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Abstract 25 

 26 

The Indian Ocean significantly influences the global carbon cycle but it is one of the 27 

undersampled regions in the global ocean with reference to surface ocean pCO2. As a part of 28 

the Regional Carbon Cycle Assessment and Processes-2 (RECCAP2) project, several 29 

approaches, such as interpolated observational climatology, hindcast model, observation-30 

based surface CO2 (empirical models), and atmospheric inversion models have been 31 

employed for estimating net sea-to-air CO2 fluxes between 1985 and 2018. The seasonal, 32 

spatial and long-term variability in sea-to-air fluxes of CO2 were compared with 33 

observational climatology. The mean value of CO2 in the Indian Ocean (north of 37.5oS) 34 

using all models is estimated to be -0.19±0.1 PgC yr-1 and it is consistent with the 35 

observational climatology (-0.07±0.14 PgC yr-1). The Indian Ocean north of 18oS is found to 36 
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be the mean annual source (0.04±0.05 PgC yr-1) whereas a net sink (-0.23±0.11 PgC yr-1) in 37 

the south of 18oS. All models captured observed spatial patterns but underestimated the net 38 

source of CO2 in the Oman/Somalia upwelling, the Equatorial Indian Ocean (EIO) and the 39 

Bay of Bengal (BoB) whereas CO2 sink is overestimated in the South Indian Ocean (SIO). 40 

Overall, all models captured the seasonality in pCO2 levels and CO2 fluxes but overestimated 41 

the amplitude of their variability. All models suggested the strengthening of the sink over the 42 

period between 1985 and 2018 by 0.02 PgC yr-1 decade-1. A significant increase in the 43 

collection of surface ocean pCO2 and atmospheric CO2 measurements improves the model 44 

simulations in the Indian Ocean. 45 

 46 

Keywords: Surface pCO2; CO2 fluxes; Hindcast models; atmospheric inversions; Indian 47 

Ocean  48 
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1. Introduction 49 

 50 

The atmospheric carbon dioxide (CO2) levels are ever increasing since the Industrial 51 

Revolution due to several anthropogenic activities such as fossil fuel burning and land-use 52 

changes. The enhanced anthropogenic activities led to the acceleration of the rate of CO2 53 

accumulation in the atmosphere from ~1.7±0.1 PgC yr-1 in the 1960s to 5.3±0.1 PgC yr-1 in 54 

2021 (Friedlingstein et al., 2022). About half of the total anthropogenic emission remains in 55 

the atmosphere, and the remaining half is stored in the ocean and land (Canadell et al. 2021). 56 

According to the Global Carbon Project assessment of 2022, the ocean has taken up about 57 

28% (2.9±0.4  PgC yr-1) of the total anthropogenic CO2 emissions during 2021 58 

(Friedlingstein et al., 2022).  It is also well established that the ocean carbon sink increased 59 

since the 60s with inter-annual variability (IAV) not fully captured by ocean models. 60 

 61 

The Indian Ocean is a small basin compared to the other two major basins of the Pacific and 62 

Atlantic and has a unique geography as it is closed in the north at a low latitude. More than 63 

30% of the global population is dwelling along the Indian Ocean coast where rapid 64 

industrialization is taking place. As a result, the highest levels of aerosol optical depth (AOD) 65 

are observed over the northern Indian Ocean with the highest rate of increase over the globe 66 

(Zhang and Reid, 2010; Yadav et al., 2021). The northeastern Indian Ocean (Bay of Bengal; 67 

BoB) receives a significant amount of freshwater from major rivers, such as the Ganges, 68 

Brahmaputra, and Irrawaddy-Salween systems.  The northern Indian Ocean experiences 69 

strong seasonality due to a change in direction of monsoonal wind resulting in a reversal in 70 

direction of surface currents (Schott and McCreary, 2001), which strongly modulates the 71 

biogeochemical cycling of carbon and nitrogen. The northern Indian Ocean is one of the most 72 
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productive regions in the globe and contributes up to 20% of global ocean primary 73 

productivity (Behrenfield and Falkowski, 1997).  74 

 75 

Despite the importance of the Indian Ocean in the global carbon cycle, this region is poorly 76 

studied with reference to the biogeochemical cycling of carbon compared to the other two 77 

major basins. The seasonal cycle of pCO2 and carbon fluxes was studied only in the Arabian 78 

Sea (George et al., 1994; Goyet et al., 1998; Sarma et al., 1998; 2003; 2013, De Verneil et al., 79 

2022; Chakraborty et al., 2021), the BoB (Sarma et al., 2012; 2015; 2020; 2021; Chakraborty 80 

et al., 2021) and the south-western Indian ocean (Metzl et al., 1998) whereas the long-term 81 

variability was only recently studied in the southwestern Indian Ocean region (Metzl et al., 82 

2022) as the other regions in the Indian Ocean was either sampled once or twice during last 83 

few decades (Takahashi et al., 2009; Sarma et al., 2013).  The studies carried out in the aegis 84 

of the Joint Global Flux Study (JGOFS) and the Bay of Bengal Process Studies (BoBPS) 85 

suggested that the seasonal amplitude of pCO2 goes beyond 200 μatm in the Arabian Sea 86 

(George et al., 1994; Goyet et al., 1998; Sarma et al., 1998; 2003) and BoB (Kumar et al., 87 

1996; Sarma et al., 2012; 2015; 2019). The large amplitude of variability in pCO2 is driven 88 

by variabilities in physical transport, such as upwelling, and convective mixing, in the 89 

Arabian Sea, whereas freshwater input by rivers and atmospheric pollutants deposition in the 90 

BoB (Sarma et al., 2000; 2012). River discharge displays significant inter-annual variability 91 

(Papa et al., 2012). Sarma et al. (2012) found that peninsular rivers bring acidic and high 92 

pCO2 waters to the coast whereas glacial rivers, such as Ganges and Brahmaputra, bring 93 

relatively basic and low pCO2 waters to the BoB. Therefore, the source of river water 94 

determines the direction of the flux of CO2 at the air-sea interface. Kumar et al. (1996) 95 

suggested that the BoB is a sink for atmospheric CO2 in the 1990s whereas Sarma et al. 96 

(2015; 2021) found that it is a mild source of the atmosphere due to the deposition of 97 
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atmospheric pollutants. More recently Sridevi and Sarma (2021) indicated that salinity in the 98 

surface waters of the BoB is decreasing over the past two decades due to an increase in the 99 

warming of Himalayan glaciers (Goes et al., 2020). Since the pH of the Ganges and 100 

Brahmaputra River waters are relatively basic (Sarma et al., 2012), an increase in pH and a 101 

decrease in pCO2 was noticed in the past two decades in the central and eastern BoB (Sridevi 102 

and Sarma, 2021).  103 

 104 

Unlike the other two major basins, upwelling is weak in the equatorial Indian Ocean due to 105 

the prevalence of westerly winds along the equatorial Indian Ocean (Schott et al., 2009). A 106 

flat thermocline is observed in the equatorial Indian Ocean in the east-west direction 107 

(Murtugudde and Bualacchi, 1999; Xie et al., 2002). The southern tropical and subtropical 108 

region is influenced by the inflow of Pacific waters from the Indonesian Through Flow (ITF) 109 

(Schott and McCreary, 2001). A major subduction zone occurs in the South Indian Ocean 110 

between 15 and 50oS due to positive wind stress curl (Schott et al., 2009). The subducted 111 

water masses are advected to the northern Indian Ocean (Miyama et al., 2003; Schott et al., 112 

2002), carrying nutrients and anthropogenic CO2 (Sabine et al., 1999). A perennial sink of 113 

atmospheric CO2 was reported in the south Indian Ocean (SIO; Metzl et al., 1991; Poisson et 114 

al., 1993; Metzl et al., 1995; 1998; 2022; Metzl, 2009). 115 

 116 

The Indian Ocean experiences strong zonal variability driven by the Indian Ocean 117 

Dipole/Zonal Mode (IOD/IODZM) in addition to El Nino-Southern Oscillation (ENSO) and 118 

the Southern Annular Mode (SAM) (Saji et al., 1999; Murthugude et al., 2000; Thompson 119 

and Solomon, 2002). These climate modes of variability modulate several physical and 120 

biogeochemical processes resulting in significant modifications in the CO2 flux (Sarma 2006; 121 

Valsala et al., 2020). The influence of SAM was suggested in the SIO for the period 1991-122 
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2007 with large spatial variability in CO2 growth rate with lower rates in the north of 40oS 123 

than south of 40oS during austral winter but higher and uniform rates during austral summer 124 

(Metzl, 2009). 125 

 126 

Gruber et al. (2009) identified a significant mismatch between top-down and bottom-up 127 

inversion in the tropical Indian Ocean and attributed it to a lack of atmospheric CO2 data. 128 

Sarma et al. (2013) compared CO2 fluxes from the Indian Ocean between 1990 and 2009 129 

using a suite of models (both ocean biogeochemistry and atmospheric inversions) under the 130 

aegis of the RECCAP1 project. For the band 30°N-44°S, the median annual sea-air CO2 flux 131 

from models was -0.37±0.06 PgC yr-1 and it was consistent with -0.24±0.12 PgC yr-1 using 132 

observations. They further noticed that although all models captured the spatial patterns, CO2 133 

outgassing was underestimated in the upwelling region and overestimated sink in the BoB, 134 

whereas CO2 uptake was underestimated in the subtropical convergence zone.  135 

 136 

Recent use of regional models to study the dynamics of regional ecosystems and 137 

biogeochemical cycles in the Indian Ocean revealed an improved representation of key 138 

processes relative to global coarse resolution models. For instance, the representation of 139 

oxygen minimum zones (OMZ) in the northern Indian Ocean indicates large discrepancies 140 

with observations in both CMIP5 and CMIP6 global models, but shows a much-improved 141 

agreement with data in regional model simulations, both in terms of their structure, size and 142 

intensity (Bopp et al., 2013, Cocco et al., 2013, Kwiatkowski et al., 2020, Al Azhar et al., 143 

