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Abstract10

The weak ferroelectric contribution to the polarization of antiferroelectric lead zirconate

(PZO) thin films has been investigated using PUND (Positive Up Negative Down) pulse

measurements and hysterons decomposition by First Order Reversal Curves (FORC)

technique. The PUND allows decomposing the measured current, obtained from the

polarization-electric field loop measurements, into a switching and a non-switching con-

tribution. We show that the weak ferroelectric phase is enhanced when a large electric

field has been previously applied to the material, in order to switch from the antiferro-

electric to the ferroelectric phase. Using the PUND measurement at fields below the an-

tiferroelectric to ferroelectric phase transition, the polarization loop corresponding only

to the ferroelectric switching contribution has been determined revealing that this contri-

bution to the overall polarization is small. FORC measurements, however, indicate that

the ferroelectric phase is present at different fields. At low fields, a quite homogeneous

distribution of hysterons exists and at large field, a high concentration of hysterons at a

field near to the antiferroelectric to ferroelectric phase transition can be seen. Moreover,

when changing the delay between pulses of the PUND and the FORC measurements, we

show that this weak ferroelectricity contribution is metastable and decreases with time.

Keywords: Anti-ferroelectric; Thin film; Residual ferroelectricity; Positive up negative11
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down pulse; First order reversal curves technique; Relaxation12

1. Introduction13

Antiferroelectric materials present an important interest for energy storage applica-14

tions [1–3] due to the double hysteresis in the polarization versus electric field loop.15

When a high electric field is applied to an antiferroelectric material, a large increase of the16

polarization is obtained at the antiferroelectric (AFE) to ferroelectric (FE) phase transition,17

which permits a much higher stored energy compared to the case of linear dielectrics or18

relaxor ferroelectrics like (1 – x)Pb(Mg1/3Nb2/3)O3 – x PbTiO3[4]. Compared to hard fer-19

roelectrics (PbZrTiO3) a better efficiency due to a considerably larger released energy20

can be obtained. In antiferroelectric materials, however, a residual ferroelectric contri-21

bution, called weak ferroelectricity, may be present which increases the overall material’s22

losses. This has been largely mentioned in the literature and widely studied using various23

methods such as low field hysteresis measurement [5–7] or impedance spectroscopy [8–24

10]. Understanding the influence of the residual ferroelectric phase of antiferroelectrics25

is mandatory in order to increase the stored energy and the efficiency of the AFE energy26

storage devices.27

Pulse switching of ferroelectric materials has been described by Merz [11] in the fifties28

of the last century, especially in order to show the stable or not stable partial switching29

behavior of those materials. Also called PUND (Positive Up Negative Down) method [3,30

12–14], and when applied to antiferroelectrics, this technique allows detecting a possible31

residual ferroelectric phase in the AFE material.32

An initial pulse (here of negative polarity, rectangular, trapezoidal or triangular) is33

applied in order to switch all existing ferroelectric domains in a given direction (Fig. 1a).34

Then, two pulses of opposite polarity (P and U, here positive) are successively applied35
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and finally, the application of the pulses N and D, again of opposite polarity (here nega-36

tive) allows obtaining the full hysteresis cycle. The current signal of the respective pulses37

is recorded.38

In the case of the pulses P and N (so-called switching pulses), the measured current39

is the sum of the contributions (i) leakage current, (ii) capacitive charging,(iii) possible40

ferroelectric phase switching as the previous pulse was of opposite polarity, and (iv) po-41

larization changes for fields higher than the AFE-FE phase transition field. In the case42

of a purely capacitive behavior, a triangular applied voltage should result in a constant43

current: positive if the voltage is increasing and negative if the voltage is decreasing. A44

deviation of this behavior indicates a polarization change at this particular field, which45

may include FE switching and AFE-FE phase transition depending on the field ampli-46

tude. The example of the current signals obtained for fields below the AFE-FE transition47

and for a small residual ferroelectric phase in the AFE material is shown in Fig. 1b, which48

can be used for representing the obtained global I(E) cycle (Fig. 1c). For the pulses U49

