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Abstract. We consider a system of clusters of various sizes or masses, subject to aggregation

and fragmentation by collision with monomers or by self-disintegration. The aggregation rate for

the cluster of size (or mass) k is given by a kernel proportional to ka with a ≥ 0. The collision

rate and the disintegration rate are given by λkb and µkb, respectively, with 0 ≤ a, b ≤ 1 and

positive factors λ and µ. We study the emergence of oscillations in the phase diagram (λ, µ) for

two models: (a, b) = (1, 0) and (1, 1). It is shown that the monomer population satisfies a class

of integral equations possessing oscillatory solutions in a finite domain in the plane (λ, µ). We

evaluate analytically this domain in a precise way and give an estimate of the oscillation frequency.

In particular, these oscillations are found to occur generally for small but nonzero values of the

parameter µ, far smaller than λ.

PACS numbers: 05.20.Dd,05.45.-a,36.40.Qv,36.40.Sx

1. Introduction

The processes of aggregation and fragmentation between clusters of particles of various sizes or

masses appear ubiquitous in a large variety of physical and chemical systems. Many examples

found in the literature include the coalescence of soap bubbles, stability of atmospheric particles

which aggregate due to the van der Waals forces, and large-scale internet networks where nodes

acquire additional links according to their attachment preference weight [26, 1]. In astronomy,

aggregation induced by gravitation plays an important role in forming planetary rings [2] and

galactic clusters [3, 4]. Fragmentation by shattering, for example, tends to counterweight

aggregation by preventing the masses of the clusters from becoming too large, and this often

leads to an equilibrium state of the cluster size or mass distribution which displays a power law

associated with an exponential decay [5, 6, 7, 8, 9, 10, 11]. Fragmentation can occur by a direct

collision between large clusters, and the fragmentation rate depends on various parameters, such

as the cross-section or masses of the objects. This also occurs indirectly by tidal forces between



Stability condition of steady oscillations in aggregation models 2

large masses. Also, thermal fluctuations induce the disintegration of large polymers in solutions,

which plays the role of self-fragmentation.

In the long-time limit, the steady state distribution of many models often exhibits, according

to the type of kernel chosen for the aggregation or fragmentation processes, a power-law behavior

associated with an exponential decay [5, 6, 12, 11, 13]. The exponent of the power-law decay is

closely associated with the choice of the aggregation-fragmentation kernels, which depend on such

parameters as the geometry of the clusters and their scattering cross-section.

Further, phase transitions can be observed while the kernel amplitudes vary. For example,

in case only monomers or one-particle clusters interact with larger ones by aggregation and

fragmentation, if the shattering rate is too small, the monomer population will vanish, and the

dynamics will stop. The population of each cluster will therefore depend on the initial conditions.

Otherwise, the distribution will reach a steady state [14]. In between, there is a critical regime

depending on the amplitude and exponent values of the aggregation-fragmentation kernels where

only giant clusters with large masses are created and where the population of other smaller ones

tends to vanish asymptotically.

Besides time-independent equilibrium distributions of masses, one also observes collective

and stable oscillations in a narrow window of parameter range [15, 16, 17, 18, 19, 20, 21, 22, 23].

This arises from non-equilibrium effects or imbalances between aggregation and fragmentation

processes, with or without an external source of particles supplied to the system.

In a recent publication [20], oscillations were observed in a model where aggregation between

monomers and clusters of size k occurs with rate Ak = k, as well as self-disintegration process

with rate µkb. They observed oscillations in a domain where µ is smaller than 10−6 and exponent

Figure 1: Aggregation, fragmentation, and disintegration processes in the model. A monomer

collides and aggregates with a k-particle cluster with rate Ak = ka, or fragments the cluster

completely with rate λCk = λkb. Self-disintegration also occurs with rate µFk = µka.
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b smaller than 6 after linearizing the dynamical equations around the constant solution, reducing

the problem to a linear algebra system. The stability of this infinite system is given by obtaining

the set of complex eigenvalues after truncation, and the study of the sign of the real part of

the eigenvalues close to the origin as well as the imaginary part characterizes the nature of the

perturbation. The transition from stable to oscillatory solutions is often called Hopf bifurcation.

Usually, aggregation and fragmentation dynamics are described through Smoluchowski

equations, which govern the fluctuations of the cluster masses. These Smoluchowski equations are

quadratic in densities, and exact solutions may not be obtained in general, except for small sets

of variables [24, 25] in the mathematical field of nonlinear systems of equations. In this case, it is

difficult to characterize the presence of density oscillations. However, if clusters interact only with

monomers, the dynamical equations can be simplified by rescaling all the densities and redefining

time. All the properties of the dynamics can be deduced from an integral equation involving solely

the distribution density of the monomers. This allows us to study analytically the oscillation

behavior of the system in more detail. In case a source of the monomer is present, within some

approximation, the monomer density satisfies a nonlinear ordinary differential equation (ODE)

with a fluctuating damping term. This damping term is partially responsible for the Liénard

oscillations that are observed: When the damping term is positive, the monomer density reduces

toward zero. However, as the amplitude of the density gets very small, the damping term changes

sign and encourages the density to grow again [23]. The presence of a source or even a self-

fragmentation process constraints the monomer density to remain positive.

In this paper, we investigate a model restricted to dynamics driven by monomers, which

is considered an extension of the Becker-Döring model [18, 22]. The dynamics include not only

aggregation between monomers and larger clusters as well as fragmentation or shattering of clusters

by collision with monomers but also self-fragmentation of clusters into monomers when they

become too large. This is tantamount to total disintegration. The presence of self-fragmentation

prevents the population of monomers from vanishing completely and the dynamics from stopping in

a system where mass conservation holds. The three distinct processes, aggregation, fragmentation,

and self-fragmentation, are included in this model, where the domain of stable oscillations is

investigated. We would like particularly to develop a technical method applicable to the study

of collective oscillations through differential equations satisfied by a class of generating functions.

