
HAL Id: hal-04084419
https://hal.science/hal-04084419

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward Authorization as a Service: A Study of the
XACML Standard

Romain Laborde, François Barrère, Abdelmalek Benzekri

To cite this version:
Romain Laborde, François Barrère, Abdelmalek Benzekri. Toward Authorization as a Service: A
Study of the XACML Standard. 16th Communications and Networking Symposium (CNS 2013) @
2013 Spring Simulation Multi-Conference, ACM Special Interest Group on Simulation and Modeling,
Apr 2013, San Diego, CA, United States. pp.55-61. �hal-04084419�

https://hal.science/hal-04084419
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12467

The contribution was presented at CNS 2013 :
http://www.scs.org/springsim/2013/CNS

To cite this version : Laborde, Romain and Barrère, François and Benzekri,
Abdelmalek Toward Authorization as a Service: A Study of the XACML Standard.
(2013) In: 16th Communications and Networking Symposium (CNS 2013) in
2013 Spring Simulation Multi-Conference, 7 April 2013 - 10 April 2013 (San
Diego, CA, United States).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Toward Authorization as a Service

A study of the XACML standard

Romain Laborde, François Barrère, Abdelmalek Benzekri

IRIT/SIERA

University Paul Sabatier

Toulouse, France

{laborde,barrere,benzekri}@irit.fr

Keywords: Authorization as a Service, XACML, Self-contained

policy, OSGi

Abstract

Cloud computing has promoted the notion of service as the

leading way to deliver and consume computing resources.

Today, security is going down that road and the term

security as a service is emerging. Authorization that consists

in managing permissions is one of the main classic security

services. We propose in this article to study how

authorization could be delivered/consumed as a Service. We

focus on the XACML standard that has been adopted by the

cloud security community because of its native flexibility

and adaptability properties. Although XACML seems to

fulfill the requirements of authorization as a Service in

theory, it is very complex to realize it in practice. We

propose a service oriented component architecture together

with the concept self-contained policy to cope with this

issue. This approach allows both the cloud consumers to

adapt the authorization system to their authorization policies

and the cloud providers to minimize the cost of providing a

flexible authorization service.

1. INTRODUCTION

Cloud computing has promoted the notion of service as

the leading way to deliver and consume computing

resources. It is common to use applications supplied by a

cloud provider, to store data out of our computer or to rent

virtual machines for supporting our web site in our daily life

now. Thereby, the number and nature of services provided

are growing and become more diverse.

Today, security is going down that road. Security

applications are migrating to the cloud. Existing examples

are antiviruses that do no more run on local computers but

on a cloud provider infrastructure. Identity service is another

example. And more and more security applications are

considered to turn out the same way. The Cloud Security

Alliance summarizes it as Security as a Service (SecaaS)

and provides the following definition: « Security as a

Service refers to the provision of security applications and

services via the cloud either to cloud-based infrastructure

and software or from the cloud to the customers’ on-premise

systems » [1]. SecaaS looks to secure systems and data in

the cloud as well as hybrid and traditional enterprise

networks via cloud-based services.

The Cloud Security Association has also proposed in [2]

a set of best cloud-related security practices divided into 14

domains. Domain 12, titled “Identity, Entilement and

Access Management”, recommend the use of XACML [3]

as the authorization technology because it provides a

declarative access control language and a policy-based

management architecture. Using XACML is not mandatory

for authorization management. However, it is clearly a

choice of the Cloud Security Association to promote it. In

Domain 14 that focuses on SecaaS, it is suggested that

identity-as-a-Service may comprise an eco-system such as

Policy Enforcement Point as a Service, Policy Decision

Point as a Service and Policy Administration Point as a

Service.

We propose in this article a service-oriented component

software architecture of XACML that could be employed to

implement Authorization as a Service. Especially, our goal

is to design an XACML-compliant system that could be

used as a service. One of the main challenges is to build a

system that could easily be adapted/extended to service

customers’ requirements and that minimizes the cost of

maintenance for the service providers at the same time. Our

solution consists in a generic core authorization engine that

can be extended by reusable components. We also exploit

the concept of self-contained policy. This architecture has

been implemented along the OSGi specification.