2017, Lachkar et al., 2016, 2018, 2021). This was linked to the importance of eddy fluxes - 144 

typically inaccurately parameterized in global coarse-resolution models but resolved in finer-145 

resolution regional models – in shaping OMZs (e.g., Lachkar et al., 2016, Bettencourt et al., 146 

2015, Brandt et al., 2015, Chakraborty et al., 2019).  Furthermore, accurately representing the 147 
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structure and intensity of these low-O2 bodies in regional models is critical to represent their 148 

recent and future changes under ongoing climate change (Lachkar et al., 2021). Mesoscale 149 

eddies were also shown to have a significant impact on the carbon cycle in the northern 150 

Indian Ocean (Sarma et al., 2016; 2019; 2021). Additionally, significant improvements in 151 

parameterizations of river discharge, monsoon mixing and associated biological response in 152 

the high-resolution regional models lead to a better representation of the upper ocean cycle in 153 

the regional models (Chakraborty et al., 2018; 2021; Ghosh et al., 2022; Valsala et al., 2021). 154 

Therefore, eddy-resolving regional models may lead to an improved representation of the 155 

carbon cycle in the region. This work aims to evaluate the net air-sea CO2 fluxes by different 156 

global and regional models and quantify how these simulated net CO2 fluxes in the Indian 157 

Ocean are comparable with observational climatology and identify potential reasons for 158 

deviations, if any, in the Indian Ocean.  159 

 160 

 2. Methods 161 

 162 

2.1. Study region 163 

 164 

Based on the RECCAP2 regional definitions, the entire Indian Ocean, north of 37.5oS, was 165 

considered as one region. Due to the complexity of the regional physical processes in the 166 

Indian Ocean, we define here the following five regions for analysis: i) the entire Indian 167 

Ocean (30oN-37.5oS), ii) the Arabian Sea (0-30oN; 38-78oE), iii) the Bay of Bengal (BoB; 0-168 

30oN; 78-110oE), iv) Equatorial Indian Ocean (EIO; 0-18oS) and v) South Indian Ocean (SIO; 169 

18oS-37.5oS) (Figure 1a). 170 

 171 

2.2 Data sets 172 
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 173 

To describe the regional CO2 fluxes for the Indian Ocean, RECCAP2 global CO2 flux 174 

products were used that include observations (climatology referenced to the year 2000; 175 

Takahashi et al., 2009), Global hindcast (GHM), regional hindcast (RHM) models, 176 

observation-based (empirical) surface pCO2 models and atmospheric inversion models. 177 

 178 

2.2.1. Observational climatology 179 

 180 

The Indian Ocean is one of the least sampled basins in the world ocean for surface pCO2 181 

measurements with reference to space and time (Figure 1b; Bakker et al., 2016).  The major 182 

addition of data was done during 1990-1999 whereas in the next decade (2000-2009) some 183 

data were added in the SIO and one transect in the BoB and good coverage of the Bay was 184 

done in 2010-2019 (Bakker et al., 2020; Supplementary Figure S1). Within the Indian Ocean, 185 

the seasonal and inter-annual pCO2 data are available in the western basin (the Arabian Sea 186 

and the southwestern Indian Ocean). In contrast, only 2 to 3 times were sampled in the 187 

eastern basin (Supplementary Figure S1). In addition to this, time-series pCO2 (water and air) 188 

data are available in the central BoB, as a part of the RAMA (Moored array for African-189 

Asian-Australian Monsoon Analysis and Prediction) buoy program (BOBOA, Sutton et al, 190 

2019), from 2013 onwards (Figure 1). Nevertheless, understanding seasonality in pCO2 is a 191 

challenge in the Indian Ocean due to the weak spatial and seasonal data coverage. Takahashi 192 

et al. (2009) (Figure 1c) compiled the available pCO2 data in the Indian Ocean and gridded it 193 

to 4o x 5o using two-dimensional advection-diffusion equations to interpolate with reference 194 

to space and time. The major challenge here is that the observations (henceforth called 195 

climatology) are not absolutely observations alone but were interpolated in the regions where 196 

data were unavailable. There is uncertainty associated with the techniques used for 197 
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developing climatology. Due to the lack of seasonal data in some regions, the seasonality 198 

shown in the data is significantly driven by the model used to interpolate. However, the 199 

performance of the seasonality driven by the model used to derive climatology is tested using 200 

pCO2 data generated by the BOBOA buoy in the central BoB. Nevertheless, the observed 201 

CO2 fluxes carry several errors due to sparse coverage of data, wind speed measurements and 202 

transfer velocity parameterizations and the uncertainty of the CO2 fluxes is about 50% 203 

(Gruber et al., 2009).  204 

 205 

Since RECCAP1 (Sarma et al., 2013) important progress has been made on both pCO2 data 206 

delivery each year in the public domain for updating SOCAT data-product (www.socat.info, 207 

Pfeil et al., 2013; Bakker et al., 2014, 2016) and the development of empirical methods that 208 

reconstruct pCO2 fields, including in synthesis studies (SOCOM project, Rödenbeck et al., 209 

2015). Here we used 9 empirical methods based on the SOCAT data (version v2020) and to 210 

compare our new results with RECCAP1, we also used the original climatology of Takahashi 211 

et al (2009) (Figure 1c). Recall that climatology was constructed for the reference year 2000 212 

which would have to be taken into account when comparing pCO2 fields for the recent year. 213 

However, this would not dramatically impact the mean CO2 fluxes assuming that over 1985-214 

2018 ocean pCO2 increase is close to the atmospheric growth rate as observed in some parts 215 

of the Indian Ocean (e.g. Metzl, 2009; Lauvset et al., 2015; Metzl et al., 2022; Lo Monaco et 216 

al., 2021). 217 

 218 

2.2.2. Ocean Hindcast models 219 

 220 

CO2 fluxes and surface water pCO2 data were obtained from 12 GHM and 2 RHM (Table 1). 221 

These models represent physical, chemical and biological processes controlling the marine 222 
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carbon cycling and exchange of CO2 at the sea-to-atmosphere interface. The GHM have a 223 

coarse or an eddy-permitting horizontal resolution whereas RHM is eddy-resolving (Table 1). 224 

The simulations are forced with meteorological reanalysis products, given in Table 1. The 225 

models were run for different periods mostly between 1980 and 2019 with the period of each 226 

model given in Table 1. In order to make it uniform for all models, we have considered the 227 

runs between 1985 and 2018 in this study that gives the reference year of 2002. GHM and 228 

RHM have been integrated from the pre-industrial period to the present day with the same 229 

atmospheric CO2 history.  Although the model simulations were carried out following the 230 

RECCAP2 ocean modelling protocol, each model is different from others with respect to 231 

forcing, experimental configuration, representation of biogeochemical processes and sub-grid 232 

parameterizations (Table 1).  233 

 234 

2.2.4. Atmospheric inversions 235 

 236 

Atmospheric inversions (top-down) estimate the surface CO2 fluxes based on the variability 237 

in the measured atmospheric CO2 using an atmospheric transport model. In the atmospheric 238 

inversion models, a priori information about the surface CO2 fluxes is used from bottom-up 239 

estimates (e.g., Takahashi et al., 2009) or an ocean GHM or an empirical upscaling model. In 240 

the Indian Ocean region and surrounding, atmospheric CO2 measurements are available from 241 

only 8 sites that are used in the atmospheric inversion models. Among them, only two 242 

stations have long-record and others have short records. However, most inversions did not 243 

correct the oceanic prior fluxes significantly when the empirical upscaling model fluxes were 244 

used. Here we have chosen to show sea-air CO2 fluxes from inversion models, one using 245 

prior flux from Takahashi et al. (2009) in the MIROC4-ACTM system (Chandra et al., 2022) 246 

and the other model (CAMSv20r1) using prior fluxes from an empirical model (Chevallier et 247 
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al., 2005). The atmospheric inversion model runs are available between 2001 and 2018 which 248 

gives the reference year of 2009.   249 

 250 

2.2.5. Observation-based Surface pCO2 (Empirical models) 251 

 252 

Global sea-air CO2 fluxes can also be estimated from pCO2 measurements along the ship 253 

tracks over the past several decades. The first and simple upscaling method was implemented 254 

by Takahashi et al. (2009) where all the past measurements of CO2 are separated in monthly-255 

mean flux maps based on SST and salinity. This method relied on the extrapolation of 256 

Delta_pCO2 data from limited measurements along the cruise tracks to the global ocean. With 257 

the development of neural networks and other artificial intelligence tools and organised 258 

archival of the SOCAT CO2 database, several methods are now implemented to calculate 259 

gridded CO2 flux including the interannual variation, taking into account the physical state of 260 

sea-surface conditions (Table 2; Rödenbeck et al., 2015: Landschützer et al., 2016; Fay et al., 261 

2021). The estimated CO2 fluxes between 1985 and 2018 were considered in this study with 262 

the reference year of 2002.   263 

 264 

3. Results and Discussion 265 

 266 

The simulations of CO2 uptake by the Indian Ocean by GHM, RHM, empirical and 267 

atmospheric inversion models are compared with climatology with reference to (i) annual, (ii) 268 

seasonal and (iii) interannual timescales. 269 

 270 

3.1. Annual mean CO2 fluxes in the Indian Ocean between 1985 and 2018 271 

 272 
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3.1.1. Tropical Indian Ocean (north of the 37.5oS) 273 