These generating functions contain all the moments of the densities, and in particular, we can

extract precisely the monomer density, which determines all the other densities in a closed form.

Computing eigenvalues in the analysis of the stability of the oscillations is replaced by finding

zeroes of special functions in the complex plane.

The paper is organized as follows: Section 2 introduces the main model with general dynamics,

from which two cases with different exponents are studied in detail. We present a method based

on the differential equations satisfied by a generating function and display the phase diagram of

the domain of oscillation stability as a function of the parameter amplitudes. In section 3, we

discuss the general class of the obtained generating functions and integral equations for which
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oscillating solutions exist. Finally, section 4 gives a brief conclusion of the present study.

2. Model

We consider a series of clusters made of k particles, each with a mass probability density nk. Only

one-particle clusters react with bigger clusters of size k ≥ 2. A particle can aggregate with a cluster

of size k to form a cluster of size k + 1 with rate Ak. Or it can fragment the cluster completely

to form k single particles with rate λCk. The aggregation rate Ak grows with the cluster size k,

according to a power law with exponent a, such that Ak = ka. Similarly, the fragmentation rate is

given by λCk = λkb with b ≤ a. Clusters of size k can spontaneously disintegrate into k monomers

with rate µFk = µka. All these processes are illustrated in figure 1. Normally the aggregation or

self-fragmentation rates are proportional to the cluster size or surface, eventually fractal, and it

is usual to take 0 ≤ a ≤ 1, as observed for the problem of network growth [26]. Fragmentation

exponent b will also be taken less than or equal to unity.

With N denoting the size of the largest cluster, we have the following master equations for

the densities:

∂n1

∂t
= −2n2

1 −

N−1
∑

k=2

(Ak − λkCk)n1nk + λNCNn1nN +
N
∑

k=2

µkFknk,

∂nk

∂t
= Ak−1n1nk−1 − (Ak + λCk)n1nk − µFknk (2 ≤ k ≤ N − 1),

∂nN

∂t
= AN−1n1nN−1 − λCNn1nN − µFNnN . (1)

These coupled equations satisfy the conservation of the total mass, set equal to unity:
∑N

k=1 knk =

1 or ∂t
∑N

k=1 knk = 0. It is convenient to redefine the variables by introducing vk ≡ Aknk and

effective time τ = τ(t) such that dτ ≡ n1(t)dt. This leads to a set of quasi-linear ODEs:

∂v1
∂τ

= −2v1 −
N−1
∑

k=2

(1− λk1+b−a)vk + λN1+b−avN +
N
∑

k=2

µk
vk
v1
,

∂vk
∂τ

= kavk−1 − (ka + λkb)vk − µka vk
v1

(2 ≤ k ≤ N − 1),

∂vN
∂τ

= NavN−1 − λN bvN − µNavN
v1

. (2)

2.1. Model with (a, b) = (1, 0)

In this section, we choose the parameters (a, b) = (1, 0) and take the limit N → ∞. Then the

master equations read

∂v1
∂τ

= −2v1 −
∑

k≥2

(1− λ)vk +
∑

k≥2

µk
vk
v1
,
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∂vk
∂τ

= kvk−1 − (k + λ)vk − µk
vk
v1

(k ≥ 2). (3)

It is useful to define the set of moments: ϕl ≡
∑

k≥2 k
lvk. Since the total mass is given by

∑N
k=1 knk =

∑N
k=1 vk = 1, we have ϕ0 = 1− v1 and write the first equation of equation (3) in the

form: ∂v1/∂τ = λ− 1− (1 + λ)v1 + µϕ1/v1. The general system of ODEs for ϕl is given by

∂ϕl

∂τ
= −

(

1 +
µ

v1

)

ϕl+1 − λϕl + 2l+1v1 +
l+1
∑

j=0

(

l + 1

j

)

ϕj, (4)

for l ≥ 0. We then introduce a generating function G(u, τ) ≡
∑

l≥0 ϕlu
l/l!, which satisfies the

partial differential equation (PDE)

∂G(u, τ)

∂τ
+

(

1 +
µ

v1
− eu

)

∂G(u, τ)

∂u
= (eu − λ)G(u, τ) + 2e2uv1, (5)

with the initial condition G(u, 0) depending on the initial cluster densities. Note that in the

derivation of equation (5), we have used the formula

∑

l≥max[0,j−1]

(

l + 1

j

)

ul

l!
=

uj−1(u+ j)

j!
eu. (6)

This can be demonstrated using the Egorychev method and the representation of the binomial

coefficient in terms of a complex integral with a closed contour around the origin:
(

l + 1

j

)

=

∮

dz

2iπz

(1 + z)l+1

zj
, (7)

which reduces the summation over l in equation (6) to a simple complex integral evaluated as

follows:
∑

l≥0

(

l + 1

j

)

ul

l!
=

∮

dz

2iπz

(1 + z)

zj
eu(1+z) =

uj−1(u+ j)

j!
eu. (8)

Now, to solve equation (5), we apply the Lagrange-Charpit method based on the characteristic

curves. We parametrize u and τ by an external variable s, such that (u(s), τ(s)) defines a

curve on the surface (u, τ,G(u, τ)). The generating function becomes a function of s, which

we denote G(u(s), τ(s)) ≡ G̃(s). The derivative G̃′(s) is then given, via the chain rule, by

G̃′(s) = u′(s)∂uG(u(s), τ(s)) + τ ′(s)∂τG(u(s), τ(s)). For convenience, we choose the variable s

such that

τ ′(s) = 1 and u′(s) = 1 +
µ

v1(τ(s))
− eu(s). (9)

These can be integrated into

τ(s) = s,

u(s) =

∫ s

0

ds′
[

1 +
µ

v1(s′)

]