The rest of this article is organized as follows. Section 2

presents XACML and the issues related to extending and

adapting XACML solutions. Section 3 introduces the

concept of self-contained policy and our XACML service-

oriented components architecture. Section 4 explains how to

use this architecture to provide Authorization as a Service.

Related works are listed in section 5. Finally, section 6

concludes the article and presents our future work.

2. OVERVIEW OF XACML 2.0

XACML (eXtensible Access Control Markup Language)
is an XML-based language for access control that has been
standardized in OASIS [3]. XACML describes both an
attribute-Based access control policy language and a
request/response language.

2.1. XACML Architecture

XACML provides a management architecture that
describes the different entities and their roles related to the
decision making process. A data-flow model describes this
architecture. A simplified version of this model is depicted in
Figure 2.

Access

Requester
PEP

Context

Handler
PDP

PIP

PAP Subject Environment

Resource

2. Access Request

1. Policy

3. Request 11. Decision

4. Request Notification

5. Attributes Queries

9. Attributes

10. Response Context

6. Attribute Query 8. Attribute

7a. Subject Attributes

7b. Environment Attributes

7c. Resource Attributes

Figure 1. Simplified XACML data flow model

The model operates by the following steps.
1. Policy Administration Points (PAP) write policies and

policy sets and make them available to the Policy
Decision Point (PDP). These policies or policy sets
represent the complete policy for a specified target.

2. The access requester sends a request for access to the
Policy Enforcement Point (PEP).

3. The PEP sends the request for access to the context
handler in its native request format, optionally including
attributes of the subjects, resource, action and
environment.

4. The context handler constructs a standard XACML
request context and sends it to the PDP.

5. The PDP can request any additional subject, resource,
action and environment attributes from the context
handler if needed.

6. The context handler requests the attributes from a Policy
Information Point (PIP).

7. The PIP obtains the requested attributes.
8. The PIP returns the requested attributes to the context

handler.
9. The context handler sends the requested attributes. The

PDP evaluates the policy.
10. The PDP returns the standard XACML response context

(including the authorization decision) to the context
handler.

11. The context handler translates the response context to
the native response format of the PEP. The context
handler returns the response to the PEP that enforces the
authorization decision.

2.2. XACML policy language

XACML policy language is used to describe general
access control requirements in term of constraints on
attributes. Specifically, attributes could be any characteristics
of the subject, resource, action, or environment in which the
access request is made. Attributes have an identifier, which
is a Uniform Resource Name (URN), and a data type also
identified by a URN. Considering attributes makes the
language very flexible. Moreover, XACML language is
natively extensible. As a consequence, this standard is a
good candidate for cloud-based security services
implementations.

XACML defines standard attributes of subjects (e.g.,
subject-id, subject-category), resources (resource-id and
target-namespace), actions (action-id, implied-action, action-
namespace) and environment (current-time, current-date, and
current-dateTime). However, non XACML standard
attributes can be considered in an XACML policy by
creating new URNs (see section 8 of [1]). Attributes are
attached to standard XACML data types (such as Boolean,
integer, string, etc) or any other user-defined data types can
be created (such as
“urn:ogc:def:dataType:geoxacml:1.0:geometry” defined by
the Open Geospatial Consortium [4]).

Finally, an authorization policy rule consists in a Boolean
expression on attributes and an associated decision (called
effect). Attributes are manipulated using functions according
to their data types. Like attributes and data types, the
XACML specification has defined standard functions (e.g.,
Boolean and, or, string-equals, integer-greater-than, etc).
But, it is possible to add new functions to extend XACML
policies. For example, the Open Geospatial Consortium has
defined a set of functions to manipulate geospatial attributes
such as” “urn:ogc:def:function:geoxacml:1.0:geometry-
contains”).

2.3. XACML in practice

In order to understand the gap that exists between theory
and practice, we present a simple example. In this example,
we focus on the PDP issue only. We refer the reader to [5]
for the PEPs issues.

Let consider a cloud provider that wants to develop
Authorization as a Service for its customers. Respecting the
CSA security guide, it provides an XACML authorization
system. Now let consider a customer organization named
MY-ORGANIZATION that wants a web service that
provides maps. Maps include details on the organization’s
area. This organization wants to restrict the access of the
organization’s area details to its employees only. All the
users’ accounts are already stored in a MySQL database
provided by the cloud provider. People who work for this
organization can come from different companies (e.g.,
subcontractors). Thus, the users’ account table contains a
field, called organization-name, which value is the name of
the users’ origin.