 274 

The annual mean sea-air CO2 fluxes for 1985 to 2018 are presented in Table 3 and Figure 1d 275 

for the entire Indian Ocean (37.5oS –30oN; 25-125oE), Arabian Sea (30-78oE and 0-30oN), 276 

BoB (78-110oE and 0-30oN), EIO (30-125oE, 0-17oS) and SIO (37.5-17oS and 25-130oE). 277 

The spatial variability in mean annual uptake for the entire Indian Ocean by GHM and RHM 278 

(Figure 2), empirical (Figure 3) and atmospheric models (Figure 4) are given to evaluate the 279 

spatial variability in CO2 fluxes. 280 

 281 

The simulated mean annual CO2 sea–air fluxes by different models varied between -0.27 and 282 

-0.13  PgC yr-1 for the Indian Ocean (Table 3), with a relatively lower sink estimated by 283 

empirical models (-0.13±0.04  PgC yr-1) than hindcast (-0.21±0.10  PgC yr-1) and 284 

atmospheric inversion models (-0.27±0.16  PgC yr-1). Both hindcast and atmospheric 285 

inversion models overestimated the sink of CO2 by 3 times that of climatology (-0.07±0.14  286 

PgC yr-1) whereas empirical models are close to the observations. The observational pattern 287 

of CO2 flux shows that the SIO is a dominant sink whereas the Arabian Sea is a strong source 288 

while EIO and the BoB are weak sources of atmospheric CO2. All models simulated similar 289 

patterns of spatial variations of the CO2 fluxes (Figures 2 to 4) that are in agreement with 290 

observations, but the magnitudes of fluxes are different. For instance, the modelled CO2 291 

fluxes were spread around the climatological values with relative overestimation of the sink 292 

in the south of 22oS, in contrast, underestimation of the source was noticed by all models in 293 

the north of 22oS in the Indian Ocean. In contrast, the RHM (both INCOIS-BIO-ROMS and 294 

ROMS_NYUAD) reproduced CO2 fluxes well in comparison with the climatology. Since the 295 

ROMS_NYUAD model simulation was submitted up to 31.5oS only, we did not include it in 296 

the SIO region as it was considered up to 37.5oS for other models. Similarly, the simulated 297 
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CO2 fluxes by empirical models are in good agreement with the climatology (Figure 3). In the 298 

case of the atmospheric inversions, a higher CO2 sink in the south of 15oS whereas sources of 299 

CO2 in the north of 15oS than the observational climatology was observed (Figure 4).  The 300 

CO2 fluxes by all models are in near perfect agreement with each other for the entire Indian 301 

Ocean within the standard deviation of the estimates, however, they are different on the 302 

regional subdivisions such as the Arabian Sea, BoB, EIO and SIO.  303 

 304 

The standard deviation for the atmospheric inversion was large in the annual uptake (-305 

0.27±0.16  PgC yr-1) while the smallest for the empirical models (-0.13±0.04  PgC yr-1; Table 306 

3). The highest standard deviation in the atmospheric inversion comes from the sparse 307 

atmospheric CO2 measurements, transport model uncertainties and differences in the prior 308 

flux assumptions for the Indian Ocean. The atmospheric CO2 time series data are available 309 

only at 8 locations within the Indian Ocean resulting in high variability in the estimates. The 310 

climatology also has a very high standard deviation (-0.07±0.14 PgC yr-1) due to a lack of 311 

enough data in the Indian Ocean as most of the Indian Ocean region is either sampled once or 312 

twice and inter and extrapolation of the data (Takahashi et al., 2009).   313 

 314 

The zonal integrated CO2 fluxes by different models are given in Figure 5 and it shows that 315 

most of the GHM underestimated CO2 sink in the south of 25oS whereas over estimated north 316 

of 25oS. The RHM (INCOIS-BIO-ROMS and ROMS_NYUAD) simulated exceptionally 317 

well the zonal mean CO2 fluxes in the Indian Ocean between 37.5oS and 27.5oN. However, a 318 

slight underestimation was noticed for both the RHM and GHM in the north of 5oN (Figure 319 

5a). In the case of empirical models (Figure 5b), Jena-MLS, JMAMLR and UOEX_WAT20 320 

were over-estimated in the south of 15oS and well performed in the north of 15oS with 321 

reference to climatology. In the case of atmospheric inversions, a stronger sink is noticed in 322 
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the south of 15oS and a stronger source in the north of 10oS, compared to the empirical and 323 

hindcast models (Figure 5c).    324 

 325 

Both spatial variations and zonal integration in the CO2 fluxes (Figures 2-5) suggest that the 326 

model simulations significantly deviated from the climatology at several zones, namely the 327 

Oman/Somali upwelling region in the Arabian Sea, freshwater discharge region in the BoB, 328 

equatorial upwelling region and south equatorial current (SEC) and subtropical convergence 329 

zone regions in the southern tropical Indian Ocean. The potential reasons responsible for the 330 

regional variations in the CO2 fluxes were discussed in detail below.  331 

 332 

3.1.2. Northwestern Indian Ocean (Arabian Sea) 333 

 334 

The Arabian Sea is simulated as a net source of CO2 to the atmosphere by the hindcast 335 

models (0.006 to 0.058  PgC yr-1 with a mean of 0.03±0.01  PgC yr-1), empirical models 336 

(0.052 to 0.098 with a mean of 0.08±0.01  PgC yr-1) and atmospheric inversions (0.16±0.12  337 

PgC yr-1; Table 3) and it is consistent with the observations (Sarma, 2003; Goyet et al., 1998; 338 

Millero et al., 1998) and climatological fluxes (0.08±0.06  PgC yr-1) (Table 3). Considering 339 

the standard deviation of climatology, and models, the mean of all modelled fluxes in the 340 

Arabian Sea (0.06±0.05  PgC yr-1) is close to that of climatology (0.08±0.06  PgC yr-1; Table 341 

3). The large source of CO2 to the atmosphere from the Indian Ocean is driven by the 342 

upwelling off Oman/Somali coasts, where pCO2 levels as high as >600 μatm were reported 343 

during the peak southwest monsoon period (Körtzingeret al., 1997; Goyet et al., 1998; Sarma, 344 

2003; Sabine et al., 2000). Most of the models poorly simulated CO2 fluxes in the 345 

Oman/Somali upwelling region (Figures 2-4). Within the hindcast models, both MRI-ESM2-346 

1 and ROMS_NYUAD models simulated CO2 fluxes close to the observations (Figure 2).  347 
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 348 

The simulation of upwelling in the Arabian Sea may be a challenge due to the complex 349 

interplay of winds, bottom topography, monsoonal circulation and mixing, to capture the 350 

observed response by the models. The monsoon mixing is intense during summer (June to 351 

September) resulting in high pCO2 levels in the entire Arabian Sea with maximum off Oman 352 

and Somalia coasts (Sarma et al., 1996; 1998; Goyet et al., 1998; Körtzinger et al., 1997). It 353 

was estimated that the mixing effect is a dominant controlling factor of surface ocean pCO2 354 

in the Arabian Sea during the monsoon period while biological effect, mainly bacterial 355 

degradation, dominates during the non-monsoon period (Louanchi et al., 1996; Sarma et al., 356 

2000). All hindcast models failed to simulate the monsoon mixing well resulting in weaker 357 

fluxes of CO2 (Figure 2) to the atmosphere. Since empirical models are mainly driven by 358 

observations, they could simulate the impact of upwelling on pCO2 reasonably well (Fig. 3). 359 

In the case of atmospheric models, MACTM over-estimated coastal upwelling whereas 360 

CAMSv20r1 remained close to that of the prior flux field from CEMES_LSCE_FFNN 361 

(Figure 4). Sarma et al. (2013) noticed weak mixing in the GHM, and ocean inversion models 362 

in the Arabian Sea between 1990 and 2009 and no improvements were noticed with reference 363 

to mixing in the Arabian Sea in the past decade.  364 

 365 

To examine the variability in the simulation of mixing in the Oman/Somalia upwelling 366 

regions by different GHM and RHM, the sea surface temperature (SST) simulated by the 367 

hindcast models was compared (Supplementary Figure S2). All models simulated upwelling 368 

features off Oman/Somalia region, however, the intensity of mixing was different among 369 

models, as reflected in the SST. It was noticed that mixing was weaker in CCSM-WHOI, EC-370 

Earth3, MOM6-Princeton, NorESM-OC1.2, ORCA025-GEOMAR and Planktom12 models 371 

than in other GHM as former models showed relatively warmer SSTs than later models 372 
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compared to the climatology. Since a significant amount of data was contributed to the 373 

climatology from the Oman/Somali upwelling region, we can confidently attribute that the 374 

mixing and pCO2 input from the subsurface layers in the Oman/Somalia upwelling region 375 

needs to be improved in the GHM for accurate simulations.   376 

 377 

3.1.3. Northeastern Indian Ocean (Bay of Bengal) 378 

 379 

All models simulated that the BoB is a mild source of CO2 (0.00 to 0.01  PgC yr-1 with a 380 

mean of 0.00±0.01  PgC yr-1) and it is consistent with the climatology (0.01±0.01  PgC yr-1; 381 

