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ABSTRACT

Optimizing a wind farm layout is a very complex problem
that involves many local and global constraints such as inter-
turbine wind interference or terrain peculiarities. Existing
methods are either inefficient or, when efficient, take days
or weeks to execute. Solutions are contextually sensitive to
the specific values of the problem variables; when one value
is modified, the algorithm has to be re-run from scratch.
This paper proposes the use of a developmental model to
generate farm layouts. Controlled by a gene regulatory net-
work, virtual cells have to populate a simulated environment
that represents the wind farm. When the cells’ behavior is
learned, this approach has the advantage that it is re-usable
in different contexts; the same initial cell is responsive to a
variety of environments and the layout generation takes few
minutes instead of days.
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1. INTRODUCTION
Wind farm design is a complex task and the recent trend of

larger farm sizes has greatly increased demands on designers.
Traditionally, a small, well-connected, land area is divided
into smaller cells and turbine placement among cells is de-
cided through a simple search algorithm with a pre-specified
cost function. The cost function is usually limited to mini-
mizing inter-turbine wake interferences and thus maximizes
energy capture. Few approaches consider additional factors

such as operation and maintenance costs, turbine costs, or
cable layout.

Modern farms cover large areas and boast hundreds, and
sometimes even thousands, of turbines. The layout design
process is iterative, computationally expensive, burdened
with global and local constraints, and ultimately controlled
by subjective assessments due to the involvement of a vari-
ety of stakeholders. During each step, designers must ei-
ther refine an incremental layout or propose a new lay-
out which they have generated by incorporating new con-
straints. Additionally, evaluating a layout requires varied
multi-disciplinary models and sub-modules that are extremely
computationally expensive.

Under these circumstances, we argue that the direct search
approaches based on global optimization techniques are ex-
tremely inefficient. In such approaches, the environment is
tessellated and an optimization algorithm, generally based
on CMA-ES (Covariance Matrix Adaptation Evolution Strat-
egy) or on a genetic algorithm, locally optimizes the turbines
positions by slightly moving them. When the fundamen-
tal constraints or other aspects of the design problem are
changed, the layout optimizer has to be re-run with a new
starting point. When the approaches are population-based
they rely on evaluating a population of layouts in each iter-
ation causing the algorithm to sometimes run for days at a
time. This latency creates a bottleneck in the design pro-
cess. An algorithm that is efficient and can handle additional
constraints during the design process is highly desired.

To start to address weaknesses of the current approaches,
we propose a novel approach that uses a cell-based devel-
opmental model to “grow” wind farm layouts. Cells are a
metaphor for turbines in a virtual layout. An evolutionary
algorithm optimizes the cell’s behavior with the aim to pop-
ulate the environment so that the global network, the farm
layout, maximizes the energy output or the earnings calcu-
lated by a cost-benefit (return on investment) simulation of
the wind farm. The cells have to respect the local and global
constraints and position themselves optimally in the envi-
ronment. To do so, the cells sense the wind coming from
various directions and decide what to do: divide, reorient
their division plan, migrate, and more. This bio-inspired
approach, commonly named the developmental model or
morphogenetic engineering, has been used on complex prob-
lems since the end of the 1990’s. Nowadays, developmental



models are commonly used to grow shapes or solve simple
combinatorial functions [9, 2, 13, 21, 8, 5]. However, their
applications to real-world problems are still to be explored.
Producing modular robot morphologies [6] or the topology
of optical fibers [16] are two examples of existing applica-
tions. After a learning process, usually based on a genetic
algorithm that optimizes an encoding of the cell behavior,
they have been shown to solve highly locally constrained
problems and to scale up easily to harder problems without
additional learning [4].

This paper is organized as follows. In §2, we present the
background in wind farm layout optimization and the lim-
itations of existing methods. Then, in §3, we present the
wind farm evaluation function, the developmental approach
that generates the layouts, and the gene regulatory network
that controls the cells. §4 presents experiments that denote
the properties of the evodevo model such as its scalability
and its adaptativity to the environment. In §5 we conclude
and consider what further aspects of the layout optimization
problem can be addressed by out approach.