PDP

PEP

Policy
Condition:
<Apply FunctionId: "urn:xacml:and">
 <Apply FunctionId: "urn:xacml:string-equals">
 <AttributeValue DataType:"string">
 my-organization
 </AttributeValue>
 <SubjectAttributeDesignator AttributeId: "organization-name" DataType: "string"/>
 </Apply>
 <Apply FunctionId: "urn:geoxacml:geometry-contains">
 <AttributeValue DataType:"geometry">
 <gml:Polygon gid="MY-ORG-AREA"> ... </gml:Polygon>
 </AttributeValue>
 <ResourceAttributeDesignator AttributeId: "requested-area" DataType: "geometry"/>
 </Apply>
</Apply>

subject-id
!

organization-
name

MySQL

Policy administrator
1) PA writes the policy using a policy editor

2) policy is loaded

3) XACML request
that includes values

for attributes subject-id
and requested-area

4) get
organization-name

attribute value

5) apply the code
to evaluate

function geometry-contains

6) return XACML decision

Figure 2. Example of XACML in practice

The MY-ORGANIZATION security administrator wants
to make use of GEOXACML [4] that provides data types
and operators to manipulate geo-data in XACML policies.
The security policy is then: if organization-name of user is
“my-organization” and requested-area is within MY-ORG-
AREA then accept. Otherwise, reject the request. The
security administrator writes this policy in XACML
language (a sample is given in Figure 2). The execution
process is the following (Figure 2):
1. The security administrator writes the policy in XACML
2. The policy is loaded in the PDP
3. When a user tries to access a map, the PEP catches the

request and sends an XACML request to the PDP. This
request includes the name of the user in subject attribute
subject-id and the requested map in resource attribute
requested-area. In this scenario, attribute organization-
name is not provided by the PEP. We assume that the
PEP sends attribute subject-id. The value of attribute
organization-name, stored in a MySQL database, can be
retrieved by using a request

4. When the PDP evaluates the policy, organization-name
is missing in the request context because it hasn’t been
sent by the PEP. Thus, it has to call the PIP that retrieves
this attribute from the MySQL database. It implies the
XACML PDP of the cloud provider contains the PIP
code that implements MySQL requests and the
associated configuration (address of the MySQL
server, login and password, the database schema) to
get the attribute value.

5. Then, the PDP evaluates expression “geometry-
contains” to check whether the requested map is within
MY-ORG-AREA or not. This assumes the PDP of the
cloud provider has the code that implements function
“geometry-contains”, and data type “geometry”.

6. Finally, the PDP returns its decision to the PEP.
This simple example raises a deployment problem. The

cloud provider must provide its customer non-XACML
standard features: the PIP to get the value of attribute
organization-name and the code to implement function
“geometry-contains”. The first issue is how to make these
non-standard features reusable and configurable in order to
allow 1) the cloud customers to adapt the authorization
system according to their authorization policy and 2) the
cloud providers to minimize the cost of providing such
flexibility. The second issue is how to manage these reusable
and configurable features efficiently? These features are
mandatory because the authorization policy requires them. If
the policy is changed to a new one that does not include any
constraint on attribute organization-name nor function
“geometry-contains”, these two features are no more
required. Thus, how to manage the relation between the
policy and the required features?

3. SELF-CONTAINED POLICY

In a previous article [6], we have proposed the concept of
self-contained policy to cope with this issue. The approach
we have chosen consists in the policy includes all the
information required by a PDP to execute the policy. This
approach facilitates the management of the PDP
implementation life cycle. When a policy is loaded, the
required code and associated configurations are installed.
When the policy is unloaded, the associated code and the
configurations are removed from the PDP. We present here
the concept of self-contained policy together with
deployment architecture. This section improves the work
presented in [6] in terms of adaptability.

3.1. Self-contained policy properties

In this section, we recall the properties of a self-contained
policy.

Property of self-sufficiency: a self-contained policy should
be self-sufficient.

A self-contained policy should contain all the required
information to be executed by any self-contained policy
compliant PDP. The policy should not implicitly require any
external code or configuration to be executed by a PDP,
except those in the standard.