− log

[

C +

∫ s

0

ds′ exp

{

∫ s′

0

ds′′
[

1 +
µ

v1(s′′)

]

}]

, (10)
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where C is a constant determined by the boundary conditions on the curve. Imposing here that

the point (u, τ) belongs to the curve, i.e., s = τ and u(τ) = u, we obtain the constant value

C = eγ(τ)−u −

∫ τ

0

dseγ(s), (11)

where γ(s) = s+
∫ s

0
ds′µv−1

1 (s′). With such parametrization, (equation (5)) becomes a first-order

ODE

G̃′(s) = (eu(s) − λ)G̃(s) + 2e2u(s)v1(s), (12)

which can be integrated into

G̃(s) = 2eW (s)

∫ s

0

ds′v1(s
′)e−W (s′)+2u(s′),

W (s) =

∫ s

0

ds′eu(s
′) − λs = log

[

C +

∫ s

0

ds′eγ(s
′)

]

− logC − λs. (13)

After simplifying the previous expressions, we obtain G̃(s) in the form

G̃(s) = 2

{

e−u −

∫ τ

s

ds′′ exp

[

s′′ − τ − µ

∫ τ

s′′
ds′′′v−1

1 (s′′′)

]}

×

∫ s

0

ds′v1(s
′)

exp
[

λ(s′ − s) + 2(s′ − τ)− 2µ
∫ τ

s′
ds′′v−1

1 (s′′)
]

[

e−u −
∫ τ

s′
dτ ′′ exp

[

s′′ − τ − µ
∫ τ

s′′
ds′′′v−1

1 (s′′′)
]]3 . (14)

The initial conditions are chosen such that only monomers are present at s = τ = 0 with the total

mass unity, namely, vk(0) = δk1. This implies that G̃(0) = G(u(0), 0) = 0 since ϕl is initially zero

for all l. Substituting s = τ and u = 0, we obtain an integral equation for v1(τ). Indeed, we have

G(0, τ) = ϕ0 =
∑

k≥2 vk = 1− v1 and therefore

v1(τ) = 1− 2

∫ τ

0

dτ ′v1(τ
′)

exp
[

−(2 + λ)(τ − τ ′)− 2µ
∫ τ

τ ′
dτ ′′v−1

1 (τ ′′)
]

[

1−
∫ τ

τ ′
dτ ′′ exp

{

τ ′′ − τ − µ
∫ τ

τ ′′
dτ ′′′v−1

1 (τ ′′′)
}]3 . (15)

2.1.1. Case µ = 0. When µ = 0, equation (15) can be simplified and reduces to

v1(τ) = 1− 2

∫ τ

0

dτ ′v1(τ
′)e−(λ−1)(τ−τ ′). (16)

Taking the Laplace transform, we obtain, for λ > 1,

v̂1(p) =
1

p

λ− 1 + p

λ+ 1 + p
, (17)

which gives a long-time constant v1(τ) ≃ (λ − 1)/(λ + 1) as p → 0. We can also differentiate

equation (16) and eliminate the integral to obtain the ODE

v′1(τ) = −(1 + λ)v1(τ) + λ− 1, (18)

which yields the time-dependent solution v1(τ) = (λ − 1 + 2e−(λ+1)τ )/(λ + 1). For λ < 1, v1
decreases and vanishes at a finite time τ = (1 + λ)−1 log[2/(1− λ)].
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2.1.2. Constant solution. Here we discuss the long-time constant solution of equation (15).

Supposing that v1(τ) reaches a limit v∗1 (> 0), we obtain the equation describing this solution

for τ ≫ 1:

v∗1 ≃ 1− 2v∗1

∫ τ

0

dτ ′
e−(2+λ+2µ/v∗

1
)(τ−τ ′)

[

1−
∫ τ

τ ′
e−(1+µ/v∗

1
)(τ−τ ′′)dτ ′′

]3

≃ 1− 2v∗1(1 + ǫ)3
∫ τ

0

dτ ′
e−(2+λ+2ǫ)τ ′

[ǫ+ e−(1+ǫ)τ ′ ]
3 , (19)

where ǫ ≡ µ/v∗1 is assumed small (ǫ ≪ 1) for small µ. When µ = 0 or ǫ = 0 and λ > 1,

the integral in equation (19) is finite, and v1 approaches exponentially to the constant solution

v∗1 = (λ− 1)/(λ + 1) as τ → ∞. Otherwise, for λ < 1, v1 reaches zero at some finite time τ . For

λ = 1, v1 decays to zero with a power law. When µ 6= 0, there is a finite nonzero solution to the

integral equation (19) for any value of λ. Changing the variable x = ǫ−1e−(1+ǫ)τ ′ and taking the

limit τ → ∞, we rewrite equation (19) as

v∗1 =

[

1 + 2(1 + ǫ)2ǫ
λ−1−ǫ
1+ǫ

∫ 1/ǫ

0

dx
x

1+λ+ǫ
1+ǫ

(1 + x)3

]−1

. (20)

The behaviour of the integral depends on λ when ǫ is small. If λ > 1 + ǫ, the integral diverges for

large x, and the dominant contribution comes from x ≃ 1/ǫ (≫ 1):
∫ 1/ǫ

0

dx
x

1+λ+ǫ
1+ǫ

(1 + x)3
≃

1 + ǫ

λ− 1− ǫ
ǫ
1+ǫ−λ
1+ǫ . (21)

Combining this asymptotic result with equation (20), we obtain, for ǫ ≪ 1:

v∗1 =

[

1 + 2
(1 + ǫ)3

λ− 1− ǫ

]−1

≃
λ− 1

λ+ 1
, (22)

which is the expected result for λ large compared with µ. If λ < 1+ ǫ, then the integral converges

in the limit x → ∞:
∫ ∞

0

dx
x

1+λ+ǫ
1+ǫ

(1 + x)3
=

πλ(λ+ 1 + ǫ)

2(1 + ǫ)2 sin[πλ/(1 + ǫ)]
, (23)

which is a finite quantity. Therefore the dominant term in equation (20) is ǫ
λ−1−ǫ
1+ǫ (≫ 1), and some

algebra leads to the approximate expression:

v∗1 ≃ µ(1−λ)/(2−λ)

[

sin(πλ)

πλ(λ+ 1)

]1/(2−λ)

, (24)

for λ < 1 and µ ≪ 1. It is then straightforward to confirm that ǫ = µ/v∗1 ∝ µ1/(2−λ) ≪ 1.