2. BACKGROUND AND LIMITATIONS

2.1 Background
Approaches to solving the wind turbine layout problem

can be broadly sorted into three categories. In the first
category, the approaches divide the site into a number of
cells and use a discrete optimization algorithm that decides
whether or not to place a turbine in the cell. A genetic algo-
rithm optimizes the corresponding boolean matrix [17, 11,
12, 26, 10, 19, 27].

In the second approach, a continuous space search algo-
rithm is used to move each turbine locally to identify the
optimal placement. For example, a particle swarm optimiza-
tion algorithm is used in [25, 3, 22]. A particle represents a
turbine layout by a vector of N(x, y) Cartesian coordinates,
where N is the theoretical maximum number of turbines to
place in the farm. A constraint-repairing algorithm keeps
the layout coherent in regard to a secure area constraint.

Finally, a third set of approaches start with a grid lay-
out and generate slight modifications on an existing layout
by the use of CMA-ES to introduce a stochastic component
[24]. Each decision variable, i.e. one of the coordinates of
the turbines, is perturbed by adding a normally distributed
random value. The standard deviation is also evolved using
the members of the population that have survived a selec-
tion process based on their fitness. The algorithm learns
the stochastic perturbations that will optimize the solution
by learning the correlation among variables. This learning is
performed by maintaining a matrix of covariances among the
distributions controlling the perturbations of decision vari-
ables for every layout. This internal management allows the
algorithm to drastically reduce the number of parameters
involved in tuning.

2.2 Limitations
Considering the current needs and requirements of the

layout design process, existing approaches have some funda-
mental drawbacks which motivate us to resort to a develop-
mental model.

Representation issues: In the discrete version, a GA
has very limited flexibility in turbine location as it is re-
stricted to discrete cells. However, these cells can be skipped,

providing a way to generate layouts with a variable number
of turbines. For algorithms that search for locations in the
continuous domain, the number of turbines is fixed giving
limited flexibility for the cost function to affect turbine num-
ber. Additionally, proximity constraints are often violated,
requiring sophisticated repair approaches.

Problem dimensionality: When the problem is solved
via the discrete version, an x km by x km farm is divided
into m2 km cells giving the problem a binary dimensionality

of x2

m2 . On the other hand if the problem is solved via a
continuous version the number of dimensions is 2×N where
N is the number of turbines.

Reusability: One fundamental drawback of direct search
approaches is that the algorithm has to be run every time
there are changes in the problem space, or when additional
constraints are added. Fully realistic layout evaluation tools
such as OpenWind by AWS Truepower take so long that
they are not practical to use in an iterative algorithm; an
example optimization using this software to evaluate fitness
would take approximately one week.

The objective of this work is to address the problems men-
tioned above by means of a developmental approach. A
developmental model works differently in that, rather than
generating a solution, it learns a parameterized function
which, when executed a certain number of times, produces
an entire solution. At each iteration, the function is sensitive
to conditions affecting energy capture and cost of energy. As
long as the evaluation model is the same, the function can be
executed for a new farm, with different conditions, without
having to re-learn.

3. LAYOUT EMBRYOGENESIS

3.1 Developmental model
The developmental model is based on the replication of

virtual cells of size X meters by X meters that occupy a
virtual environment. The developmental process starts with
a single cell positioned in the middle of the environment. As
shown on Figure 1, each cell senses the amount of energy it
receives from eight different directions. These amounts are
computed based on the wind speed distribution described as
part of the farm specifications with the energy lost to wake
effects, i.e. the interference of other turbines, subtracted.
The inter-turbine interference model is described in §3.3.

Wind force: 

cell input

Current cell 

Cell's division 

 plan 

Other cells 

Figure 1: Cells act in a 2-D discrete environment.
They decide the best action by the mean of 8 wind
forces provided by the energy capture function.