Property of self-description: A self-contained policy should
provide enough information for managing its life cycle.

When a self-contained policy is loaded, the self-
contained policy should indicate how to use its PIP code,
function, etc. When the policy is unloaded, the self-contained
policy should provide the set of associated implementation
elements that must be uninstalled by the PDP.

Property of dynamicity: a self-contained policy should be
dynamically loadable and unloadable.

The PDP should be able to load and unload a self-
contained policy without requiring to be stopped.

3.2. Service oriented component approach

We have chosen to follow the service oriented
component [7] approach that takes advantages of integration
and dynamicity from service-oriented architectures, and
reusability and dependency management from component-
oriented models.

Service-oriented architecture promotes modeling
solutions in term of provided services described by contracts.
It is based on the idea of composing applications by
discovering and invoking available services to accomplish
some tasks [8]. The general pattern of service-oriented
solutions consists in service provider, service consumer and
service registry (Figure 3). Service providers publish services
at run time and service consumers request services for a
specific contract. Different service providers can offer the
same service and the consumer can choose based on the
contract. Since the framework allow service consumers to be
dynamically notified of new registered services, and
unregistered services.

Component oriented programming focuses on making
reusable logical blocks of software that implements one or
more interfaces. Component-oriented software is then an
assembling of components. The notion of interface being
very similar to the notion of service interfaces, component-
oriented programming has been used to implement services.
A service can be implemented by one or more components.

Service
Registry

Service
Consumer

Service
Provider

Publish serviceRequest service

Bind and invoke
service

Figure 3. Service-oriented approach

3.3. A service-oriented components based XACML

architecture

Our objective being to provide a flexible and reusable
authorization service, we have decomposed our architecture
into independent entities that can be changed without
impacting the whole system. Thus, it is composed of:

• A core authorization decision engine that represents
the basic functionalities. It consists in the PAP
component that controls the life cycle of the policy,
the PDP component that provides decisions and the
context handler component that handles the request
context by providing two services for retrieving and
modifying the request context. The core authorization

decision is independent from the system to control or
the policy to evaluate.

• The interfaces to access the core authorization
engine. The administrative console interface
component allows policy administrators to access the
PAP. We have implemented two different
components to access the PAP via a local console, a
web service. But other administration interfaces could
be defined. We are working on a web interface. The
second entity is the core authorization decision
access point (CADAP) that allows PEP to send
requests and get decisions from the PDP. Like
administration consoles, different CADAPs can be
proposed to adapt the authorization system to
different system/network architectures. We have
implemented two CADAPs components: one to
access the PDP locally via a UNIX pipe and another
via a web service.

• The self-contained policy that contains the XACML
policy with all non-standard functionalities.

This architecture has been implemented using the OSGi
service oriented component specification [9] and more
specifically the Apache Felix framework [10]. The PDP
component is a modification of the Sun’s XACML PDP
implementation [11].

A self-contained policy includes three kinds of
components: the policy access component, the PIP
components and the data type components.

The policy access component provides only one service,
called get-policy. The PDP invokes this service to get the
policy rules from the self-contained policy. When the PAP
activates the self-contained policy in the authorization
engine, service get-policy is automatically registered. The
PDP is then dynamically notified that it can load the policy
file and start to use it for its decision-making process.

PIP components are logical blocks of software dedicated
to retrieve attribute values from different sources, i.e. the
attributes are not in the request context. They publish their
service get-attribute that adds in the request context the
value of the attribute. The PDP component or any data type
or PIP component can invoke this service. One PIP
component can be responsible for one or more attributes.
However one attribute is handled by only one PIP
component. As a consequence, PIP components should
indicate the name(s) of the attribute(s) they are in charge of
during the registration phase. If necessary, PIP components
might have an associated configuration to perform their task
(the ip address of the database server, the login and
password, etc). The notion of reusability beside the
component approach is important here because the same
functionality can be shared by different policies like PIP
component that implements the common access storage
technologies such as MySQL database or LDAP repository.

!"!

#$%&'(&)

*+%,-'.

!/!

/+&+012'

!3!