Takahashi et al., 2009; Table 3). Sarma et al. (2012) reported that the peninsular river 382 

discharge increased the pCO2 levels whereas glacial rivers (Ganges and Brahmaputra) 383 

discharge decrease the pCO2 levels (Kumar et al., 1996; Mukhopadhyay et al., 2002). More 384 

recently Sarma et al. (2019) reported that cyclonic eddies enhance pCO2 levels due to 385 

upwelling in the core of the eddy while anticyclonic eddies sink for atmospheric CO2. Several 386 

recent investigations suggested that rapid acidification is being occurred in the BoB due to 387 

the deposition of atmospheric pollutants (Sarma et al., 2015; 2021; Kumari et al., 2022a,b) 388 

leading to an increase in pCO2 levels.  Unfortunately, neither GHM nor RHM has the 389 

atmospheric component to consider its impact.  390 

 391 

Since river discharge enhances the CO2 sink to the BoB, the differences in the sink of CO2 in 392 

the BoB may be caused by variable use of river discharge data as this would influence the 393 

salinity of the upper ocean in the BoB. The existence of a strong linear relationship between 394 

salinity and pCO2 levels was reported in the BoB (Kumar et al., 1996; Sarma et al., 2012; 395 

2021). Recently, Sridevi and Sarma (2021) observed decreasing trends in surface pCO2 levels 396 

due to a decrease in salinity over the past two decades due to the warming of Himalayan 397 
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glaciers (Goes et al., 2020). Therefore, salinity is a crucial parameter in controlling the pCO2 398 

levels in the BoB.  399 

 400 

To examine this, the salinity simulations by different models were examined (Supplementary 401 

Figure S3). All GHM simulated low salinity in the northern Bay but the magnitude of salinity 402 

is different in the north of 15oN. The lower salinity in the northern Bay was simulated in 403 

CCSM-WHOI, MOM6-Princeton and ORCA1-LIM3-PISCES, whereas relatively high 404 

salinity was simulated in CNRM-ESM2-1 and Planktom12. However, the sink in CO2 was 405 

observed in both high and low-salinity simulated models suggesting that variability in the 406 

sink of CO2 is not caused by river discharge/salinity in the GHM. An insignificant 407 

relationship was observed between salinity and pCO2 levels among different GHM and RHM 408 

in the northern BoB (Figure is not shown) suggesting salinity or river discharge may not be a 409 

controlling factor on variable CO2 fluxes in the BoB. The absence of a relationship between 410 

salinity and pCO2 levels in the models suggests that the role of freshening surface waters by 411 

rivers was not well constrained in the hindcast models.    412 

 413 

3.1.4. Equatorial Indian Ocean (EIO) 414 

 415 

The empirical models (0.02±0.02  PgC yr-1) and atmospheric inversions models (0.02±0.03  416 

PgC yr-1) simulated a mild source of the atmospheric CO2 and it is consistent with the 417 

climatology (0.04±0.03  PgC yr-1), in contrast, hindcast models estimated sink (-0.05± 0.04  418 

PgC yr-1) in the EIO. All models simulated that the western equatorial Indian Ocean is a 419 

source whereas the eastern region is either a sink or close to balance. The higher sink 420 

simulated by GHM is caused by weaker Somalia upwelling as discussed in section 3.1.2. 421 

RHM simulated that the equatorial Indian Ocean is a mild source of atmospheric CO2 422 
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(0.01±0.06 and 0.03±0.08  PgC yr-1 by ROMS-NYUAD and INCOIS-BIO-ROMS 423 

respectively). This can be noticed from the spatial distribution of SST, which is relatively 424 

warmer in the GHM in the western equatorial region compared to the RHM (Supplementary 425 

Figure S4) suggesting better simulation of upwelling in the RHMs. The spatial variations in 426 

CO2 fluxes by RHM and atmospheric inversions (Figures 2 and 4) are consistent with the 427 

observations in the EIO region (Figure 1c).  428 

 429 

3.1.5. The South Indian Ocean (SIO) 430 

 431 

The SIO comprises two key oceanographic regimes of oligotrophic waters in the north and 432 

Southern Ocean waters in the south. These two regions are separated by the subtropical front 433 

(STF). We have considered the STF region as part of the SIO in this study. The estimated 434 

mean fluxes in this region by all models are -0.23±0.11  PgC yr-1 suggesting a strong sink of 435 

atmospheric CO2 that agrees well with climatology (-0.20±0.16  PgC yr-1; Table 3). The 436 

atmospheric inversions estimated a larger sink (-0.46±0.3  PgC yr-1), which is mainly caused 437 

by MATCM whereas the CAMSv20r1 model performed well by staying close to the prior 438 

model. Despite atmospheric observations available in the SIO at Amsterdam Island at 38oS, 439 

the overestimation of the sink by the atmospheric model must be examined. Both empirical 440 

models (-0.22±0.04  PgC yr-1) and hindcast models, including RHM, (-0.20±0.07  PgC yr-1) 441 

estimated CO2 fluxes close to that of climatology (-0.22±0.04  PgC yr-1).  The CO2 fluxes in 442 

the SIO are closer in magnitude to the annual uptake for the entire Indian Ocean (-0.19±0.1  443 

PgC yr-1) indicating that the majority of the net uptake of CO2 occurs in the SIO, as suggested 444 

by other studies (Sabine et al., 2000; Bates et al., 2006; Metzl, 2009; Takahashi et al., 2009; 445 

Sarma et al., 2013).  446 

 447 
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The spatial variability in the magnitude of CO2 flux within the SIO was variable among 448 

hindcast models (Figure 2) in comparison to climatology (Figure 1c). For instance, the 449 

climatology suggests a strong sink between 15oS and 35oS whereas the sink was simulated by 450 

most of the hindcast models between 10oS and 25oS. Sabine et al. (1999) observed the highest 451 

concentration and deepest penetration of anthropogenic carbon in the subtropical 452 

convergence zone (30-40oS). In contrast, a mild source is simulated by most of the models in 453 

the south of 30oS suggesting that the sink was underestimated in this zone. The outcropping 454 

of these density surfaces and the subsequent sinking of surface waters provide a pathway for 455 

excess CO2 to enter the interior of the ocean. Overestimation of the CO2 uptake by the 456 

models in these zones suggests that vertical mixing was not constrained properly in the 457 

models, leading to excess deep mixing, which increased surface water pCO2 and a decrease in 458 

the flux of the ocean (Figure 2).  459 

 460 

3.2. Seasonal variations in pCO2 levels and air-sea CO2 fluxes in the Indian Ocean 461 

 462 

To examine the seasonal variability of CO2 fluxes by various modelling approaches, the 463 

simulated surface pCO2 levels and CO2 fluxes were analysed (Figure 6). This provides 464 

insights into the ability of the models to represent the complex interplay of physical and 465 

biological processes on pCO2 levels and sea-air CO2 exchange. The ability of a model to 466 

reproduce the seasonal cycle also provides some reassurance that the models are correctly 467 

projecting climate sensitivity of the processes that could influence long-term projections of 468 

the ocean CO2 uptake (Fig. 6).  469 

 470 

3.2.1. The Entire Indian Ocean 471 

 472 



20 
 

The increase in pCO2 levels is expected in the tropical Indian Ocean between June and 473 

September due to an increase in mixing driven by the southwest monsoon in the north 474 

whereas deeper mixing in the SIO (Louanchi et al., 1996; Sarma et al., 2000; Sabine et al., 475 

2000; Bates et al., 2006). All hindcast models overestimated the sink between June and 476 

September but were close to observation during other months (Fig. 6) due to weak mixing of 477 

pCO2-rich subsurface waters with surface. Among the other models, ROMS-NYUAD and 478 

MPIOM-HAMOCC displayed relatively better seasonality in CO2 fluxes compared to 479 

climatology (Figure S5). The mean empirical models followed seasonality close to that of 480 

observations. The atmospheric inversions overestimated the sink from March to October 481 

mainly in the SIO compared to other models and climatologySince the seasonality in CO2 482 

fluxes is variable with space, the same in different regions of the Indian Ocean are examined.  483 

 484 

3.2.2. Northwestern Indian Ocean (Arabian Sea) 485 

 486 

The Arabian Sea shows strong seasonality with higher CO2 fluxes from June to September 487 

associated with monsoon mixing and high winds compared to other seasons (George et al., 488 

1994; Sarma et al., 1996; 1998; Sarma, 2003). The climatological amplitude of seasonality 489 

was close to 0.2  PgC yr-1 with a maximum in June-August and a minimum in October-490 

December (Figure 6). The seasonality was perfectly captured by the empirical models 491 

whereas atmospheric inversion and hindcast models failed to simulate as they over and 492 

underestimated respectively.  Though atmospheric inversion models mostly captured the high 493 

CO2 fluxes to the atmosphere from June to August but with a large spread compared to other 494 

simulations by hindcast and empirical models.  In contrast, hindcast models showed a 495 

response but it was strongly out of phase with the observations by giving maximum fluxes in 496 

May to June and minimum fluxes in July to September with approximately 3-4 months ahead 497 
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of the climatological peak in CO2 fluxes. The two GHM (MRI-ESM2-1 and NorESM-OC1.2) 498 

and RHM (ROMS-NYUAD) simulated peak fluxes between June and August in the Arabian 499 