With these eight different inputs, a cell has to decide which
action to trigger at each step of the simulation. The possible
actions for a cell are to divide in the direction defined by the
cell’s division plan, reorient clockwise the division plan 45°,
reorient counterclockwise the division plan 45°, wait, and kill
itself (apoptosis). This action list could be extended to give
more degrees of freedom to the cells. However, these simple
actions are sufficient such that a basic controller can easily
be optimized and produce interesting results.

3.2 Site model
Cells are positioned in a 2-D flat terrain. This environ-

ment is represented with a discretized matrix. Each cell of
the matrix represents an area of X meters by X meters. A
wind distribution in 24 directions is given at the beginning
of the simulation and is the same across the terrain.

3.3 Inter-turbine interference model
The simulation takes turbine wake interference into ac-

count using the following common energy capture model (for
details, see [24])

η(X,Y, v, β(v)) (1)

where X,Y are the coordinates for the turbine, v is the
wind speed, and the function β(v), known as a power curve,
gives the power generated by a specific turbine for a given
wind speed. Wind speed v however is a random variable
with a Weibull distribution, pv(v, c, k), which is estimated
from wind resource data. This distribution also changes as
a function of direction, θ which varies from 00 − 3600, yield-
ing a probability density function for different θ given by
pθv(v, c, k). Additionally, wind flows from a certain direction
with some probability P (θ). These different pieces of in-
formation are inputs to the algorithm. Due to the random
nature of wind velocity, the objective function evaluates the
expected value of the energy capture for a given wind re-
source and turbine positions. For a single turbine, this value
can be calculated using

Ei[η] =

∫
θ

P (θ)

∫
v

pθv(v, ci, k,i xi, yi, X, Y )βi(v). (2)

Equation 2 evaluates the overall average energy over all
wind speeds for a given wind direction, and then averages
this energy over all wind directions. ci and ki are turbine
specific resource parameters derived for the ith turbine after
wake calculations. For more details, refer to [15].

3.4 Cells’ controller: GRN
As in nature, the cell’s controller is a gene regulatory net-

work (GRN). A GRN is a network of proteins that controls
the behavior of the cells. In a living organism, a cell has
several functions described in its genome. A gene regula-
tory network controls their expressions by the use of external
signals collected from protein sensors localized on the mem-
brane [7]. These signals activate or inhibit the transcription
of the genes, which then determines the cell’s behavior.

In our model, a similar network of proteins is optimized
in order to generate the simulated cells’ behaviors. The
amounts of energy production sensed by the cells is trans-
lated to protein concentrations that feed the GRN. Every
output protein chosen in the network is plugged to each

possible cell action. When a cell has to act, it will choose
the action with the highest output protein concentration.
This kind of controller has been used in many developmen-
tal models of the literature [13, 8, 5] and to control virtual
and real robots [18, 14].

We have based our regulatory network on Banzhaf’s model
[1]. It is designed to be as close as possible to a real gene reg-
ulatory network. It has been neither designed to be evolved
nor to control any kind of agent. However, Nicolau used
an evolution strategy to evolve the GRN to control a pole-
balancing cart [18]. Though this experiment behaved con-
sistently, the evolution of the GRN has been an issue. We
have decided to modify the encoding of the regulatory net-
work and its dynamics. In our model, a gene regulatory
network is defined as a set of proteins. Each protein has the
following properties:

• Its identifier (id) is coded as an integer between 0 and
p. The upper value p of the domain can be changed in
order to control the precision of the GRN. In Banzhaf’s
work, p is equivalent to the size of a site, which is 32
bits. We have kept the same precision by setting p to
32.

• Its enhancer identifier (enh) is coded as an integer
between 0 and p. The enhancer identifier is used to
calculate the enhancing matching factor between two
proteins (see equation 3 hereafter).

• Its inhibitor identifier (inh) is coded as an integer be-
tween 0 and p. The inhibitor identifier is used to cal-
culate the inhibiting matching factor between two pro-
teins (see equation 3 hereafter).

• The type determines if the protein is an input protein,
the concentration of which is given by the environment
of the GRN and which regulates other proteins but is
not regulated, an output protein, the concentration of
which is used as output of the network and which is
regulated but does not regulate other proteins, or a
regulatory protein, an internal protein that regulates
and is regulated by other proteins.