!$-4516"55'77

8'&)2$-451

8'&)+&&.49:&'

;<+-:+&')'(2.'774$%

'
<+-:

+&'

+&
&.
49
:&
'

2
$
-45
1

.'
=
:
'
7&

8'&),'5474$%

!.$2>7?@6%+A'B6<+-:'>7?

!.$2>7?@6%+A'B6<+-:'>7?

":&C$.4D+&4$%6;%E4%'F'-G)#$%&+4%',6!$-451

F'.<45'6#$%7:A'.

F'.<45'6!.$<4,'.

F'.<45'6#$%7:A'.65+%65+--6

F'.<45'6!.$<4,'.

F'.<45'6#$%&.+5&

H'E'%,6@

#$.'6":&CD6

/'5474$%6

"55'776!$4%&

!"!)+,A4%

8'&)I"#JH).'=:'7&

#$A2$%'%&

/+&+6012'6

#$%G4E:.+&4$%

!3!

6#$%G4E:.+&4$%

I"#JH

!$-4516K4-'76

",A4%47&.+&4$%6

#$%7$-'

Figure 4. Self-contained policy

Finally, data type components implement all the
functionalities related to data types elements manipulation.
Each data type component provides service evaluate-
expression to allow the PDP to evaluate non standard
expressions in the policy. Service evaluate-expression takes
as input an expression that uses functions the service handles
and returns the result of the expression based on the request
context. When a component, including the PDP, needs to
evaluate an expression of the form <Apply

FunctionId:”urn:XYZ”> … </Apply> its sends all the
expression to the component responsible for function XYZ
to evaluate it. This process can be recursive. If the data type
component XYZ find a sub expression <Apply

FunctionId:”urn:ABC”> … </Apply> it is not able to
evaluate, it can ask the corresponding data type component
to evaluate it, etc. In addition, data type components can
invoke the get-attribute service of a PIP component if
additional attributes are required. Thus data type components
need to indicate the set of function names they handle.
Finally, data type components may also require
configuration when the policy writer specifies data type
values (we refer the reader to [12]).

Self-contained policies are more complex than XACML
policy file only. Especially, managing their life cycle is not
limited to uploading/removing an XML file only. All the PIP
and data types components must be handled too (installing
and/or removing from the authorization system when needed
– see property of self-description). As a consequence, the
PAP component provides the following functionalities:
load a self-contained policy – the PAP loads all the

components of a self-contained policy in the authorization

engine environment. However, the services provided by
the components are not published at this time.

activate a self-contained policy – the PAP activates the
components. They publish their services to the registry
service. The last activated component is the policy access
component. When service get-policy is published, the
PDP is then notified that a new policy is ready to use and
adds the XACML policy to the list of current policies.

deactivate a self-contained policy - the self-contained policy
is still in the environment, but the services are not
accessible. When the PDP detects service get-policy of
this self-contained policy is no more available, the PDP
removes the policy from the list of policies it has to
execute.

unload a self-contained policy – the PAP removes all the
components of the self-contained policy from the
authorization engine.

4. TOWARD XACML AUTHORIZATION AS A SERVICE

Our goal is to propose a an authorization system that at

the same time:

1) is flexible/adaptable enough to allow customers to

control their resources considering their own specific

security requirements and IT infrastructure that could

be inside the cloud or elsewhere;

2) minimizes the cost of providing such flexibility to the

cloud provider.

We present in this section how to use our service

oriented component architecture for achieving this goal.

The first step consists in the initialization of the

authorization system (Figure 5.). When the customer asks

the provider for an authorization system, the provider grants

him access to a generic core authorization engine. To

customize this generic authorization system, the cloud

provider must provide a list of reusable administration

console interfaces (ACI) and core authorization decision

access point (CADAP) components. The ACI components

represent the interfaces that customers can use to manage

policies. Our idea is the provider supplies different ACIs

with different features. The basic functionalities of an ACI

are load/unload, activate/deactivate a policy. Extra features

such as can complete these basic functionalities: activate a

policy at a given time, authentication mechanism, code of

ACI certified or not, etc. Then the administrator can choose

an interface that best fits its requirements. For example, we

have developed two administration console interfaces. The

first one is a set of commands added to the Felix framework

shell [13]. It has been defined to be used a human

administrator. The second ACI is a web service that can be

accessed a web service client program. Other administration

console interfaces can be imagined. The CADAP

components represent the connection between the PEP that

controls the resource and the authorization system. Different

technologies exist for this communication and PEPs might

already exist on the customer technology (for example, the

grid solution Globus toolkit includes a SAML PEP [14]).