2.1.3. Stability around the constant solution. Plotted in figures 2 and 3 are the time-dependent

solutions of equation (2), obtained via the Runge-Kutta-Fehlberg (RKF45) algorithm, for µ = 10−5

and two different values of N . For small N (= 1000) steady oscillations are observed in a window
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around λ ≃ 0.6 whereas for larger N (= 10000) these oscillations are transient and tend to

disappear, and v1(τ) approaches its limiting value given by equation (20). This means that for

finite N the system governed by equation (2), which conserves the total mass, displays steady

oscillations depending on N . In the limit N → ∞, however, these oscillations are not stable.
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τ

0

0.02

0.04

0.06

λ=0.4

0
0.02
0.04
0.06
0.08

λ=0.5

0

0.04

0.08

0.12
λ=0.6

0

0.04

0.08

0.12
λ=0.7

0

0.04

0.08

0.12
λ=0.8

0
0.04
0.08
0.12

λ=0.9

Figure 2: Time evolution of v1(τ) for µ = 10−5, N = 1000, and several values of λ. For λ ≈ 0.6,

one observes steady oscillations around a mean value close to the constant solution v∗1 (dashed

lines) given by equation (20).

In order to examine the stability, we consider a perturbation ǫ(τ) and write v1(τ) = v∗1 + ǫ(τ).

Then linearization of equation (15) yields the integral equation for ǫ(τ):

ǫ(τ) = − 2

∫ τ

0

dτ ′
ǫ(τ ′)e−(2+λ+µ/v∗

1
)(τ−τ ′)

[

1−
∫ τ−τ ′

0
dτ ′′e−(1+µ/v∗

1
)τ ′′

]3 −
2µ

v∗1

∫ τ

0

dτ ′
e−(2+λ+µ/v∗

1
)(τ−τ ′)

[

1−
∫ τ−τ ′

0
e−(1+µ/v∗

1
)τ ′′dτ ′′

]3

×

[

2

∫ τ

τ ′
dτ ′′ǫ(τ ′′) +

3
∫ τ

τ ′
dτ ′′e−(1+µ/v∗

1
)(τ−τ ′′)

∫ τ

τ ′′
dτ ′′′ǫ(τ ′′′)

1−
∫ τ−τ ′

0
dτ ′′e−(1+µ/v∗

1
)τ ′′

]

. (25)
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Figure 3: Time evolution of v1(τ) for µ = 10−5, N = 10000, and several values of λ. The

oscillations observed in figure 2 disappear, and the limiting value v∗1 (dashed lines) is reached

asymptotically.

Note that the above does not take the form of an expansion in µ. Since there is no obvious

convolution integral, we do not take a Laplace transform but consider a perturbation in the

exponential form: ǫ(τ) = ǫ0e
Ωτ with ǫ0 being a small amplitude. After some algebra, we obtain

the equation for the complex frequency Ω:

1 + 2J3(β+Ω, α) +
2µ

Ωv∗1

{

2 [J3(β, α)− J3(β+Ω, α)]

+
3

α
[J4(β, α)− J4(β+α, α)]−

3

α + Ω
[J4(β, α)− J4(β+α+Ω, α)]

}

= 0, (26)

where α ≡ 1 + µ/v∗1, β ≡ 2α + λ, and

Jk(β, α) ≡ αk

∫ τ

0

dτ ′
e−βτ ′

(α− 1 + e−ατ ′)k
≃

αk−1

(α− 1)k−β/α

∫ (α−1)−1

0

dx
xβ/α−1

(1 + x)k
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(a) (b)

Figure 4: Surface plots of the modulus of equation (26) in the complex Ω-plane (ReΩ, ImΩ),

for λ = 0.6 and µ = (a) 10−5 and (b) 10−6. In (a), all the zeros located on the left part of the

plane have negative real parts and therefore no oscillatory solution can occur except for transient

oscillations in the case of the zeros close to the vertical axis. In (b), one conjugate pair of zeros

has a small positive real part, giving rise to oscillations.

=

(

α

α− 1

)k−1 [

(−1)k+1 πΓ(β/α)(α− 1)β/α−1

Γ(k)Γ(1+β/α−k) sin(πβ/α)

−
α(α− 1)k−1

2F1(k, k−β/α; 1−β/α+k; 1−α)

kα− β

]

. (27)

Here the second integral has been obtained in the limit τ → ∞. Accordingly, this approximation

should be valid for |Ω|τ ≫ 1. The function Jk satisfies the following recursion relation

Jk+1(β, α) = −
1

k
+

β − α

k
Jk(β−α, α) (β > α > 1),

Jk(α, α) =
1

k − 1

[

(

α

α− 1

)k−1

− 1

]

(k > 1, α > 1). (28)

Figure 4 presents the modulus of equation (26) for λ = 0.6 and µ = (a) 10−5 and (b) = 106.

The zeros are distributed on the left part of the complex plane, with negative real parts, except

for the case (b), where one pair of complex conjugate has a slightly positive real part. Plotted in

figure 5 is the solution that has the largest real part for various values of µ, as a function of λ.

For µ smaller than 8× 10−6, the real part becomes positive around λ ≃ 0.6, and oscillations occur

with the frequency given by the imaginary part of the solution, see figure 5(b).