The dynamics of the GRN is specified as follows. First,
the affinity of a protein a with another protein b is given by
the enhancing factor u+

ab and the inhibiting u−

ab:

u+

ab = p− |enha − idb| ; u−

ab = p− |inha − idb| (3)

where idx is the identifier, enhx is the enhancer identifier
and inhx is the inhibiting identifier of protein x. Figure 2
represents the GRN as a network of proteins (nodes) where
the weights of the edges correspond to the affinity between
the proteins.

The GRN’s dynamics are calculated by comparing the
proteins two by two using the enhancing and the inhibit-
ing matching factors. For each protein in the network, the
global enhancing value is given by the following equation:

gi =
1

N

N∑
j

cje
βu

+

ij
−u+

max ; hi =
1

N

N∑
j

cje
βu

−

ij
−u−

max (4)

where gi (resp. hi) is the enhancing (resp. inhibiting) value
for a protein i, N is the number of proteins in the network,
cj is the concentration of protein j and u+

max (resp. u−

max) is
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Figure 2: Graphical representation of a GRN: the
nodes are the proteins and edges represents the en-
hancing and inhibiting affinity between two proteins.
The bigger the edges, the closer the proteins.

the maximum enhancing (resp. inhibiting) matching factor
observed. β is a control parameter described hereafter.

The final modification of protein i concentration is given
by the following differential equation:

dci
dt

=
δ(gi − hi)

Φ
(5)

where Φ is a function that keeps the sum of all protein con-
centrations equal to 1.

β and δ are two constants that modify the dynamics of
the network by setting up its speed of reaction. β affects the
importance of the matching factor and δ affects the level of
production of the protein in the differential equation. The
lower both values, the smoother the regulation. Similarly,
the higher the values, the more sudden the regulation.

Whereas the input proteins of a GRN corresponds to the
current state of the environment, the output proteins select
the best action to trigger. In the wind farm layout opti-
mization problem, the inputs of the GRN of each cell corre-
spond the wind energy coming from the 8 directions. They
are provided by the evaluation model previously described.
The output of the GRN corresponds to the cell actions: one
output protein is assigned to each action; the highest con-
centration of the output determines which action the cell
will do. If the action is not available (e.g. the cell wants
to divide to a place where another cell is already living),
the second highest protein’s concentration is selected. The
GRN is not reset before introducing the new input protein
concentrations to maintain a persistent memory. The GRN
is run for 25 steps with these new concentrations to reach a
stable state before the decision is taken.

3.5 Optimization
The GRN can be easily encoded in a genome to be evolved

by an evolutionary algorithm. The GRN’s genome contains
two independent chromosomes. The first one is defined as
a variable length chromosome of indivisible proteins. Each
protein is encoded within three integers between 0 and p for
the three different identifiers. If an evolutionary algorithm
has to evolve this chromosome, the variation operators have
to be redefined. First, the crossover consists in exchang-
ing subparts of two different networks. Because proteins are
indivisible, the crossover points have to be chosen between
two proteins. This ensures the integrity of each sub-network,

Parameter Value
Population size 500
Mutation rate 10%
Crossover rate 75%

Selection
3-player tournament

with elitism
8 input proteins +

Minimum GRN size 5 output proteins +
15 regulatory proteins
8 input proteins +

Maximum GRN size 5 output proteins +
50 regulatory proteins

Table 1: Parameters of the genetic algorithm.

and the local connectivity is maintained; only new links be-
tween the different sub-networks are created. The mutation
can be applied in three equally probable ways: mutating an
existing protein by randomly changing one of its three inte-
gers, adding a new protein randomly generated or removing
one protein randomly chosen in the network.

The coefficients β and δ presented in the dynamics model
are encoded in a second independent chromosome which
contains only these values. They are coded with double-
precision floats in [0.5; 2] (empirically chosen).