and D (non switching pulses), no FE phase switching should occur as already switched50

by the previous pulses of the same polarity, and hence the current is the sum of only the51

three other contributions. By subtracting the non switching currents from the switching52

currents (iP − iU and iN − iD), it is possible to extract the pure switching contribution for53

both polarities to compute the respective I(E) loop (Fig. 1d).54

In order to obtain a sufficient signal to noise ratio, the switching contribution needs55

to be high as compared to the capacitive and the leakage contributions. Otherwise, some56

current subtraction prior to the amplification and acquisition can be used [15]. This57

method has been widely used for ferroelectric materials in order to remove excessive58

capacitive and leakage contributions and to study the switching times of the different59

contribution to the polarization[3, 12–16] To the best of our knowledge, however, it has60

never been used for studying the weak ferroelectricity in antiferroelectrics.61

Ferroelectric materials can also be investigated by First Order Reversal Curves (FORC)62

measurements which permit the decomposition of the P(E) loop into elementary hystere-63

sis contributions called hysterons [13, 17–20]. This method also gives information on the64
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Figure 1: Applied PUND signal (a) and measured current (b), as function of time for fields below the AFE-
FE transition. Global I(E) cycle (c) and I(E) cycle of only the ferroelectric switching contribution (d). tr is
the raise time of the pulse and ∆t the delay between the orientation pulse and the PUND measurement,
and ∆tPU the delay between the pulses P and U as well as N and D. Arrows indicates the sense of the cycle.

degradation of the material and the presence of a possible residual ferroelectric phase65

in AFE materials which otherwise is difficult to see from the P(E) loops [8, 18, 21–23].66

The standard implementation of this method is to vary the electric field from one satu-67

ration state to another[18–20] but it is also possible to use a bipolar waveform with an68

increasing amplitude[8, 24]. The advantage of the bipolar waveform approach is the ex-69

isting delay between the different pulses allowing to investigate temporal relaxation of70

the switching processes which can reach several tens of second in ferroelectric [25] and71

in antiferroelectric [26, 27] materials.72

In this paper, the complementary PUND and FORC measurements are used in order73

to obtain a better understanding of the weak ferroelectricity in antiferroelectric PbZrO3,74

visible at low fields and to study especially its temporal relaxation and the dependence75

on the applied electric field amplitude. In the first part, conventional P(E)-loops (at low76

and large fields) are used in order to show the weak ferroelectric phase enhancement77

in the material after the realization of a P(E) major loop. The ferroelectric switching78
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contribution to the polarization is studied by PUND measurements, for different ampli-79

tudes of the electric field and with different delay time between the pulses, in the second80

and third part, respectively. Using these measurements, the P(E) loop of the switching81

contribution has been extracted in order to see the effect of amplitude and delay and to82

study the evolution of the antiferroelectric-ferroelectric transition fields. In the last part,83

FORC measurements are presented in order to gain better understanding of the phenom-84

ena that appear at low and high fields, and to correlate them to the results of the PUND85

measurements.86

2. Experiments87

Antiferroelectric lead zirconate (PbZrO3) thin films are prepared by a sol-gel process88

using multi-step spin coating[1, 8, 9]. Firstly, lead acetate trihydrate [Pb(CH3CO2)2 · 3 H2O]89

is dissolved in de-ionized water and acetic acid. Zirconium isopropoxide [Zr(O(CH2)2CH3)4]90

is then added in the solution, as well as ethylene glycol [HO – CH2 – CH2 – OH] used91

for reducing the appearance of micro-cracks[28] in the films and improves the solution92

stability[29]. The solution has been deposited on alumina substrates precoated with a93

titanium and platinum layers in order to form the bottom electrode. Twelve layers re-94

sult in an overall film thickness of 800 nm. Square platinum electrodes of 0.1 mm width95

are deposited by RF magnetron sputtering in order to realize a Metal-Insulator-Metal96

(MIM) capacitor and to allow the dielectric characterizations of the fabricated thin films.97