Thus, the cloud provider must provide a list of CADAP with

specific features like for ACIs. As an example, we have

created a simple web service CADAP.

It should be noted that one customer can chose several

ACI/CADAP components for the same decision engine.

ACI

CADAP
CADAP

ACI Core

AuthZ

Decision

Engine

PAP Admin

Get Decision

CADAP

ACI
Choose ACI

Choose CADAP

Figure 5. Authorization decision engine initialization

When the initialization phase is done, the customer can
write its policies and deploy them on its authorization
system.

As we have illustrated in the scenario, XACML policies
might require non-standard functions/data types and PIPs. In
our example, the administrator wanted to use the functions
and data types for manipulating geospatial data defined in
GEOXACML and a PIP that can retrieve attribute
organization-name from his MySQL database.

Like ACIs or CADAPs, the cloud providers supply a set
of PIP and data type components. PIP components can differ
from the technology to access attributes (MySQL, LDAP,
webservice, etc), the quality of the component (performance,
code certification, etc). Data type components allow security
administrators to take advantage of non-XACML data types
and functions for writing complex security policies.

In order to facilitate the task of the administrator, we
have implemented a self-contained policy editor based on
Netbeans integrated development environment (Figure 6.).
Netbeans IDE [15] can be extended by modules to create
editors for new languages. Thus the process for editing and
deploying a policy is the following:

1) The administrator creates a new project using
our editor.

2) When the administrator is editing its policy, he
can import PIP or Data Type components.
Throughout two services provided by
components, the editor can interact with them.
The first service is auto-completion to minimize
the typographical errors. The second service
allows the administrator to graphically
configure PIP and Data Type components (e.g.
the server address, login/password and SQL
statement for a basic MySQL PIP component).

3) When the administrator has finished to edit its
policy, the editor creates the self-contained
policy file.

4) Finally, the administrator loads its policy in the
authorization system using the chosen ACI. At
that point, the components in the self-contained
policy are installed in the authorization
environment. When the administrator activates
the policy, all the components of the self-
contained policy are activated and the PDP is
ready to evaluate the policy. y p y.

DT

PIPPIP

DT

Core AuthZ

Decision

Engine

PAP Admin

Get Decision

CADAP

ACI

Administrator

(Cloud customer)

XACML

Policy

Self Contained Policy Editor

DT

PIP

Self contained

policy

XACML

Policy

DT

PIP

Load policy

using ACI

Generate self-

contained policy

Import

components

Figure 6. Authorization policy edition and deployment

5. RELATED WORKS

Many implementations of XACML policy decision
engine exist. Existing PDP implementations such as
SUNXACML [11], Enterprise java XACML [16],
XACMLight [17] are complaint to the standard XACML i.e.
they support all the standard data types and functions.
However, extending these implementations with new
features like defining a new data type requires the
modification of the source code of the PDP. Finally,
HERASAF [18] allows to add dynamically new data type
through configuration files. However, this project doesn’t
define any methodology explaining how to structure data

types efficiently. As a consequence, there is no guarantee a
policy can be interpreted even if the implementation of the
policy decision engine is dynamically extensible. In addition,
there is no management of extension modules life cycle
according to the policy, i.e. why and when external modules
should be added to or taken away from the policy decision
engine.

According to our knowledge, Ulrich Lang has employed
the term “Authorization as a Service” in [19] for the first
time in a scientific publication. However, his idea of what
the provided authorization service is differs from our point of
view. He wants to provide model driven security as a cloud
service to PaaS users (i.e., SOA application developers). The
tool called OpenPMF can generate authorization rules in
different format languages based on a policy specified in a
domain specific language and the workflow of the SOA
application. Thus people don't have to handle security when
developing their application in the PaaS. Our goal is not to
generate technology specific authorization rules; we want to
build an extensible authorization system with reusable
functionalities. Our approaches differ because our target
users are not developers but security administrators.

6. CONCLUSION

Providing Security as a Service raises new engineering
challenges. Security application will have to easily integrate
heterogeneous systems (cloud, hybrid and/or classical
networks). As a consequence, adaptability of security
application is an important issue.