Sea (Figure S5).  500 

 501 

All GHM failed to simulate seasonality in pCO2 (Figure 6) levels as the higher pCO2 levels 502 

were observed during July to September in the observations whereas April to May in the 503 

models. High pCO2 levels were reported from June to August due to enhanced vertical 504 

mixing caused by monsoon winds in the Arabian Sea (Sarma et al., 1996; 1998; Körtzinger et 505 

al., 1997; Millero et al., 1998; Sarma, 2003). Sarma et al. (2000) observed that mixing is the 506 

dominant controlling factor of pCO2 levels from June to August in the Arabian Sea followed 507 

by biological effects (Louanchi et al., 1996; Goyet et al., 1998). The difference in pCO2 508 

levels between mean hindcast models and observations varied between 15 and 50 μatm 509 

whereas it was <20 μatm in the case of empirical models (Figure 6). The reference year for 510 

climatology is 2000 (Takahashi et al., 2009) whereas the reference year for hindcast and 511 

empirical models are 2002 (1985-2018). The difference in pCO2 levels caused by variable 512 

reference year may differ up to 4 μatm considering the 2 μatm/y as a growth rate of surface 513 

ocean pCO2 (Metzl, 2009) suggesting that weaker mixing in the models underestimated the 514 

seasonality in pCO2 and CO2 fluxes in the Indian Ocean.  515 

 516 

3.2.3. Northeastern Indian Ocean (Bay of Bengal; BoB) 517 

 518 

The BoB also displayed large seasonality with higher CO2 fluxes from May to August 519 

associated with monsoon mixing and decreased between October and December due to river 520 

discharge and stratification (Figure 6; Sarma et al., 2016; 2018; 2019).  All models simulated 521 

high CO2 fluxes during May but decreased to low by July-August (Figure 6). The observed 522 



22 
 

amplitude of seasonality was close to 0.02  PgC yr-1 with the maximum in May-June (0.02  523 

PgC yr-1) and minimum in February (0  PgC yr-1). The mean hindcast models simulated 524 

similar amplitude (0.02  PgC yr-1) but they showed sink (0 and -0.02  PgC yr-1) instead of 525 

source in the climatology. The atmospheric inversion models displayed too low (high sink 526 

during February) and high source from August to October.  527 

 528 

All GHM simulate seasonality in pCO2 levels in the BoB with a maximum in April and May 529 

and a minimum in February (Figure 6). The magnitude of seasonal variability in pCO2 is ~15 530 

μatm in the climatology whereas hindcast models simulated 15-40 μatm with lower 531 

variability (<20 μatm) during April and May and higher (>35 μatm) during other months. The 532 

underestimation of pCO2 in the BoB may be caused by strong stratification in the model 533 

leading to lower input from pCO2-rich subsurface waters. In addition to this, the difference 534 

between simulations and observation may also be caused by the lack of enough data in the 535 

observations as the BoB is severely under-sampled with reference to seasons. To resolve this 536 

issue, the pCO2 data collected by the BOBOA mooring buoy in the central BoB (Figure 1a) is 537 

used for comparison. This buoy collected data between 2013 and 2018 (Sutton et al 2019) 538 

and the monthly climatology of this data was compared with Takahashi climatology. The 539 

BOBOA climatology showed an increase in pCO2 starting in April with a peak in May 540 

whereas Takahashi climatology displayed during April suggesting that Takahashi 541 

climatology well reproduced the observed seasonality although the climatology was not 542 

constrained with BOBOA data.  Most of the hindcast models displayed peaks in April-May in 543 

the BoB and were also consistent with the climatology (Figure S5).  544 

 545 

3.2.4. Equatorial Indian Ocean (EIO) 546 

 547 
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The CO2 fluxes in the EIO displayed seasonality with high fluxes from January to May and 548 

low from June to October with a minimum in August (Figure 6). The mean observed CO2 549 

fluxes are the source of the atmosphere during all seasons whereas all hindcast models 550 

simulated sink, especially between May and November. All models displayed similar 551 

seasonal variability in CO2 fluxes but underestimated from May to November. The RHM 552 

simulated better seasonality in the CO2 fluxes compared to GHM (Figure S5).  553 

 554 

The EIO displays relatively weak pCO2 seasonality with a high from February to April and a 555 

low from June to October. The amplitude of seasonality in pCO2 was <10 μatm in the 556 

climatology. All models simulated the seasonality but they were under-estimated pCO2 by 557 

~20 μatm from that of climatology (Figure 6).  558 

 559 

3.2.5. The South Indian Ocean (SIO) 560 

 561 

The SIO displayed large seasonality in fluxes with CO2 source during January to March and 562 

CO2 sinks during other months (Figure 6). All models reproduced seasonality very well in 563 

the SIO (Figure S5).  564 

 565 

All GHM simulate seasonality in pCO2 levels in the SIO with a maximum in January and 566 

March and a minimum in July-August. The magnitude of seasonal variability in pCO2 is ~15 567 

μatm in the climatology whereas hindcast models simulated <20 μatm. The difference in 568 

pCO2 between simulation and observations was up to 40 μatm (Figure S5). The large 569 

difference in pCO2 seasonality in the SIO may be caused by weaker mixing simulations in the 570 

models in austral winter and the opposite in summer.  571 

 572 
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3.3. Interannual variability (IAV) 573 

 574 

The interannual variability and trends in pCO2 levels and their fluxes at the air-water 575 

interface was also investigated in 1985-2018 using different models (Figure 7). The rate of 576 

increase in surface ocean pCO2 levels varied from 1.54 to 1.73 μatm yr-1 between 1985 and 577 

2018 with a lower rate of increase in the BoB and higher in the EIO and SIO. The growth rate 578 

of pCO2 in the surface waters by both hindcast and empirical models is close to that of 579 

atmospheric growth and observed surface pCO2 growth in the Southwestern Indian Ocean 580 

(Metzl, 2009; Lo Monaco et al., 2021; Leseurre et al., 2022). Due to the lack of basin-scale 581 

observational time-series data in the Indian Ocean, the performance of the IAV by the models 582 

cannot be assessed. Given the variability of IOD and ENSO index (Figure 7), we divided the 583 

IAV trends into three timelines, i.e., a) 1985-2000, b) 2001-2018 and c) 1985 to 2018 (Figure 584 

7; Tables 4 and 5) to examine the possible changes in growth rate in the recent decades from 585 

that of earlier. To avoid biasing the magnitude of the seasonality, we first de-trend the 586 

simulated time series of IAV. 587 

 588 

3.3.1. The entire Indian Ocean 589 

 590 

Both hindcast and empirical models simulated IAV in the surface pCO2 levels in the entire 591 

Indian Ocean as 1.67 to 1.70 μatm yr-1 between 1985 and 2018. The rate of increase in pCO2 592 

levels was lower from 1985 to 2000 (1.41-1.49 μatm yr-1) and increased in the recent decades 593 

(2001-2018) to 1.84-1.96 μatm yr-1 (Table 4).  Within the variability in the estimations, both 594 

empirical and hindcast models simulated similar growth rates in pCO2 levels (Figure 7).   595 

 596 
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The range of sea-to-air CO2 fluxes for the period of 1985 to 2018 was significantly different 597 

for GHM (-0.48 to -0.06  PgC yr-1), empirical (-0.31 to 0.03  PgC yr-1) and atmospheric 598 

inversion models (-0.63 to 0.09  PgC yr-1) (Figure 7). The IAV trend between 1985 and 2018 599 

was close for hindcast (-0.023±0.003  PgC yr-1 decade-1) and empirical models (-0.021±0.003  600 

PgC yr-1 decade-1; Table 5). The trends in IAV by hindcast models between 2001 and 2018 (-601 

0.023±0.007  PgC yr-1 decade-1) were slightly lower compared to 1985-2000 (-0.028±0.012  602 

PgC yr-1 decade-1) for the entire Indian Ocean suggesting the rate of sinking of CO2 in the 603 

Indian Ocean is decreasing in the recent decades. In contrast, empirical models displayed 604 

larger IAV between 2001-2018 (-0.046±0.005  PgC yr-1 decade-1) and 1985-2000 605 

(+0.007±0.007  PgC yr-1 decade-1). Such differences in the empirical models may come from 606 

the lack of satellite Chl-a data before 1998. Therefore, the simulations of empirical models 607 

may be less accurate before 1998 than after.  Interestingly IAV by empirical models during 608 

2001-2018 were more than double (-0.046±0.005  PgC yr-1 decade-1) than that of hindcast 609 

models (-0.023±0.007  PgC yr-1 decade-1) which may be driven by variability in wind 610 

products and transfer velocity coefficients used. To examine the spatial variability in IAV, 611 

the same is studied in different regions of the Indian Ocean.  612 

 613 

3.3.2. Northwestern Indian Ocean (Arabian Sea) 614 

 615 

The pCO2 growth of 1.64 to 1.68 μatm yr-1 was simulated between 1985 and 2018 and it was 616 

lower during 1985-2000 (1.32-1.41 μatm yr-1) than 2001-2018 (1.76-1.88 μatm yr-1) (Table 4) 617 

in the Arabian Sea. The growth rates in pCO2 levels in the Arabian Sea are close to that of the 618 

atmospheric growth rate of CO2 (WMO Bulletin; https://gml.noaa.gov/ccgg/trends/).  619 

 620 



26 
 

The IAV in the CO2 fluxes by the hindcast models in the Arabian Sea was small (0.00 to 0.06 621 

PgC yr-1), it was larger than the mean flux to the atmosphere from 1985 to 2018 (0.03±0.01  622 

PgC yr-1). This suggests that the mean CO2 flux to the atmosphere may vary significantly 623 

from year to year (Figure 7).. In contrast, the atmospheric inversions (for the period 2001-624 

2018) gave a much larger standard deviation than hindcast models suggesting that about 50% 625 

of the total Indian Ocean variability occurs in the NIO. The high variability in the 626 

atmospheric inversions may come from the period and region of atmospheric CO2 data used 627 

in the models. The empirical models estimated lower IAV (0.03 to 0.12  PgC yr-1) compared 628 

to hindcast and atmospheric inversion models.  629 

 630 

To examine the IAV trends in the recent decades, the trends between 1985-2000 and 2001-631 