Structural characterizations reveal the studied thin film presents the (100) and (111) crys-98

tallographic orientations [1] and presents a columnar structure [8, 30].99

The electric measurements have been performed with an AixACCT TF2000 ferroelec-100

tric analyzer. The conventional P(E) loops, presented in the first part, have been mea-101

sured using a sine waveform and the applied voltage has been varied from 2 V to 40 V102

with a step of 2 V. The AFE-FE transition fields correspond to the maxima of the re-103

spective current waveforms. In the case of the PUND pulse measurements, a triangular104

waveform with a voltage sweep from 10 V to 70 V, corresponding to an electric field from105

125 kV cm−1 to 875 kV cm−1, and a step of 10 V have been applied, with the sequence de-106
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scribed Fig. 1. The delay between the pulses ∆t has been varied from 1 µs to 1000 s and107

the duration of the pulses 2tr has been adjusted for a constant slew rate of 4 V ms−1. For108

the construction of the P(E) loops of the pure switching contribution, the non-switching109

current is subtracted from the switching current signal and integration as a function of110

time to obtain the polarization.111

The waveform used for the FORC measurements correspond is similar to this PUND112

method, except that only the switching pulses P and N are applied. The delay between113

the positive and negative pulses has been varied from 1 µs to 1000 s and the duration of114

the pulse slew rate has been kept constant. The FORC distribution extraction method is115

presented elsewhere [8, 24]. The applied voltage has been swept from 2 V to 70 V with116

a step of 2 V corresponding to an electric field varying from 25 kV cm−1 to 875 kV cm−1.117

Reduction of the step voltage permits increasing of FORC distribution resolution and118

hence to better discern the residual ferroelectric phase.119

3. Results and discussions120

In the first part, conventional P(E) loops are presented in order to show the current121

peaks associated to the weak ferroelectricity in the studied PZO thin films. In the second122

and third parts, a precise characterization of this weak ferroelectricity has been done123

using the PUND method by varying respectively the electric field amplitude and the124

delay between pulses. Each time, the PUND measurements are presented separately for125

low and high fields. Finally, the FORC measurements are used in order to show the effect126

of the delay between pulses on the high field ferroelectric contribution.127

3.1. Large field P(E) loops128

The polarization has been measured as a function of voltage with an amplitude swept129

from 2 V to 70 V with a step of 2 V, corresponding to an electric field of 25 kV cm−1 and130

875 kV cm−1 applied to the 800 nm thick sample.131

The polarization versus electric field loops obtained from a virgin sample are shown132

in Fig. 2a. The typical double hysteresis of an antiferroelectric material is well visible.133

The maximum value of polarization is 26 µC cm−2 which is close to the value reported134
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Figure 2: P(E) loops of the first (a) and second (b) series of cycles and corresponding current of the first (c)
and second (d) series.

for PZO thin films [31]. The antiferroelectric to ferroelectric and ferroelectric to antiferro-135

electric transition fields are respectively E+
AF = 628 kV cm−1 and E+

FA = 244 kV cm−1 for136

the positive and E−
AF = −580 kV cm−1 and E−

FA = −229 kV cm−1 for the negative polarity.137

In the case of this first measurement, the significant increase of the polarization is visible138

at field above ±575 kV cm−1, indicating the onset of a rapid antiferroelectric to ferroelec-139

tric phase transition. The current loops corresponding to these first applied electric fields140

cycles are shown Fig. 2c When repeating the measurement for a second time, similar val-141

ues of the maximum polarization and transition fields are obtained (Fig. 2b), however,142

the curves are more regularly spaced and the sharp increase of the polarization at driv-143

ing fields between 575 kV cm−1 and 650 kV cm−1 is not visible (Fig. 2d). This difference144

is attributed to the enhanced weak ferroelectricity and will be detailed below, discussing145
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Figure 3: Polarization (a)(b) and current (c)(d) for the first series of measurement (a)(c) and for the second
series of measurement, after a major loop with a driving field amplitude of 875 kV cm−1 (b)(d).