Following the idea of the Cloud Security Association, we
have studied how to use XACML for implementing
Authorization as a Service. Our solution is based on the
service-oriented component programming paradigm. A core
XACML decision engine (composed of a context handler, a
PDP and a PAP) can be extended by reusable components
(ACI, CADAP, PIP and Data Type). This extensibility
allows the service provider to meet its customers’
requirements and to minimize the cost of such adaptability.
Finally, we have explained how to use this architecture for
providing Authorization as a Service.

Our architecture has been implemented in OSGi to prove
the feasibility. It also has permitted us to gain experience and
to improve the architecture. We are following this work by
implementing different components to augment the service
we can provide. We are also improving our development
tools to make the writing of components as well as the
edition of policy easier. According to our model, multiple
parties can develop components (not only the authorization
service provider). We have to enhance our system to
consider that components won’t have the same quality level
(in term of performance, assurance, trust, etc). We have to
add mechanisms to prevent a component to impair the global
authorization engine process.

ACKNOWLEDGMENT

This work has been partially founded by ITEA2
European project PREDYKOT (Policy REfined
DYnamically and Kept On Track – website
http://www.itea2-predykot.org/).

REFERENCES

[1] Cloud Security Alliance, “Defined categories of services 2011

version 1.0”, Security as a Service Working Group, October 2011.

[2] In Cloud Security Alliance, “Security guidance for critical areas of

focus in cloud computing v3.0”, November 2011.

[3] OASIS, “eXtensible Access Control Markup Language (XACML)
version 2.0”, OASIS Standard, February 2005. URL:

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.

[4] Open Geospatial Consortium, “Geospatial eXtensible Markup

Language (GeoXACML)”, version 1 corrigendum, OGC 11-017,
december 2011.

[5] R. Laborde, M. Kamel, F. Barrere, A. Benzekri, “PEP=Point to

Enhance Particularly”, in IEEE POLICY 2008, 2-4 June 2008.

[6] M. Cheaito, R. Laborde, F. Barrere, A. Benzekri, “A deployment
framework for self-contained policies”, in IEEE/IFIP CNSM 2010.

[7] H. Cervantes , R. S. Hall, Autonomous Adaptation to Dynamic

Availability Using a Service-Oriented Component Model,
Proceedings of the 26th International Conference on Software

Engineering, p.614-623, May 23-28, 2004

[8] M. P. Papazoglou ,P. Traverso ,S. Dustdar ,F. Leymann, “Service-

Oriented Computing: State of the Art and Research Challenges”,
Computer, v.40 n.11, p.38-45, November 2007

[9] OSGi, http://www.osgi.org/Main/HomePage, last access June, 2012.

[10] Apache Felix, http://felix.apache.org/site/index.html, last access June,

2012

[11] Sun’s XACML implementation, http://sunxacml.sourceforge.net/, last
access June, 2012.

[12] M. Cheaito, R. Laborde, F. Barrère, and A. Benzekri, “Configurable

Data Types in Policy Based Access Control Management: A
Specification and Enforcement Framework”, In : SAR-SSI 2010,

Menton -France, 18/05/2010-21/05/2010.

[13] Apache Felix Shell, url: http://felix.apache.org/site/apache-felix-
shell.html, last access June 2012.

[14] Chadwick DW, Otenko O, Welch V. Using SAML to link the
GLOBUS toolkit to the PERMIS authorisation infrastructure. In:

Proceedings of eighth annual IFIP TC-6 TC-11 conference on
communications and multimedia security, Windermere, UK, 15-18

September 2004. p. 251-61.

[15] Netbeans Platform Learning Trail, url:
http://netbeans.org/kb/trails/platform.html, last access June 2012.

[16] Enterprise Java XACML, url: http://code.google.com/p/enterprise-

java-xacml/, last access June, 2012.

[17] XACMLight, url: http://sourceforge.net/projects/xacmllight/, last
access June, 2012.

[18] HERASAF, url: http://www.herasaf.org/, last access June 2012

[19] Ulrich Lang, “OpenPMF SCaaS: Authorization as a Service for Cloud

& SOA Applications” in IEEE CloudCom 2010.