2018 were compared. The IAV between 2001-2018 is lower (-0.005±0.002  PgC yr-1 decade-632 

1) than 1985-2000 (-0.001±0.002  PgC yr-1 decade-1) by hindcast models suggesting that the 633 

source of the CO2 to the atmosphere from the Arabian Sea is decreasing in the recent 634 

decades. This is possible that rapid warming of the western Arabian Sea was reported in 635 

recent decades (Roxy et al.,2015; Sridevi et al., 2023) resulting in weak vertical transport of 636 

CO2, and nutrients resulting in a decrease in primary production (Dunstan et al., 2018; Roxy 637 

et al., 2016; Sridevi et al., 2023). A decline in Somali upwelling intensity and decreased 638 

evaporation due to the weakening of winds led to the warming of the Indian Ocean was 639 

reported in recent decades (D’Mello and Prasanna Kumar (2018). Sarma et al. (2000) 640 

estimated that vertical mixing is the major contributor to high pCO2 levels and fluxes to the 641 

atmosphere in the Arabian Sea. The decrease in mixing may also weaken primary production 642 

resulting in an increase in CO2 flux. Recently Sridevi et al. (2023) found that net primary 643 

production was decreasing only in the southern Arabian Sea (south of 12oN) whereas the 644 

decrease in nutrient inputs through mixing is compensated by increased atmospheric 645 
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deposition of nutrients. Therefore, the weakening of upwelling intensity decreased the CO2 646 

source to the atmosphere in the past 4 decades in the Arabian Sea. The empirical models also 647 

simulated a decrease in the CO2 fluxes from -0.002±0.002  PgC yr-1 decade-1 in 1985-2000 to 648 

-0.011±0.001  PgC yr-1 decade-1 in 2001-2018 and the magnitude of the decrease is higher 649 

than hindcast models. Nevertheless, this analysis suggests that the source of CO2 to the 650 

atmosphere from the Arabian Sea is decreasing due to the warming of the basin leading to 651 

stratification and a decrease in upwelling intensity in the western basin.  652 

 653 

3.3.3. Northeastern Indian Ocean (Bay of Bengal; BoB) 654 

 655 

The IAV trends of pCO2 simulated by hindcast and empirical models were close (1.54±0.04 656 

and 1.64±0.02 μatm yr-1 respectively) between 1985 and 2018 in the BoB and these rates are 657 

almost close to that of in the Arabian Sea (Table 4). The pCO2 growth rate increased between 658 

1985 and 2000 (1.34-1.46 μatm yr-1) to 2001-2018 (1.71-1.76 μatm yr-1; Table 4) and it is 659 

consistent with the atmospheric growth rate (https://gml.noaa.gov/ccgg/trends/).  660 

 661 

The IAV in the BoB simulated by the hindcast models is small (-0.02 to +0.02  PgC yr-1), and 662 

it is larger than the mean flux to the atmosphere from 1985 to 2018 (0.00±0.02  PgC yr-1). 663 

This suggests that the mean CO2 flux to the atmosphere may vary from a net weak sink to a 664 

weak source to the atmosphere. The standard deviation is large suggesting that large IAV 665 

occurs in the BoB. In contrast, the atmospheric inversions showed a large standard deviation 666 

in comparison to hindcast models suggesting high IAV could occurs in the BoB (-0.03 to 667 

+0.04  PgC yr-1). On the opposite the empirical models showed low IAV in CO2 fluxes (0.00 668 

to 0.02  PgC yr-1) and it is close to that of the annual mean flux to the atmosphere 669 
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(0.01±0.005  PgC yr-1; Table 3 ). The empirical models estimated very low IAV compared to 670 

hindcast and atmospheric inversion models in the BoB (Figure 7). 671 

 672 

The IAV in the CO2 fluxes in the BoB from the hindcast models decreased from 1985-2000 (-673 

0.002±0.002  PgC yr-1 decade-1) to 2001-2018 (-0.005±0.001  PgC yr-1 decade-1) but not 674 

statistically different. (Table 5). Similarly, empirical models simulated a decrease in the 675 

fluxes of CO2 in the BoB in recent decades (Table 5). The decrease of the CO2 sink may be 676 

potentially caused by the deposition of atmospheric pollutants. Recently Sridevi and Sarma 677 

(2021) analyzed long-term trends (1998-2015) in pCO2 levels in the BoB using an empirical 678 

model and noticed that pCO2 decreased at the rate of -0.1 to -2.9 μatm yr-1 in the central and 679 

eastern Bay associating with the decrease in salinity. The decrease in salinity is manifested by 680 

the melting of Himalayan glaciers due to climate change (Goes et al., 2020). In contrast, an 681 

increase in pCO2 levels was noticed in the head bay and western BoB (0.1 to 2.4 μatm yr-1) 682 

due to the deposition of atmospheric pollutants (Sarma et al., 2015; 2022). Therefore the 683 

decrease in the rate of CO2 flux from the atmosphere in the recent decade may be caused by a 684 

decrease in salinity and deposition of atmospheric pollutants in the BoB.  685 

 686 

3.3.4. Equatorial Indian Ocean (EIO) 687 

 688 

The pCO2 simulations displayed significant IAV by hindcast and empirical models in the 689 

equatorial Indian Ocean (1.65-1.72 μatm yr-1) between 1985 and 2018. The enhanced pCO2 690 

growth rate was observed during the recent decade (2001-2018; 1.52-2.01 μatm yr-1; Table 4) 691 

than between 1985 and 2000 (1.43-1.52 μatm yr-1).  The IAV in the CO2 fluxes in the EIO 692 

simulated by the hindcast models is small (-0.11 to 0.06  PgC yr-1), and it is larger than the 693 

mean flux to the atmosphere from 1985 to 2018 (-0.03±0.05  PgC yr-1). The large standard 694 
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deviation in the IAV by hindcast models suggested large variations in the CO2 fluxes in the 695 

EIO and the mean CO2 flux to the atmosphere may vary between weak sink to the source to 696 

the atmosphere. In contrast, both empirical and atmospheric inversion models displayed a 697 

decrease in the source for the past three decades. The hindcast models displayed a rate of 698 

decrease in CO2 fluxes from the EIO between 1985-2000 (-0.004±0.005  PgC yr-1 decade-1) 699 

to 2001-2018 (-0.006±0.003  PgC yr-1 decade-1) whereas a decrease was also noticed by 700 

empirical models but the magnitude was higher (+0.01±0.003 and  -0.018±0.002  PgC yr-1 701 

decade-1 during 1985-2000 and 2001-2018 respectively). This analysis suggests that the CO2 702 

sink in the EIO is increasing in recent decades possibly due to the weakening of upwelling in 703 

the western basin due to rapid warming (D’Mello and Prasanna Kumar, 2018; Roxy et al., 704 

2015) leading to less DIC import in surface. 705 

 706 

3.3.5. The South Indian Ocean (SIO) 707 

 708 

The IAV of pCO2 simulated by hindcast and empirical models in the SIO were close 709 

(1.73±0.03 and 1.70±0.02 μatm yr-1 respectively) between 1985 and 2018. The lower pCO2 710 

growth rate was observed between 1985 and 2000 (1.43-1.50 μatm yr-1) while increased in 711 

the recent decades of 2001-2018 (1.91-1.98 μatm yr-1 (Table 4). A slight increase in the 712 

surface ocean pCO2 growth rate from north (Arabian Sea; 1.88±0.06 μatm y-1 between 2001-713 

2018) to SIO (1.98±0.05 μatm y-1)  was observed in the hindcast models whereas such trends 714 

were not noticed in the empirical models (Table 4).  In the period 1991–2007, Metzl (2009) 715 

calculated an oceanic pCO2 growth rate of 2.11±0.11 μatm yr-1, which is 0.4 μatm yr-1 faster 716 

than in the atmosphere, suggesting that this region acts as a reducing sink of atmospheric 717 

CO2. Recently Lo Monaco et al. (2021) reported increasing trends of pCO2 in the southern 718 

Mozambique Channel ranging from 1.14 µatm yr-1 from1963 to 1995, 1.70 µatm yr-1 from 719 
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1995 to 2004 and 2.41 µatm yr-1 from 2004 to 2019, and these rates are close to that of 720 

atmospheric CO2 trend. The growth rate of pCO2 estimated by both hindcast and empirical 721 

models appears close to that of measured values in the SIO (Metzl, 2009; Lo Monaco et al., 722 

2021; Leseurre et al., 2022).  723 

 724 

The IAV in the SIO by the hindcast models is small (-0.41 to -0.03  PgC yr-1), and it is larger 725 

than the mean flux to the atmosphere from 1985 to 2018 (-0.03±0.05  PgC yr-1). The large 726 

standard deviation in the IAV by hindcast models suggested large variations in the CO2 727 

fluxes in the SIO and the mean CO2 flux to the atmosphere may vary between weak sink to 728 

the source to the atmosphere. In contrast, the empirical model did not show large variability 729 

but atmospheric inversion models displayed large standard deviations (Figure 7) with a 730 

higher increase in the sink from -0.4 to -0.45  PgC yr-1 between 2001 and 2018. The hindcast 731 

models displayed a decrease in CO2 fluxes from the SIO between 1985-2000 (-0.02±0.006  732 

PgC yr-1 decade-1) to 2001-2018 (-0.006±0.005  PgC yr-1 decade-1) whereas a decrease was 733 

also noticed by empirical models but the magnitude was higher (-0.003±0.005 to -734 