the low field P(E)-loops.146

3.2. Low fields P(E)-loops147

The polarization and current loops of Fig. 2 for electric fields below 500 kV cm−1 are148

shown in Fig. 3a and 3c for the first applied cycles (i.e. new sample) and in Fig. 3b149

and 3d for the second cycles (i.e. after the exposition of the sample to the maximum150

electric field of 875 kV cm−1). At low electric fields, and especially for the first applied151

cycles (Fig. 3c), the current describes an ellipse with the principal axis near to the x-152

axis, which is typical for a capacitive behavior when using a sinewave excitation and153

indicates a low leakage current. In the case of the cycles after a major loop with a driving154

field amplitude of 875 kV cm−1 had been applied, a more open P(E) loop, (Fig. 3b) and a155

current peak at ±100 kV cm−1 (3d) are observed, less visible but already existing for the156
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first cycles. This current peak is attributed to the weak ferroelectric contribution [5–7] in157

the AFE thin film. This indicates that the ferroelectricity is present into the material, even158

before the application of the large electric field of 875 kV cm−1 and is largely enhanced159

by the application of a large electric field. The opening of the P(E)-loops in the case of160

the second series indicates higher losses, which can be attributed to the more important161

switching contribution.162

For certain compounds of PZO-based antiferroelectric materials [32–36], the whole163

material stays in the ferroelectric phase when the electric field applied during the initial164

AFE-FE phase transition is released, and the transition is hence irreversible. In our case,165

the phase transition is reversible and the major part of material goes back to the antiferro-166

electric phase, giving rise to the typical double hysteresis loop. One part of the material,167

however, stays in the ferroelectric phase thus enhancing the weak ferroelectricity.168

One can note that the weak ferroelectricity is only visible around E = ±100 kV cm−1
169

if a larger electric field is applied during the cycle. This suggests that the weak ferro-170

electricity switching depends on the electric field amplitude previously applied and has171

a time relaxation.172

In order to better study the influence of the weak ferroelectric contribution to the173

overall properties, the PUND method has been used which allow separating the switch-174

ing and the non-switching contributions. To begin with (section 3.3), the measurements175

have been done for different electric field amplitudes and a given delay between pulses176

to determine the minimum electric field necessary to enhance the weak ferroelectricity.177

After that, the delay between the pulses has been varied in order to discern stable and178

unstable ferroelectric switching (section 3.4).179

3.3. PUND measurement with fixed delay between pulses180

To begin with, the delay ∆t between the negative orientation pulse and the PUND181

measurements as well as the delay ∆tPU between the PUND pulses has been set to 250 µs.182

The measured current is plotted as a function of the electric field for fields below the AFE-183

FE phase transition field (Emax ≤ 500 kV cm−1) and for fields above (Emax > 500 kV cm−1)184
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Figure 4: PUND current measurements as a function of the applied electric field of the first series (a),(b)
and of the second series (c),(d). For fields below (a),(c) and above (b),(d) the AFE-FE phase transition. The
switching pulses are shown in full line and the non-switching pulses in dashed lines.

in Figs 4a and 4c and Figs. 4b and 4d, respectively.185

Below the AFE-FE phase transition and in the case of the first series of applied fields,186

no notable difference between the switching and the non switching current is visible187

(Fig. 4a) suggesting that switching of the residual ferroelectric phase does not occur. At188

electric fields above the AFE-FE phase transition (Fig. 4b), the switching current exceeds189

the non switching current, well visible for the highest applied fields. In the case of the190

second series, even below the phase transition, a small difference between the switching191

and the non switching current appears, visible around ±100 kV cm−1 (Fig. 4c). The broad192

current peak indicates that there does not exist a sharp but a rather distributed coercive193

field.194

For fields above the AFE-FE transition, switching of the ferroelectric residual phase195
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is hardly visible due to the much more important amplitude of the phase transition cur-196

rent. There is no significant difference between the first and the second measurement197

series since, for field above the AFE-FE transition, the sample has already been exposed198

to a large field and changes the phase structure of the material (a part of the material stays199

in the ferroelectric phase). For both series, the maximum of the phase transition current200

appears at higher fields for the switching pulses, particularly well visible in the case of201

the positive pulses P and U (after initial orientation by application of a negative pulse).202