The oscillations can be seen for λ = 0.6 in figure 6, where they are stable below µ < 8× 10−6.

For µ = 8×10−6, they are damped slowly as τ grows large, since the real part of the corresponding Ω

is negative but close to zero. Figure 7 exhibits the phase diagram in the plane (λ, µ) corresponding

to stable oscillations. The domain is bounded by 0 < λ < 1 and 0 < µ < 8× 10−6, with the case

µ = 0 excluded since it has v1(τ) vanish at a finite time before any oscillation occurs. Carrying
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Figure 5: (a) Plots of (a) the real part and (b) the imaginary part of the solution of equation

(26) having the largest real part versus λ, for various values of µ.

out the Fourier transform of the signals in figure 6 for µ corresponding to the oscillatory solutions,

we extract the frequency Ωnum and present the obtained values in Table 1. These values are

compared with the imaginary parts of the solutions of equation (26). It is observed that the

differences are small when µ is close to the oscillation threshold. They tend to increase as µ is

decreased or as the oscillation amplitude is increased. This presumably reflects the fact that the

exponential growth of the signal is compensated by a fluctuating damping factor, as in the Liénard

oscillations [23], which modifies the frequency slightly.

Table 1: Frequency Ωnum for λ = 0.6 and several values of µ, extracted from the Fourier transform

of the time oscillations in figure 6. For comparison, the imaginary part ImΩ of the solution of

equation (26) is also given.

µ Ωnum ImΩ

1× 10−6 0.571 0.601

2× 10−6 0.614 0.620

4× 10−6 0.662 0.658

6× 10−6 0.692 0.690
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Figure 6: Oscillations for λ = 0.6 and several values of µ.1 For µ = 10−5 and 8×10−6, oscillations

are damped while v1 approaches the limit given by equation (20) (red dashed lines).

2.2. Model with (a, b) = (1, 1)

In this section, we consider the case (a, b) = (1, 1). As before, equation (2) leads to a linear PDE

for the generating function G(u, τ), similar to equation (5):

∂G(u, τ)

∂τ
+ (1 + λ+ µv−1

1 − eu)
∂G(u, τ)

∂u
= euG(u, τ) + 2e2uv1. (29)

The solution can be obtained via parametrizing u and τ such that G̃(s) = G(u(s), τ(s)) with

τ ′(s) = 1 and u′(s) = 1 + λ+
µ

v1(τ(s))
− eu(s), (30)

which is integrated into

τ(s) = s, (31)
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(a) (b)

Figure 7: (a) Plots of the (a) real and (b) imaginary parts of the solution of equation (26) with

the largest real part, providing the phase diagram in the plane (λ, µ).

u(s) =

∫ s

0

ds′
[

1 + λ+
µ

v1(s′)

]

− log

[

C +

∫ s

0

ds′ exp
{

∫ s′

0

ds′′[1 + λ+ µv−1
1 (s′′)]

}

]

.

Here C is a constant determined by the condition that the point (u, τ) belongs to the curve,

namely, s = τ and u(τ) = u, which gives

C = exp [γ(τ)− u]−

∫ τ

0

ds exp [γ(s)] , (32)

with γ(s) ≡ (1 + λ)s+
∫ s

0
ds′µv−1

1 (s′). The PDE (5) therefore reduces to

G̃′(s) = eu(s)G̃(s) + 2e2u(s)v1(s), (33)

which can be integrated into

G̃(s) = 2eW (s)

∫ s

0

ds′v1(s
′)e−W (s′)+2u(s′),

W (s) =

∫ s

0

ds′eu(s
′) = log

[

C +

∫ s

0

ds′eγ(s
′)

]

− logC. (34)

Simplifying and using G(0, τ) = 1− v1(τ), we obtain an implicit integral equation for v1(τ):

v1(τ) = 1− 2

∫ τ

0

dτ ′
v1(τ

′) exp
[

−2(1 + λ)(τ − τ ′)− 2µ
∫ τ

τ ′
dτ ′′v−1

1 (τ ′′)
]

{

1−
∫ τ

τ ′
dτ ′′ exp

[

(−(1 + λ)(τ − τ ′′)− µ
∫ τ

τ ′′
dτ ′′′v−1

1 (τ ′′′)
]}3 , (35)

which is similar to equation (15) except for the extra λ term in the exponential rates.

2.2.1. Case µ = 0. In the case µ = 0, equation (35) obtains the simple form

v1(τ) = 1− 2

∫ τ

0

dτ ′
v1(τ

′)e−2(1+λ)(τ−τ ′)

[

1−
∫ τ−τ ′

0
e−(1+λ)τ ′′dτ ′′

]3 , (36)
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which can be solved by means of the Laplace transform:

v̂1(p) =
1

p

1

1 + 2F̂ (p)
, (37)

with F̂ (p) = (1 + λ)2λp/(1+λ)−1
∫ 1/λ

0
dxx1+p/(1+λ)(1 + x)−3. This results in

v̂1(p) =
sin

(

π p
λ+1

)

p(p+ λ+ 1)
{

πpλ
p

λ+1
−1 − sin

(

π p
λ+1

) [

pΦ
(

−λ, 1, 1− p
λ+1

)

+ 1
]

} , (38)

where the Lerch transcendent function is defined by the formal series Φ(z, s, a) =
∑

k≥0 z
k(k+a)−s.

This solution possesses a long-time limit v̂1(p) ≃ p−1λ(1 + λ)−1 as p → 0, and therefore v1(τ)

approaches the constant value v1(τ) → v∗1 = λ(1 + λ)−1. However, for λ small enough, v1(τ)

becomes negative before reaching the asymptotic value. By solving equation (2) numerically for,

e.g., N = 10000, we find that for λ < λc ≃ 0.16775, the dynamics stops at a finite time τ when v1
becomes negative. On the other hand, for λ > λc, the densities reach the equilibrium state where

v1(τ) = v∗1, and the other values (k ≥ 2) decrease exponentially as

vk =
λ

(λ+ 1)k
, (39)

see equation (40) below. Another method is to solve equation (2) for (a, b) = (1, 1) and µ = 0.