0.012±0.004  PgC yr-1 decade-1 during 1985-2000 and 2001-2018 respectively). 735 

 736 

3.4. Role of climate variability on CO2 flux 737 

 738 

The IAV in sea-air CO2 fluxes in the Indian Ocean has been linked to the IOD and ENSO. 739 

Valsala and Maksyutov (2013) reported a strong correlation between the IODZM and sea-air 740 

CO2 flux IAV in the Arabian Sea and that the roles of these two (ENSO and IODZM) modes 741 

are complementary in the period 1985-2018. The strong IOD event occurred in 1994, 1997 742 

and 2006 within the period considered in this study with a Dipole Mode Index (DMI) value 743 

>0.6. The simulated IAV by hindcast models shows an annual mean higher CO2 flux during 744 
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1994, 1997 and 2006 by 9-14% in the Arabian Sea whereas a decrease by 5-30% was noticed 745 

in other regions (BoB; EIO and SIO) than in adjacent years.  This is consistent with earlier 746 

observations (Sarma, 2006; Valsala and Maksyutov, 2013). Interestingly, empirical models 747 

displayed an increase in CO2 fluxes by 8% in 1994 but a decrease in flux by 10% was noticed 748 

between 1997 and 2006 compared to the normal period in the Arabian Sea. In contrast, a 749 

significant increase in CO2 fluxes in the EIO by 3 to 45% was simulated by empirical models 750 

whereas a decrease of 6-30% was simulated by hindcast models. Jabaud-Jan et al. (2004) 751 

noticed sea-to-air fluxes in the subtropical zone (20oS-37oS) associated with warming in 752 

January 1998, when strong IOD occurred, compared to sink observed in the same region 753 

during 2000 suggesting warming induced by IOD enhanced CO2 fluxes to the atmosphere. 754 

However, neither hindcast nor empirical models captured these features. The monthly mean 755 

CO2 fluxes simulated by hindcast and empirical models in the Indian Ocean, including in the 756 

Arabian Sea, did not show significant relation with Dipole Mode Index (DMI) between 1985 757 

and 2018 suggesting that weak IOD may not have a significant impact on CO2 fluxes in the 758 

Indian Ocean. 759 

 760 

The strong ENSO event (index value >1.0) occurred in 1987, 1992, 1997, 2010 and 2016 761 

within the period considered in this study. During these events increase in annual mean CO2 762 

fluxes by 6-26% was observed in the Arabian Sea and BoB whereas a decrease in CO2 fluxes 763 

was noticed in the EIO and SIO by hindcast models. In contrast, empirical models showed a 764 

decrease in CO2 fluxes in the ENSO years in the Arabian Sea, BoB and SIO but an increase 765 

in the EIO. The monthly ENSO index displayed a significant linear correlation with CO2 766 

fluxes by hindcast models in the Arabian Sea and BoB (p<0.001) but an insignificant 767 

relationship in the EIO and SIO (p>0.01 and p>0.1 respectively) whereas insignificant 768 

relation was observed with CO2 fluxes by empirical models in all regions. Valsala and 769 



32 
 

Maksyutov (2013) found a positive relationship between the ENSO index and CO2 fluxes in 770 

the Arabian Sea and Southern Peninsular India. Nevertheless, this study suggests that 771 

empirical models did not capture either ENSO or IOD impacts on the CO2 fluxes in the 772 

Indian Ocean.  773 

 774 

Significant negative anomalies in the CO2 fluxes were reported in the tropical Indian and 775 

Pacific Oceans and the absence of such anomaly was reported in the Southern Ocean 776 

(McKinley et al., 2020; Bennington et al., 2022). Bennington et al. (2022) reported an 777 

increase in >30% of the sink after the Pinatubo eruption. Interestingly significant decrease in 778 

CO2 flux was observed between 1991 and the mean of 1992-93 in the Arabian Sea (0.038 and 779 

0.032 PgC/y respectively), BoB (0.0033 and 0.002 PgC/y), EIO (-0.026 and -0.041) with 780 

decrease by 16 to 57% whereas it was smaller in the case of SIO (-0.18 and -0.19 PgC/y) 781 

associated with Pinatubo volcanic eruption (Fig. 7).  These observations are consistent with 782 

the earlier studies (McKinley et al., 2020; Bennington et al., 2022). Recently Fay et al. (2023) 783 

reported high oxygen and carbon anomalies associated with Pinatubo volcanic eruptions for 784 

several years in the northern and tropical Pacific and tropical Indian Ocean but an 785 

insignificant impact is noticed in the Southern Ocean. The models used in this study also 786 

suggest an impact of the Pinatubo volcanic eruption on Indian Ocean CO2 fluxes around 787 

1991-1992 most pronounced in the EIO region (Fig. 7).  788 

 789 

4. Conclusions 790 

 791 

The Indian Ocean is severely under-sampled with reference to surface pCO2 levels. In order 792 

to estimate the uptake of CO2 by the Indian Ocean, CO2 fluxes were simulated using several 793 

approaches, such as a) hindcast, b) atmospheric inversions, and c) empirical models, were 794 
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analyzed at different time scales and compared with spatially interpolated observations 795 

(called climatology). Our study suggests that the annual mean CO2 uptake by the entire 796 

Indian Ocean (north of 37.5oS) from all approaches varied between -0.27 and -0.13  PgC yr-1 797 

with a mean value of all models of -0.19±0.01  PgC yr-1. The SIO (south of 18oS) region is a 798 

dominant annual sink for the atmospheric CO2 with a mean of all models of -0.23±0.11  PgC 799 

yr-1. In contrast, a mild source of CO2 in the atmosphere was simulated by all models 800 

(0.02±0.05  PgC yr-1) in the north of 18oS. The estimation of CO2 uptake by the Indian Ocean 801 

was shown little variations among models.  802 

 803 

All models simulated spatial variability in CO2 fluxes in the Indian Ocean except for the 804 

underestimation of upwelling fluxes off Oman/Somalia coasts, and the EIO and 805 

overestimation of sink in the BoB due to poor monsoon mixing and freshwater discharge 806 

simulations in the hindcast models. The RHM have improved the simulation of CO2 fluxes, 807 

compared to GHM, in these regions but has not reached close to the climatology. Variations 808 

in CO2 fluxes by different models were also driven by variations in wind products, transfer 809 

velocity parameterization and atmospheric CO2 data used in the flux estimations.  810 

 811 

The atmospheric growth rate of pCO2 was well simulated by all models and they captured the 812 

seasonal cycle in the sea-air CO2 fluxes, however, the stronger amplitudes were simulated by 813 

all models than climatology. The empirical models simulated the seasonal cycle of sea-air 814 

CO2 fluxes reasonably well with the observations. The difference between the hindcast and 815 

atmospheric inversion models and also in comparison with climatology may reflect errors in 816 

the model formulations and also poor observational data both in the atmosphere and ocean 817 

surface.   818 

 819 
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The inter-annual variability in CO2 fluxes by the hindcast models is relatively weaker 820 

compared to the atmospheric inversions. The hindcast models suggest a slight weakening of 821 

the sink over the period of 1985-2018 in the SIO. In contrast, a decrease in the source of CO2 822 

in the atmosphere was simulated in the Arabian Sea, BoB and EIO by the hindcast and 823 

empirical models. It is difficult to conclude how models are performing about IAV due to the 824 

lack of time-series atmospheric and surface ocean pCO2 observations. All models projected 825 

the influence of atmospheric extreme events, such as IODZM and ENSO on CO2 fluxes in the 826 

Indian Ocean.  827 

 828 

Unless the monsoon mixing is represented well in the models, it will remain difficult to 829 

confidently project the future changes in CO2 fluxes in the Indian Ocean. The lack of 830 

seasonal data in most parts of the Indian Ocean is another serious problem to validate the 831 

models. Significant improvement in model performance was not noticed since the RECCAP1 832 

comparison between models and observations due to the lack of addition of new data in this 833 

region (Sarma et al., 2013). Therefore, intensive ocean observations of pCO2 and atmospheric 834 

tower observations are required for further improvements of the models.   835 

 836 
The Indian Ocean experiences extreme events such as eddies (Chen et al., 2012) and tropical 837 

cyclones and both cause enormous effluxes of CO2 to the atmosphere that would influence 838 

local CO2 fluxes (Byju and Prasanna Kumar, 2011; Ye et al., 2019).  Swapna et al. (2022) 839 

projected an increase in cyclonic activity in the future in the Indian Ocean that may result in 840 

enhanced CO2 fluxes at the air-sea interface. High resolution, with reference to space and 841 

time, is required to capture such features. The regional models are highly useful to capture 842 

such signatures than global models. It would be interesting to segregate the contribution of 843 

CO2 fluxes due to an increase in cyclonic activity due to climate change.  844 

 845 
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Rapid warming of the Indian Ocean (Roxy et al., 2015) is experiencing and began to play an 846 

important role in global ocean heat uptake (Li et al, 2018). The decrease in the rate of 847 

warming due to aerosols was reported in the northern Indian Ocean (Sridevi et al., 2023). The 848 

decrease in the primary production in the western Indian Ocean (Roxy et al., 2016; 849 

Dalpadado et al., 2021; Sridevi et al., 2023), was reported due to the decline in wind speed 850 

and upwelling intensity. The lack of primary productivity trends due to an increase in the 851 

deposition of nutrients from the atmosphere was reported (Sarma et al., 2022; Sridevi et al., 852 