The shift of the current maximum is 100 kV cm−1 (from 700 kV cm−1 to 600 kV cm−1) for203

the E+
AF field and 35 kV cm−1 for the E−

AF field while small for the ferroelectric to antiferro-204

electric transitions E+
FA (below 10 kV cm−1). The antiferroelectric to ferroelectric transition205

hence seems to depend on the initial polarization orientation of the material, which cor-206

respond to a memory effect in antiferroelectric materials [37]. The residual ferroelectric207

cells that switch below the antiferroelectric to ferroelectric transition [8] may also influ-208

ence and thus lower the transition field when initially orientated favorably.209

3.4. Influence of the delay between the pulses of the PUND measurement210

In the previous section, the delay between pulses has been kept constant (250 µs). The211

delay between the initial orientation pulse and the PUND measurement pulses however212

influences the switching behavior. We have hence varied this delay from 1 µs to 1000 s213

using a homogeneous repartition in the logarithmic scale. All measurements presented214

in this section have been performed on an enhanced ferroelectric behavior sample that215

has already been exposed to an electric field of 875 kV cm−1. As before, we study (i)216

ferroelectric switching at low fields and (ii) the AFE-FE transition at high fields.217

3.4.1. Low field measurements218

The full switching and non switching current waveforms for different delay are shown219

in Fig. 5a and 5b, respectively for a field of 500 kV cm−1. The non switching current220

almost does not depend on the delay ∆tPU between the pulses P and U, although it is221

possible to subtract the non-switching from the switching current in order to amplify the222

difference.223
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The differential current waveforms for various delay times ∆t between the initial ori-224

entation pulse and the PUND measurement pulses and for different applied field are225

shown in Fig. 6. As the delay between the orientation pulse and the PUND measure-226

ment evolves, the differential current signal changes, showing that the orientation of the227

residual ferroelectric phase is not stable. Independent of the applied field, a maximum228

of polarization switching is obtained for delay times ∆t ≤ 100 µs. As the delay is getting229

longer, the differential switching current signal decreases, indicating a partial relaxation230

of the initial domain orientation. For delay times longer than 100 s, the differential current231

signal disappears. This indicates that the influence of the negative orientation pulse prior232

to the PUND measurements has become negligible and that the ferroelectric domains are233

completely relaxed. A similar behavior has been observed for all applied electric fields.234

Integration with time of the differential current waveform signals allows obtaining235

the P(E) loop of the residual ferroelectric phase which is shown in Fig. 7a for a driving236

field amplitude of 500 kV cm−1 and for different delay times ∆t. The straight horizontal237

lines of the P(E) cycles when the applied field decreases to zero are typical for corrected238

PUND loops[12, 14].239

The maximum value of the weak ferroelectric contribution P = 0.7 µC cm−2 for a field240

Emax = 500 kV cm−1 is very small compared to the typical values of polarization for fer-241

roelectric or antiferroelectric materials. In accordance to the broad current peaks of Fig. 6,242

a rather wide distribution of the coercive field (with a mean value around 150 kV cm−1)243

has been found, confirming the poly-crystalline structure of the thin film.244

The difference between the maximum and the minimum polarization, ∆Pm has been245

calculated for each delay time between pulses and is reported on Fig. 7b, showing that the246

switched polarization depends on the delay between the orientation pulse and the PUND247

measurement. At shortest delay times ∆t, the switched polarization slightly increases248

and achieves a maximum value for several tens of microseconds. Complete switching of249

the residual ferroelectric phase hence can be supposed at the maxima of the respective250

polarization versus delay curves of Fig. 7b. For further increasing delay, however, the251

switched polarization ∆Pm decreases and tends to zero at delay times of the order of252
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Figure 6: Differential current waveforms ISW − INS for different applied fields and various delay times ∆t
between the negative orientation pulse and the PUND measurements.
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14



several seconds, indicating that the orientation of the weak ferroelectricity is not stable.253