A genetic algorithm can then optimize the network of
proteins and its dynamics. In this work, we have used a
master-worker model distributed genetic algorithm in order
to reduce the computational time. Table 1 presents the pa-
rameters used to evolve the gene regulatory network in this
experience.

In order to globally evaluate the layout, we have designed
the fitness function as a simplified economical simulation of
the wind farm. A gain function computes the amount of
money earned by a given layout over 20 years (average ex-
ploitation duration of a wind farm), or 175200 hours. Data
used in computing revenue was taken from the US Depart-
ment of Energy. The gain function is based on the energy
capture, E, and the number of turbines, n, of the farm.
Other constants are given in table 2.

C = E ∗R∗175200−n∗ tc−⌊(n/T )⌋∗sc−n∗OM ∗20 (6)

This cost function is a better optimization criterion than
maximizing the energy production because it is a more re-
alistic economical model. However, it still does not address
construction cost of the cable and the road networks, which
are an important part of the global costs. Optimizing these
facilities is a complex problem not addressed in this work.

Finally, the developmental process is completely deter-
ministic: when triggered, the cell actions always give the
same results. The GRN is also deterministic; for a given

Name Description Value
tc Turbine Cost $750,000
sc Substation cost $8,000,000
T Turbine per substration 30
R Revenue per kWh $0.08

OM Yearly operation and maintenance costs $20,000

Table 2: Constant values of the fitness function.



l θl θl+1 k c P (θ) l θl θl+1 k c P (θ)
0 0 15 2 7 0.0002 12 180 195 2 10 0.1839
1 15 30 2 5 0.008 13 195 210 2 8.5 0.1115
2 30 45 2 5 0.0227 14 210 225 2 8.5 0.0765
3 45 60 2 5 0.0242 15 225 240 2 6.5 0.008
4 60 75 2 5 0.0225 16 240 255 2 4.6 0.0051
5 75 90 2 4 0.0339 17 255 270 2 2.6 0.0019
6 90 105 2 5 0.0423 18 270 285 2 8 0.0012
7 105 120 2 6 0.029 19 285 300 2 5 0.001
8 120 135 2 7 0.0617 20 300 315 2 6.4 0.0017
9 135 150 2 7 0.0813 21 315 330 2 5.2 0.0031
10 150 165 2 7 0.0994 22 330 345 2 4.5 0.0097
11 165 180 2 9.5 0.1394 23 345 360 2 3.9 0.0317

Table 3: Realistic wind scenario parameters.

concentration of input proteins, the GRN will always pro-
vide the same output protein concentrations. Thus, running
the developmental process only once is sufficient to calculate
the fitness function of the resulting wind farm layout.

4. EXPERIMENTS

4.1 Cell learning
We use the wind distribution scenario and farm parame-

ters from [15]. These problem parameters are standard in
the literature and allows simple comparison between the dif-
ferent models. These parameter values provide the values for
equations 1 and 2. They are presented in table 3.

First, the GRN is trained on a 14km by 7km 2-D flat field
with the genetic algorithm and the mentioned wind farm
evaluation model. The field is discretized into a 46x22 ma-
trix of 310 meters by 310 meters vertices, which corresponds
to the minimal security distance between two turbines to
avoid inconsistent layouts. The genetic algorithm converges
after 4 hours of learning on 128 CPUs, totaling 512 sequen-
tial hours. Due to the adaptable nature of the developmental
approach, this learning has to be done only once. Therefore,
we ignore this cost but reference the cost of layout growth
when making the comparison with other methods.

Figure 3 graphically presents the developmental process
that generates the layout. Here, only 4 of the 50 devel-
opmental steps are represented. A developmental strategy
clearly emerges: the cells populate the environment follow-
ing different development fronts, visible on the bottom left

Figure 3: Growth of the best layout obtained with
the developmental model.

!"

!#$"

!#%"

!#&"

!#'"

("

!"

)!!"

(!!!"

()!!"

$!!!"

$)!!"

*!!!"

*)!!"

!" )" (!" ()" $!" $)" *!" *)" %!" %)" )!"