This yields the following system of equations:

∂v1
∂τ

= −2v1 −
∞
∑

k=2

(1− λk)vk,

∂vk
∂τ

= kvk−1 − k(1 + λ)vk (k ≥ 2).

Taking the Laplace transform, we obtain recursively
[

λ
∞
∑

k=2

k!k
∏k

j=2[p+ j(1 + λ)]
− 1− p

]

v̂1(p) =
1

p
− 1,

v̂k(p) =
k
∏

j=2

[

j

p+ j(1 + λ)

]

v̂1(p) (k ≥ 2). (40)

The summation in the first expression can be reduced to a hypergeometric function as
∞
∑

k=2

k!k
∏k

j=2[p+ j(1 + λ)]
=

∞
∑

k=1

Γ(k+2)Γ(k+2)

Γ(k+2+p/(λ+1))Γ(k+1)
(λ+ 1)−k

= 2F1

(

2, 2; 2+
p

λ+1
;

1

λ+1

)

− 1, (41)

which in turn leads to
[

λ2F1

(

2, 2; 2+
p

λ+1
;

1

λ+1

)

− λ− 1− p

]

v̂1(p) =
1

p
− 1. (42)

This is formally equivalent to the expression in equation (38) and gives an identity between the

hypergeometric function 2F1 and the Lerch function Φ by eliminating v̂1.
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2.2.2. Stability around the constant solution. We consider a perturbation ǫ around the constant

solution v∗1 of equation (38) and set α = 1 + λ > 1. We thus write v1(τ) = v∗1 + ǫ(τ), where ǫ

satisfies the following integral equation

ǫ(τ) = − 2

∫ τ

0

dτ ′
ǫ(τ ′)e−2α(τ−τ ′)

(

1−
∫ τ−τ ′

0
e−ατ ′′dτ ′′

)3 = −2α3

∫ τ

0

dτ ′
ǫ(τ ′)e−2α(τ−τ ′)

[α− 1− e−α(τ−τ ′)]
3

= − 2

∫ τ

0

dτ ′ǫ(τ ′)F (τ − τ ′). (43)

The Laplace transform of this expression gives ǫ̂(p)[1+2F̂ (p)] = 0, which indicates that a non-zero

solution for the perturbation is possible if there exists p satisfying

1 + 2F̂ (p) =

[

πpλp/(1+λ)−1

sin[πp/(1+λ)]
− 1− pΦ(−λ, 1, 1−p/(1+λ))

]

(1 + p+ λ) = 0. (44)

The zeros of the function 1 + 2F̂ (p) can be located by plotting the modulus |1 + 2F̂ (p)| in the

complex plane as in figure 8(a). The zeros and their conjugates are aligned in the negative real

part of the plane, except for a few zeros whose real parts are strictly positive. Plotted in figure

8(b) are the real part and the positive imaginary part of the zero which has the largest real part.

The real part is positive for all λ less than λ∗ ≃ 0.068538. In this case the perturbation grows

exponentially and oscillates with a frequency equal to the imaginary part Im p. However, since

λ∗ < λc, the solution v1 becomes negative, and the dynamics should stop before oscillations occur.

As we will see below, the presence of any small value of µ will lead to oscillations with a positive

value of v1.

2.2.3. Constant solution for µ 6= 0. Here we consider the long-time constant solution of equation

(35) by assuming that v1(τ) approaches the constant solution v∗1 > 0 in the limit τ → ∞. This

solution should satisfy

v∗1 = 1− 2v∗1

∫ ∞

0

dτ ′
e−2(1+λ+µ/v∗

1
)τ ′

[

1−
∫ τ ′

0
e−(1+λ+µ/v∗

1
)τ ′′dτ ′′

]3 , (45)

which, upon integration, yields the quadratic equation for v∗1:

(1 + λ)v∗1
2 + (µ− λ)v∗1 − µ = 0, (46)

with a unique positive solution

v∗1 =
λ− µ+

√

(λ+ µ)2 + 4µ

2(λ+ 1)
. (47)

The presence of any µ > 0 prevents the solution v1(τ) from vanishing since the exponential term

in the integral of equation (35) contains the integral of µ/v1(τ), which diverges in the limit of

vanishing v1(τ) and annihilates the exponential. Thus v1(τ) may not decrease any further and

stays positive.
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Figure 8: (a) Surface plot of the amplitude |1 + 2F̂ (p)| for λ = 0.01 and µ = 0 in the complex

plane (Re p, Im p). All values greater than 20 are colored in red. It is shown that for this value

of λ, there exist two zeros and their conjugates with positive real parts. (b) Plot of the complex

solution of 1 + 2F̂ (p) = 0 with the largest real part as a function of λ.

2.2.4. Stability around the constant solution. The previous solution remains stable provided that

any perturbation diminishes with time. As before, we consider a perturbation ǫ(τ) such that

v1(τ) = v∗1 + ǫ(τ). After linearizing equation (35) and set α = 1 + λ + µ/v∗1, one obtains the

following linear integral equation for ǫ(τ):

ǫ(τ) = − 2

∫ τ

0

dτ ′
ǫ(τ ′)e−2α(τ−τ ′)

(

1−
∫ τ−τ ′

0
dτ ′′e−ατ ′′

)3 − 2
µ

v∗1

∫ τ

0

dτ ′
e−2α(τ−τ ′)

(

1−
∫ τ−τ ′

0
e−ατ ′′dτ ′′

)3

×

[

2

∫ τ

τ ′
dτ ′′ǫ(τ ′′) + 3

∫ τ

τ ′
dτ ′′e−α(τ−τ ′′)

∫ τ

τ ′′
dτ ′′′ǫ(τ ′′′)

1−
∫ τ−τ ′

0
dτ ′′e−ατ ′′

]

. (48)

This integral equation resists simplification via a Laplace transform as before. Instead, we consider

a perturbation of the form ǫ(τ) = ǫ0e
Ωτ , where ǫ0 is a small amplitude and Ω is the complex

frequency. If the real part is negative (ReΩ < 0), the perturbation is irrelevant having the

constant solution stable. Otherwise we expect some oscillatory behavior with frequency ImΩ.