The existence of small ferroelectric clusters in antiferroelectric materials has been shown254

previously[8, 9], the dimension of those ferroelectric domains however seems to be too255

small in order to allow self-maintaining of oriented polarization. The mean coercive field256

value increases with increasing delay ∆t indicating that the ferroelectric cells which do257

not go back to the antiferroelectric phase need a higher electric field to switch. The poly-258

crystalline structure of the film and the small grain size create different local clamping259

conditions for each ferroelectric cluster. Each ferroelectric cluster thus has a different260

polar orientation with respect to the electric field and surrounding environment implying261

a distribution of coercive field and delay to go back to the antiferroelectric phase.262

3.4.2. High field measurements263

The current as a function of an applied electric field above 625 kV cm−1 is shown in264

Fig. 8 for various delay times between the orientation pulse and the PUND measurement.265

While successive application of the two positive P and U pulses should result in an iden-266

tical phase transition current, it can be more particularly noticed that the phase transition267

field E+
AF is approximately 100 kV cm−1 higher for the P-pulse (switching pulse), espe-268

cially when the delay time ∆t is short (Fig. 8a). This difference decreases with increasing269

delay ∆t and disappears at longest delay times (Fig. 8d). Only a much smaller difference270

(around 30 kV cm−1) of the phase transition field E−
AF between the respective N and D271

pulse is observed. The ferroelectric to antiferroelectric relaxation (field E−
AF) seems not to272

be affected, neither by the type of pulse (switching or non-switching) nor by the delay ∆t.273

As shown in Fig. 7, switching of the residual ferroelectric phase at low fields is visible.274

The electric field amplitude does not increase the low field switching current, indicating275

that the ferroelectric phase can be fully orientated already by the fields employed for the276

low field measurements. As already seen before, increasing of the delay time ∆t leads to277

less switching of the residual ferroelectric phase.278

For a better visibility, the phase transition fields EAF and EFA have been extracted for279

each delay ∆t and are reported Fig. 9. For a delay times between pulses between up to280
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several milliseconds, the transition fields are rather constant and the difference between281

switching and non-switching is well visible, with an antiferroelectric to ferroelectric tran-282

sition field which is 90 kV cm−1 higher for the positive pulse and 35 kV cm−1 higher for283

the negative pulse. The difference of the ferroelectric to antiferroelectric transition fields284

is much smaller (about 10 kV cm−1) and does not depend on the polarity of the pulses.285

An asymmetry of the switching and non-switching transition fields has already been re-286

ported for Pb0.99Nb0.02[(Zr0.6Sn0.4)0.95Ti0.05]0.98O3 ceramics [37]. In the present case, the287

observed asymmetry also may come from the asymmetry of the sample, i.e. the number288

of annealing steps for each layer. The last layer has been annealed only one time wheres289

the first one has been annealed twelve times and the following layers have a successively290

decreasing number of heat treatments. Annealing in air atmosphere may create oxygen291

vacancies in the structure which are known to be responsible of imprint and internal bias292

for ferroelectric materials [38, 39].293

For a delay between pulses above several milliseconds, the difference between the294

switching and the non-switching transition field progressively weakens due to an in-295

crease of the non-switching field, while the switching field rather remains constant. Sim-296

ilar to what has been observed for the switching of the weak ferroelectric phase, the297

transition between the antiferroelectric and the ferroelectric phase is influenced by the298

delay time ∆t, too. Switching of the residual ferroelectric phase seems to lower the AFE-299

FE transition field for the successively applied pulse of the same polarity as long as the300

delay ∆t is sufficiently short to maintain the orientation of the weak ferroelectricity. The301

AFE-FE transition is hence favored by the previous orientation of the residual ferroelec-302

tric phase. The influence of the delay ∆t on the ferroelectric to antiferroelectric relaxation303

electric field is similar but less pronounced since switching of the ferroelectric phase al-304

ready has be established by the first pulse (switching-pulse). The internal fields hence are305

less modified, also limiting the change of the AFE-FE relaxation electric field.306
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3.5. FORC measurement307