!"#$%&'$$%

'"()%

*+$',-%./!0%

1$2)%34$5%+,-./0" 123-"4.--".256"

Figure 4: Variation of the energy output and the
wake free ratio during the growth of the wind farm
layout.

side of step 34. Moreover, three stages can be observed when
these development fronts moves: first, the cells populate the
local area as much as possible, the less efficient cells die, and
finally the neighbor cells are optimized.

Figure 4 presents the energy output and the wake free
ratio over the developmental process. The wake free ratio
Rwf represents usage of the turbines; 100% means that all
turbines are running at their theoretical maximum. Rwf =

E

NEturb
max

, where E is the layout energy output, N is the num-

ber of turbines of the layout, and Eturb
max is the maximum the-

oretical energy output per turbine. Figure 4 clearly shows
the exponential addition of turbines between step 0 and step
35. The energy output increases due to the cell proliferation.
It is interesting to notice that the growth is interspersed with
cell population extinction in order to improve the wake free
ratio: inefficient cells die periodically to leave space to more
efficient ones. This strategy allows a local optimization of
the area. These extinctions disappear with the end of the
cell proliferation.

The model is compared to the TDA 200k approach used
in AWS OpenWind and in CMA-ES, both presented in [23].
Even if these approaches are grid-free, we choose them be-
cause they are the best methods currently used in the in-
dustry. However, both approaches use a fixed number of
turbines while the developmental model also optimizes this
parameter. To compare the developmental model with an
algorithm that also optimizes the number of turbines, we
have implemented a distributed master-slave genetic algo-
rithm that optimizes the return on investment evaluation
function we have designed. The genome of the genetic algo-
rithm consists of a standard vector of bits. The GA is run
for 200,000 layout evaluations like the CMA-ES and TDA
approaches in [23]. Table 4 presents the results obtained by
the developmental model.

GRN TDA 200k CMA-ES GA

Area (km2) 14x7 14x7 14x7 14x7
Turbines 499 500 500 498

Energy (kW) 3.01e6 3.25e6 3.20e6 3.01e6
Wake free 82.6% 88.8% 87.4% 82.7%

Sequential time 20sec 24h 324h 282h

Table 4: Comparison of the developmental and the
TDA 200k approaches on the same area size.



Area Developmental approach TDA 200k
size Number Energy Wake free Density of Computing Number Energy Wake free Density of Computing

(km2) of turbines output (kW) ratio turbines time of turbines output (kW) ratio turbines time
10x6 340 2 018 410 81.1% 5.64 10s 300 1 971 000 89.8% 5.00 11.3h

12x6 400 2 369 780 81.0% 5.62 13s 400 2 584 000 88.3% 5.56 17.0h

14x7 499 3 014 420 82.6% 5.13 20s 500 3 249 000 88.8% 5.10 24.5h

20x10 1020 6 095 330 81.7% 5.10 195s 1000 6 449 000 88.1% 5.00 75.0h

- Standard deviation 0.73% 0.30 - Standard deviation 0.76% 0.27 -

Area CMA-ES 200k Genetic Algorithm
size Number Energy Wake free Density of Computing Number Energy Wake free Density of Computing

(km2) of turbines output (kW) ratio turbines time of turbines output (kW) ratio turbines time
10x6 300 1 935 000 88.2% 5.00 111h 339 2 035 320 82.1% 5.63 130h

12x6 400 2 549 000 87.1% 5.56 221h 399 2 395 870 82.1% 5.60 182h

14x7 500 3 196 000 87.4% 5.10 324h 498 3 011 650 82.7% 5.12 281h

20x10 1000 6 298 000 86.1% 5.00 327h 1019 6 043 170 81.1% 5.10 1247h

- Standard deviation 0.87% 0.27 - Standard deviation 0.66% 0.29 -

Table 5: Comparison between the developmental and the TDA, CMA-ES, and GA approaches. The devel-
opmental model results are based on the controller obtained in the learning presented in section 4.1.