The equation for the complex frequency Ω reads

1 + 2J3(2α+Ω, α) +
2µ

Ωv∗1

{

2
[

J3(2α, α)− J3(2α+Ω, α)
]

+
3

α

[

J4(2α, α)− J4(3α, α)
]

−
3

α + Ω

[

J4(2α, α)− J4(3α+Ω, α)
]}

= 0, (49)
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which reduces, via some algebra, to

Ω(1 + λ+ Ω)Φ(1−α, 1, 1−Ω/α)−
πΩ(1 + λ+ Ω)(α− 1)Ω/α

(α− 1) sin(πΩ/α)

+
Ω2 + (1 + λ+ α)Ω

α + Ω
+

α(α2λ− (1 + λ)α + 1 + λ)

(α− 1)2(α + Ω)
= 0, (50)

with α = 1 + λ+ µ/v∗1. When µ = 0 or α = 1 + λ, equation (44) is recovered.

(a) (b)

Figure 9: Surface plot of the modulus of equation (50) in the complex Ω-plane (ReΩ, ImΩ), for

µ = 10−4 and λ = (a) 0.05 and (b) 0.08. In (a), there exists one conjugate pair of Ω with a positive

real part.

(a) (b)

Figure 10: (a) Phase diagram in the plane (λ, µ), depicting (a) the real part and (b) the imaginary

part of the solution of equation (50) for which the real part ReΩ(> 0) is the largest.

In figure 9, we plot the the modulus of equation (50) in the complex Ω-plane. When λ = 0.08

shown in (b), all zeros locate on the left part of the plane with negative real parts. For λ = 0.05
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in (a), only one conjugate pair of Ω has a strictly positive real part. Figure 10 presents (a) the

phase diagram in the plane (λ, µ) for which the zero with the largest real part is positive, together

with (b) the corresponding frequency values. When the real part is positive (ReΩ > 0), the

perturbation is relevant and oscillations occur for any value of (λ, µ) in the colored domain except

for µ = 0 where v1 vanishes at some finite time. However for any nonzero value of µ, v1 does not

vanish due to the term µ/v1 in the integral of equation (35) and the oscillations are restricted

to a zone for which µ is no larger than 2.5 × 10−4. Outside the colored area of figure 10(a), the

perturbation is irrelevant and v1 approaches its limiting value v∗1.
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Figure 11: Time evolution of v1(τ) for N = 10000, λ = 0.03, and several values of µ. For

µ = 2.5× 10−4, the oscillations are slowly damped and for µ = 3× 10−4 the oscillations disappear

and v1 approaches asymptotically v∗1 (red dashed lines).
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Table 2: Frequency Ωnum for λ = 0.6 and several values of µ, extracted from the Fourier transform

of the time oscillations in figure 6. For comparison, the imaginary part ImΩ of the solution of

equation (26) is also given.

µ Ωnum ImΩ

5× 10−5 1.548 1.684

1× 10−4 1.573 1.655

1.5× 10−4 1.594 1.640

2× 10−4 1.612 1.632

2.5× 10−4 1.627 1.628

3. Discussion

We have shown that oscillations are present in both sets of exponent (a, b) = (1, 0) and (1, 1), but

with different amplitudes for the parameters λ and µ. The oscillator equations (15) and (35) can

be put into the generalized form:

v1(τ) = 1− 2

∫ τ

0

dτ ′
v1(τ

′) exp
[

−β(τ − τ ′)− 2µ
∫ τ

τ ′
dτ ′′v−1

1 (τ ′′)
]

[

1−
∫ τ

τ ′
dτ ′′ exp[(−α(τ − τ ′′)− µ

∫ τ

τ ′′
dτ ′′′v−1

1 (τ ′′′)]
]3 , (51)

with the parameters

(a, b) = (1, 0) : α = 1 and β = 2 + λ,

(a, b) = (1, 1) : α = 1 + λ and β = 2 + 2λ. (52)

The denominator in the integral is important in the presence of oscillating solutions. One simple

counterexample is the following class of integral equations

v1(τ) = 1− 2

∫ τ

0

dτ ′v1(τ
′) exp

[

−β(τ − τ ′)− 2µ

∫ τ

τ ′
dτ ′′v−1

1 (τ ′′)

]

, (53)

with β > 0 for simplicity. From this integral equation, we obtain, via differentiation and

reorganization of different terms, a simple first-order ODE:

dv1(τ)

dτ
= −(2 + β)v1(τ) + β − 2µ+ 2

µ

v1(τ)
, (54)

which has the positive asymptotic constant solution

v∗1 =
β − 2µ+

√

(β + 2µ)2 + 16µ

2(2 + β)
. (55)

Again we can probe the stability of this solution by considering the exponential perturbation

v1(τ) = v∗1 + ǫ(τ) with ǫ(τ) = ǫ0e
Ωτ . A lengthy but straightforward calculation leads to the unique

real negative solution

Ω = −(2 + β)−
2µ

v∗1
−

4µ

v∗1β + 2µ
(< 0), (56)
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which implies that the class of integral equations (53) has no asymptotic solution other than the

constant solution given by equation (55). It is easy to see that for µ = 0, the solution of equation

(54), which is given by v1(τ) = (2 + β)−1(2e−(2+β)τ + β), decays exponentially towards v∗1 with