In order to further study the ferroelectric contribution into the PZO thin film, FORC308

measurements with increasing delay time between the positive and the negative pulse309

have been done. The FORC distributions for various delay between the pulses are shown310

Fig. 10, the P(E) loops which were used for the FORC extraction are given in the supple-311

mentary material. The two peaks visible at (E; Er) = (−350 kV cm−1; −650 kV cm−1) and312

(700 kV cm−1; 350 kV cm−1) correspond to the antiferroelectric-ferroelectric transitions.313

When the delay between pulses changes, the peaks keep its position and the respective314

intensity is only slightly affected. The width of the peaks is due to the distribution of the315

transitions fields.316

Further to the phase transition peaks, an additional ferroelectric contribution is visible317

in the bottom-right corner of the FORC distribution at the position (E; Er) = (700 kV cm−1;318

−650 kV cm−1), highlighted by the red arrow. This ferroelectric contribution can not be319

discerned by the high field PUND measurements because the switching current peaks320

occur for the same field than the antiferroelectric to ferroelectric transitions: for positive321

fields, the ferroelectric phase switches at E+ = 700 kV cm−1, same field than E+
AF and322

for negative field, it switches at E− = −650 kV cm−1 same field than E−
AF. Switching323

of this ferroelectric phase is correlated to the antiferroelectric phase transition [8] since324

the field values correspond to the sharp increases of the polarization which occurs for325

the first measurement series (See section 3.1 Large field P(E) loops) and which is related326

to the irreversible antiferroelectric to ferroelectric transition. As the delay time between327

the pulses increases, the position of this ferroelectric contribution remains unchanged,328

the magnitude of the peaks, however, decreases and finally disappears, indicating relax-329

ation with time of this contribution. This is consistent to what has been found from the330

high field PUND measurements and indicates that the difference between switching and331

non-switching transition fields is influenced by this high field ferroelectric contribution.332

The very sensitive FORC measurement technique allows evidencing this contribution al-333

though not visible from the P(E) loop.334

A more subtle evolution in the FORC distribution in area around the Er = −E axis335
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(dotted line in Fig. 10), delimited by the red square can be seen. When the delay between336

pulses increases, the hysteron density in this area progressively decreases, correspond-337

ing to a decrease of the switching polarization contribution studied in the low field sec-338

tion 3.4.1 (decrease of ∆Pm with time). In this area, a homogeneous low hysteron density339

is visible indicating that switching of the weak ferroelectric phase does not appear at a340

precise coercive field but with rather distributed values, as already seen from the broad341

current peak of Fig. 6.342

4. Conclusion343

In this paper, using the complementary PUND and FORC methods, we study the time344

and field dependency of the ferroelectricity contribution to the polarization in antiferro-345

electric PZO thin film. The PUND measurement permits us to show that some residual346

ferroelectric phase is present in the antiferroelectric thin film and can be switched at low347

fields. By varying the delay time between the pulses, we show that this weak ferroelec-348

tric contribution is not stable and disappears with time. This might be due to orientation349

relaxation of the ferroelectric domains in the antiferroelectric matrix. Using the FORC350

measurements, we show that this ferroelectric contribution, visible at low fields, has a351

quite homogeneous hysteron distribution, corresponding to the observed broad distribu-352

tion of the coercive field.353

The high field PUND measurements reveal that the delay between pulses also af-354

fects the antiferroelectric to the ferroelectric phase transition fields which is higher for355

the first pulse of identical polarity, especially when the delay time is short. This indicates356

that the previously oppositely oriented ferroelectric phase hinders the antiferroelectric-357

ferroelectric transition. As the delay between pulses is getting longer, the difference be-358

tween the switching and non-switching phase transition field vanishes.359

The high field FORC measurements show that there exist a further ferroelectric con-360

tribution, which can be switched at fields of the order of the phase transition electric361

field. When the delay between the pulses increases, the magnitude of this ferroelectric362

peak decreases, again indicating that switching of this ferroelectric contribution is not363
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stable. This ferroelectric switching contribution, not visible on the P(E) loops, shows the364

sensibility of the FORC method and its complementarity with the PUND measurements.365
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