Because the developmental model and the genetic algo-
rithm optimize both the number of turbines and the energy
output, all four approaches can only be compared through
the wake free ratio and the computation time. Actually, for
the same area size, the developmental model and the ge-
netic algorithm result in a comparable number of turbines
(499 and 498 against 500 for TDA 200k and CMA-ES). The
computation time is drastically reduced by the developmen-
tal model. Once the behavior is learned, only 20 seconds
are needed to generate the wind farm layout instead of 24
hours required by the TDA 200k approach, 324 hours with
CMA-ES and 282 hours with a genetic algorithm. Keeping
in mind that manual iterations are necessary in the design
process of a wind farm layout, the main interest of such a
low computation cost is to keep the design interactive for
humans. Designers can quickly evaluate the changes on the
layout after the growth of a new farm that takes into account
these changes.

The quality of the layout generated by the developmen-
tal model expressed by the wake free ratio is 6.2% lower in
comparison to the TDA 200k. The same observation can
be made with CMA-ES. However, the wake free ratio of
the developmental model and the genetic algorithm are very
comparable. Potential layout quality improvements will be
discussed in the conclusion.

Out motivation in choosing our approach is context-sensitivity:
the solution is built iteratively in a user-defined environ-
ment. To evaluate this property, we have performed two ex-
periments using a learned GRN. In these experiments, the
GRN is neither re-trained nor re-optimized. The first ex-
periment consists of building wind farm layouts of different
sizes and the second experiment introduces obstacles into
the environment.

4.2 Scalability
In this experiment, we want to prove the scalability of our

approach by introducing the same previously trained cell
into three different environments. The sizes of these envi-
ronments are the same as the environments tested in [23]:
10x6km2, 12x6km2 and 20x10km2. The developmental ap-
proach is compared to TDA 200k and CMA-ES 200k taken

from [23] and the genetic algorithm evolution presented pre-
viously.

Figure 5 presents the final layouts obtained with the de-
velopmental approach. On these layouts, we can note that
the same pattern appears modulated to the environment
sizes. For example, the bottom and the left cell lines are
both present in all environments. They appear in the origi-
nal layout (see figure 3) and on all layouts of different sizes.
These patterns are important because they correspond to
two good wind distribution values of our scenario. The most
interesting point is that these patterns adapted to the field
size.

Table 5 compares all four approaches with respect to num-
ber of turbines, energy output, turbine density, wake free
ratio, and compute time.

The wake free ratio is comparable when the developmental
approach is applied to various terrain sizes. The standard
deviation of the wake free ratio is 0.73%. This standard
deviation is comparable with other approaches. The same
observation can be made for the turbine density in the envi-
ronment (expressed in turbines per square kilometer). The

Figure 5: Reuse of the same initial cell and its GRN
in environments of different sizes.



values stay stable with the terrain size variation with a stan-
dard deviation of 0.3, which is comparable to the standard
deviation of the TDA 200k equal to 0.27 where the number
of turbines is given by the user.

As in the context of learning the GRN, the wake free ratios
are lower for the developmental model in comparison to the
CMA-ES and TDA 200k and are comparable with the ge-
netic algorithm approach. However, the computing time has
been extremely reduced with the developmental approach.
After the learning, the cell behavior can be exploited “as is”
for different scenarios, whereas all other approaches have to
be re-run to produce an optimal layout, requiring comput-
ing time in the order of days or weeks each time. Addition-
ally, the developmental approach gives comparable results
in small and large environments. This proves its capacity to
scale up without further learning.

4.3 Avoiding natural obstacles
Another property of the developmental model is that it

naturally takes into account unavailable positions in the en-
vironment. Here we again take the cells’ GRN learned in §4.1
and we represent, in the environment, site features where
turbines should not be placed, e.g. roads or water. We cre-
ate a new vertex state that expresses unavailability; division
into this cell area is prohibited.