Ω = −(2 + β) < 0. In general, one can examine the stability of equation (51) for any α and β, to

generalize equations (26) and (49) for the complex frequency Ω:

1 + 2J3(β̄+Ω, ᾱ) + 2
µ

Ωv∗1

{

2
[

J3(β̄, ᾱ)− J3(β̄+Ω, ᾱ)
]

+
3

ᾱ

[

J4(β̄, ᾱ)− J4(β̄+ᾱ, ᾱ)
]

−
3

ᾱ + Ω

[

J4(β̄, ᾱ)− J4(β̄+ᾱ+Ω, ᾱ)
]}

= 0, (57)

with ᾱ ≡ α + µ/v∗1 and β̄ ≡ β + 2µ/v∗1, where v∗1 is the constant solution of equation (51) and

satisfies the implicit equation

v∗1
−1 = 1 + 2J3(β̄, ᾱ). (58)

For a general set of exponents (a, b), it is not obvious how to obtain a general oscillator equation

when a or b can take fractional values. In this case, we can nevertheless generalize equation (4)

for the moments ϕr to any real number r:

∂ϕr

∂τ
= −

(

1 +
µ

v1

)

ϕr+a − λϕr+b +
∞
∑

j=0

(

r + a

j

)

ϕj + 2r+av1. (59)

It is then convenient to introduce the set of generating functions with positive integers (l,m, n):

Gmn(u, τ) =
∞
∑

l=0

ul

l!
ϕl+ma+nb, (60)

since equation (59) should generate via recursion all possible moments with r = l+ma+nb, which

form a set of closed indices for the equation. While initial conditions are given by Gmn(u, 0) = 0,

we are interested in the first component G00(0, τ) = G(0, τ) = ϕ0 = 1− v1. Multiplying equation

(59) by ul/l! and summing over l with r = l +ma+ nb, we obtain

∂Gmn

∂τ
= − (1 + µ/v1)Gm+1n − λGmn+1 + 2(m+1)a+nbe2uv1

+
∞
∑

l=0

ul

l!

∞
∑

j=0

(

l + (m+ 1)a+ nb

j

)

ϕj, (61)

where the double sum may be evaluated through the use of the Egorychev method as in equation

(7):

∑

l≥0

ul

l!

∑

j≥0

(

l + (m+ 1)a+ nb

j

)

ϕj =
∑

l≥0

ul

l!

∑

j≥0

∮

dz

2iπz

(1 + z)l+(m+1)a+nb

zj
ϕj. (62)

This yields

∑

l≥0

ul

l!

∑

j≥0

(

l + (m+ 1)a+ nb

j

)

ϕj =
∑

j≥0

∮

dz

2iπz

(1 + z)(m+1)a+nb

zj
eu(1+z)ϕj
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=
∑

l≥0

∑

j≥l

eu
(

(m+ 1)a+ nb

l

)

uj−l

(j − l)!
ϕj

= eu
∑

l≥0

(

(m+ 1)a+ nb

l

)

∂lG00(u, τ)

∂ul
, (63)

which leads equation (61) to obtain the closed form:

∂Gmn

∂τ
= − (1 + µ/v1)Gm+1n − λGmn+1 + 2(m+1)a+nbe2uv1

+ eu
∑

l≥0

(

(m+ 1)a+ nb

l

)

∂lG00

∂ul
. (64)

The last sum can formally be identified as the derivation operator (1+∂u)
γ with γ = (m+1)a+nb.

In the previous analysis with (a, b) = (1, 0) and (a, b) = (1, 1), see equations (5) and (29), we have,

for (m,n) = (0, 0), γ = 1, and therefore the operator gives simply the terms eu(G00 + ∂uG00). In

the general case of a and b integers, we obtain the following linear partial differential equation

with non-constant coefficients:

∂G00

∂τ
= − (1 + µ/v1)

∂aG00

∂ua
− λ

∂bG00

∂ub
+ 2ae2uv1 + eu

(

1 +
∂

∂u

)a

G00,

which is in general unsolvable by means of characteristics curves, except for the cases treated in

the previous sections.

4. Conclusion

In this paper, we have investigated the dynamics of an infinite set of clusters interacting with

monomers leading to aggregation or coagulation with rate ka or fragmentation with rate λkb,

depending on the mass k of the cluster. This usually leads to an equilibrium state, but we have

shown that the addition of a self-disintegration process with rate µkb can induce oscillations in

the cluster densities for a restricted domain of parameters (λ, µ), where µ can be infinitely small.

The cluster density vk is solely a function of the monomer density v1, and the latter is determined

implicitly by a time integral equation in the form of equation (51). This implicit equation always

possesses a non-zero constant solution in the long-time limit. If we perturb this solution with any

arbitrary complex exponential growth, its stability depends on the location of the exponential rate

Ω in the complex plane and satisfying a general equation equation (57). If the real part of all

admissible solutions Ω is negative, the constant solution is stable. Otherwise, if a finite set of Ω

conjugates have positive real parts, oscillations occur with a frequency slightly different than the

imaginary part of the solutions Ω that has the largest real part. This difference is negligible on the

boundary of the domain of oscillations when ReΩ = 0, and increases with ReΩ > 0. However, we

cannot extract from the function (57) the exact oscillation frequency since the integral equation

(51) is highly nonlinear. Corrections to the estimated frequency can be made through the use of

standard techniques [27] that can be applied if we know the existence of an ODE for v1, see [23]
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in the case of the Liénard mechanism. However, there is no obvious ODE of finite order derivable

from equation (51) through consecutive differentiation and recursive substitutions in a controllable

manner. We also notice that oscillations can occur in finite systems even if they vanish in the

limit of the system size N → ∞, see figures 2 and 3. This is due to the variations with N of the

location of the solutions of equation (57) in the complex plane.
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