meiotic pro-
cess from the end of diplotene to metaphase II [see Fig. 9 
in Lukhtanov et al., 2018], although some flexibility be-
tween canonical and inverted meiosis seems to be possi-
ble [Lukhtanov et al., 2020]. We have no argument to 
contest the existence of such meiosis in some species, but 
it does not seem to occur in the butterflies studied here 
for the following reasons:

	− Diakinesis/metaphase I (Fig. 7a, 8b) bivalents and tri-
valents do not differ from those of canonical meioses;

	− metaphase I/anaphase I transition, as shown for P. ra-
pae (Fig. 5b), perfectly fits with the presence of acro-
centric chromosomes, as also exhibited by mitotic 
cells. The numerous acrocentrics have a well-marked 
centromere and clearly separated chromatids and ho-
mologues form bivalents in end-to-end (chiasmatic or 
achiasmatic?) association. This configuration is typical 
of a canonical meiosis;

	− metaphases II display monocentric chromosomes, 
typical for this phase, with strongly apart and fuzzy 
chromatids linked by a compact centromeric region, 
often darker than chromatids (Fig. 3c, 6b, 7b). This 
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mimics a C-banding, a feature frequently observed in 
metaphases II of beetles (data not shown);

	− and indeed, in a given species, similar proportions of 
acrocentric and submetacentric chromosomes can be 
recurrently observed in different mitotic karyotypes 
(compare Fig. 3a, b and online suppl. Fig. 1–3) and at 
both mitotic metaphase and metaphase II of meiosis 
(compare Fig. 3a and c).
Finally, the example of M. menophilus, which belongs 

to a genus with very high intra- and interspecific numer-
ical polymorphisms [McClure et al., 2017], shows that 
such polymorphisms do not preclude gametogenesis with 
a canonical meiosis.

Conclusion

The very small size of butterfly chromosomes makes 
the analysis of their morphology difficult. This difficulty 
is worsened by the lack of primary constrictions, i.e., cen-
tromeric heterochromatin, which contains highly repet-
itive (satellite) DNA sequences and is usually associated 
with particular staining, compaction, and joining of sis-
ter chromatids. In butterflies, heterochromatin is scarce, 
and essentially telomeric. In such conditions, putative 
centromeres would be marked by discrete joining of sis-
ter chromatids only, more visible in cohesin-less meiotic 
metaphases II than in mitotic prometaphases. We show 
that karyotypes with about 60 chromosomes, a number 
considered to be close to that of the butterfly ancestor, 
seem to be essentially composed of acrocentrics. Conse-
quently, putative centromeres of butterfly chromosomes 
would be often located in or at close contact with telo-
meric heterochromatin, whose composition differs from 
that of centromeric heterochromatin [DeBaryshe and 
Pardue, 2011] and whose instability may be responsible 
for their numerous rearrangements. In other words, the 
large numerical variations of chromosomes observed in 
butterflies might be better explained by their telomere/
centromere instability than by the facilitated transmis-
sion of rearranged chromosomes through inverted mei-
osis, whose occurrence is challenged here. However, 
these interpretations, suggested by classical cytogenetic 
observations, do not evidence that butterfly chromo-
somes are monocentric. They need to be validated by 
molecular approaches, but the basic technical improve-
ments reported here could be useful for future cytomo-
lecular approaches.
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