To evaluate, we grow a new 14x7 km2 layout. This time,
the field contains a lake of 2.48x1.55 km2 positioned near the
bottom-right corner. Figure 6 presents the final layout ob-
tained after 50 developmental steps. The energy output gen-
erated by this layout is 2.967MW with 499 turbines, which is
only 1.58% less than the original layout. It has to be noted
that the lake reduces the global area of 3.8km2 (3.9% of the
whole field size). This layout is grown in 15 seconds which is
comparable to the 20 seconds needed to develop the original
layout. Finally, the wake free ratios are also comparable be-
tween both field: the layout with the lake has a 81.3% ratio
and the original layout’s one is 82.6%.

Visually, it is interesting to note that the developmental
model was able to grow a front line on top of the lake; as
the wind comes mainly from the bottom direction, these
turbines are very efficient, as well as the turbines in the line
produced on the bottom of the environment. However, the
top left corner is not as populated as the original layout.
The developmental model might have needed more devel-
opmental steps to populate that part of the field. Having

Figure 6: The developmental can easily avoid nat-
ural obstacles such as the lake represented by the
bottom-right blue rectangle.

a lake in the field might require additional growth which
would extend the developmental process. The stop criteria
of the development model is also a weakness of the current
design because it is not context-sensitive; it has been em-
pirically chosen throughout different runs. The model could
be improved by the use of a stop criteria that depends of
the wind farm layout optimization, such as a building cost
threshold or average turbine efficiency.

5. CONCLUSION AND FUTURE WORK
This paper presents a novel approach to generate wind

farm layouts. It uses a bio-inspired approach based on cells
that populate a virtual environment. The cells use inputs
provided by an evaluation function that calculates the en-
ergy outputs of each turbine of the wind farm. To generate
the layout, the cells can divide, reorient there division plan
and die. A gene regulatory network controls the cells and is
optimized by a genetic algorithm in order to give an appro-
priate behavior to the cells. The field is globally evaluated
by a simplified economical simulation that calculates the re-
turn on investment of the wind farm over 20 years.

This approach has the advantages of scalability and con-
text sensitivity; the cells act using local information and are
evaluated by a global function. After an initial and sin-
gle training, the cells can populate environments of various
sizes. They can also take into account terrain constraints
such as lakes, roads, and mountains. Other parameters that
can be modified while still reaching an optimal solution with
the trained GRN are yet to be explored. The wind distri-
bution, turbine type, layout elevation topology, and revenue
model are all important to the design process, and the ef-
fects of modification to these parameters on a trained GRN
will be interesting. This approach is intended as the first
step in such an exploration.

The main value of this approach is the drastic reduction
in the computational effort; the same cell and its controller
can be used in multiple environment without re-learning nor
re-optimization. They always generate solutions with com-
parable qualities in term of turbine efficiency, highlighted
here by the wake free ratio, and initial patterns created by
the cells are adapted to the new environments. Thanks to
the huge reduction of computing time implied by the use of
our approach, the design loop is more interactive; human
designers can modify on-the-fly the layout constraints and
regenerate a new layout very quickly with the developmen-
tal model. This is not possible with other approaches with
which days are necessary to optimize a new layout.

However, the solution quality is still lower than the so-
lutions generated with other approaches of the literature.
In our opinion, there are three ways to improve the quality
of the developmental model to get closer to the TDA 200k
and the CMA-ES results. First, the developmental model
is based on a discrete environment. The cells and thus the
turbines are positioned in the middle of a vertex of the grid.
This enforces an alignment of turbines which strongly re-
duces the efficiency of the turbines. Secondly, the cells’ con-
troller, here based on a gene regulatory network, could be
improved or even exchanged with another controller. For
example, HyperNEAT [20] could more accurately select the
cells’ actions because the layout optimization problem has
strong spatial properties. Other controllers such as neu-
ral network or classifier systems could also potentially yield
better results. Finally, a hybrid between a local search al-



gorithm and the developmental model could improve layout
quality; the developmental model could provide a good ini-
tial layout to be optimized by TDA or CMA-ES. Because the
initial layout generated by the developmental model is bet-
ter and more adapted to its environment than a randomly
or uniformly generated layout, the local optimizers could be
more efficient and converge more rapidly.
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