2023). Rapid rate of ocean acidification was reported due to the atmospheric deposition of 853 

pollutants (Sarma et al., 2015; 2021; Kumar et al., 2022). Therefore the inclusion of 854 

atmospheric pollutants in the model improves the simulations of future changes in CO2 fluxes 855 

significantly. Evaluating the changes in possible drivers due to climate change would be an 856 

interesting issue to look into in the future.  857 

 858 

One serious drawback in the present study to use of observational climatology of CO2 fluxes 859 

to compare with the model simulations. Due to a lack of observational data in the Indian 860 

Ocean, inter and extrapolations were done based on the advection-diffusion model 861 

(Takahashi et al., 2009). Recently Davis and Goyet (2021) suggested a new method to fill the 862 

gaps to balance the error in the undersampled regions. Utilizing such tools, as shown by 863 

Guglielmi et al. (2022 a, b), may further decrease errors associated with climatology and the 864 

evaluation of model simulations will be enhanced.  865 
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Table 1: Details of the hindcast models (including regional models) with reference to a period of the run, products used, parameterization of 1222 
transfer velocity and resolution of the model.  1223 
 1224 
Global hindcast 
model 

Period for 
Analysis 

Spun-up Initial conditions/physical forcing wind Riverine 
input used 

Transfer velocity resolution 

CCSM-WHOI 1958-2017      10 x 10 
CESM-ETHZ 1980-2018 Spun-up to preindustrial 

steady state with 287.4 
ppm 

POP2 model was initialized with Levitus 
data and state of rest 
Does not include the phosphoric and silicic 
acid systems 

JRA No Wanninkhof 1992 
 
 

~10 x1.1250 

CNRM-ESM2-1 1980-2018 Preindustrial; 1850 global 
average CO2 set to 286.46 
ppm 

Physical: NCEP-2; air-sea flux data: 
CORE II; atm.CO2: GCP Global averaged 
annual CO2 
Includes the phosphoric and silicic acid 
systems 

 Yes Wanninkhof 2014 
 

10 x 10 

EC-Earth3 1980-2018 Preindustrial steady state 
284.32 ppm for 1850 

O2, Nutrients: WOA13 
DIC, Alkalinity: GLODAPv2; 
Freshwater input: OMIP2 from JRA1.4-55 

JRA55 Yes Wanninkhof 1992 
 

1x 10 

FESOM_REcoM_LR 
 
(FESOM-1.4-
REcoM2-LR 

1981-2019 Physical spun-up on HR 
mesh 1 with constant atm. 
CO2 BGC fields on LR 
mesh of 1980 year  
278 ppm 

atm.CO2: GCP Global averaged annual 
CO2 
O2, Nutrients: WOA13 
DIC, Alkalinity: GLODAPv2 

JRA55 No Wanninkhof 2014 
 

10 x 10 

MOM6-Princeton 1980-2018 Atm. CO2 for preindustrial 
steady state: 278 ppm, 
Spun-up starting from 
1959,   

SST, SSS, nutrients: WOA13; 
DIC & Alkalinity: GLODAPv2; does not 
include Phosphoric and silicic acid 
systems. Alkalinity is influenced by inputs 
from river, calcium carbonate burial to the 
sediment and nitrogen redox change 

JRA Yes Wanninkhof 1992 
 

0.50 x 0.50 

MPIOM-HAMOCC 1980-2019 Preindustrial steady state 
296.2 ppm atm.CO2 

Atmospheric CO2 concentrations are 
according to the link provided in the 
RECCAP2 protocol 
Included phosphoric and silicic acid 
systems 

NCEP No Wanninkhof 1992 
& 2014 

Bipolar grid 
with 1.50 near 
equator 

MRI-ESM2-1 1980-2018 Preindustrial steady state 
284.32 ppm 

Initialized with those derived from 
GLODAPv2 and WOA13v2. 
SST, SSS, nutrients: WOA13v2 

JRA 55 No Wanninkhof 1992  
& 2014 

Nominally 
100 km 

NorESM-OC1.2 1980-2018 Preindustrial steady state Nutrients: WOA13;  No Wanninkhof 1992 Nominal 10 
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for 1000 years CO2 set to 
278 ppm 

DIC and Alkalinity: GLODAPv2 
Included phosphoric and silicic acid 
systems 

  

ORCA1_LIM3-
PISCES 
(IPSL-NEMO-
PISCES) 

1980-2018 Initialized with 
observations in year 1836 
and CO2 set to 286.46 
ppm at 1870 level 

DIC & Alkalinity GLODAPv2 
Included phosphoric and silicic acid 
systems 

JRA55 Yes 
 
 

Wanninkhof 1992 10 x 10 

ORCA025-
GEOMAR 

1980-2018 Preindustrial steady state 
for 137 years and CO2 set 
to 284.32 ppm 

Levitus 1998; (SST & SSS) 
Nutrients: WOAv2 
DIC &Alk: GLODAP 
Pre-spin-up for sea ice from different 
experiments 

JRA55 No 
 

Wanninkhof 1992 1/40 

Planktom12 1980-2018 Spun-up to 1750-1947 
with looped 1990 NCEP 
forcing; Preindustrial 
steady state 278 ppm 

NCEP forcing 
Sea-ice: NEMO-LIM2 model 
Included phosphoric and silicic acid 
systems 

  Wanninkhof 1992 10 x 10 

Regional hindcast 
models 

       

INCOIS-BIO-ROMS 1980-2018 Initialized with 
observations for a 
particular year (1970) 
RECCAP2 Strategy 1  

Atm.CO2: Keeling et.al., 1995 at monthly 
resolution. 
The physical state variables have been 
initialized using ECDA system simulated 
reanalysis data produced by GFDL. The 
biological state variables (NO3, 
Chlorophyll-a, O2, etc.) have been 
initialized using the climatological state of 
January generated from the climatological 
run of the model. The model state of the 
carbon state variables has been initialized 
using the Global Ocean Data Product 
(GLODAP; Key et al., 2004).  

JRA55-
do 
 

Yes Wanninkhof 2014 
 

1/120 

ROMS-NYUAD  1980-2018 1950-1979 (repeated 
normal year for physical 
forcing, increasing pCO2 
from Joos and Spahni 
(2008) and Keeling et al. 
(2005). 

temp, salinity, u, v, SSH: ORAS5; 
O2 & nitrate: WOA18 
Chl-a: CMEMS (SeaWiFS& MODIS) 
DIC &Alk, GLODAPv2 

ERA-
Interim 

Yes 
 

Wanninkhof 1992 0.1 x 0.1  

 1225 
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 1226 
Table 2: The methods used in the different observation-based surface CO2 models used in this study. 1227 
 1228 
 1229 
Observation-based 
surface CO2 models 

Method Reference 

CMEMS-LSCE-FFNN Feed Forward Neural Network (FFNN) Chau et al., 2022 
CSIRML6 Machine Learning/CSIR-ML6 Gregor et al., 2019 
Jena-MLS 
(CarboScope) 

/ocean mixed layer model Rodenbeck et al., 2013 

JMAMLR Multiple Linear Regression model Iida et al., 2021 
Spco2_LDEO HPD Global Ocean Biogeochem Model/Extreme Gradient Boosting (XGB) Gloege et al., 2022 
SOMFNN Neural Network Landschutzer et al., 2016 
NIES-MLR3 Feed Forward Neural Network (FFNN) Zeng et al., 2014 
OceanSODAETHZ Geospatial Random Cluster Emsemble Regression (GRaCER) Gregor and Gruber 2021 
UOEX_WAT20 Multiple Linear Regression/ Feed Forward Neural Network (FFNN) Watson et al., 2020 
 1230 
  1231 
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Table 3: The annual mean uptake (±standard deviation) of CO2 from the climatology (Takahahi et al, 2009), hindcast, empirical and atmospheric 1232 
inversion models. All units in PgC yr-1. The negative values represent CO2 flux into the ocean and the positive ones into the atmosphere.  1233 
 1234 
 1235 

Region Climatology Hindcast Models 

(Includes 2 Regional 

models) (n=14) 

Observation-

based models 

(n=9) 

Atmospheric 

Inversion 

models (n=2) 

All models 

(n=25) 

Surface area 

(km2) 

Arabian Sea 0.08 ± 0.06 0.03 ± 0.01 0.08 ± 0.01 0.16 ± 0.12 0.06 ± 0.05 0.70 x 107 

Bay of Bengal 0.01 ± 0.01 -0.00 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.01 0.44 x 107 

Equatorial Indian Ocean 0.04 ± 0.03 -0.05 ± 0.04 0.02 ± 0.02 0.02 ± 0.03 -0.02 ± 0.05 1.55 x 107 

South Indian Ocean -0.20 ± 0.16 -0.19 ± 0.06 -0.23 ± 0.02 -0.46 ± 0.30 -0.23 ± 0.11 1.24 x 107 

Indian Ocean -0.07 ± 0.14 -0.21 ± 0.10 -0.13 ± 0.04 -0.27 ± 0.16 -0.19 ± 0.10 3.92 x 107 

 1236 
 1237 
 1238 
 1239 
 1240 
 1241 
 1242 
 1243 
 1244 
 1245 
 1246 
 1247 
 1248 
 1249 
 1250 
 1251 
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Table 4: The growth rate (±standard deviation) of pCO2 (μatm yr-1) in the different regions of the Indian Ocean and different periods. The p-1252 
value of the regression of time-series pCO2 variability is given in bracket. 1253 
 1254 

Period 
(μatm/yr) 

Arabian Sea Bay of Bengal Equatorial Indian Ocean South Indian Ocean Indian Ocean 
hindcast Empirical hindcast Empirical hindcast Empirical hindcast Empirical hindcast Empirical

1985-2018 1.68±0.03 
(7.7E-32) 

1.64±0.02 
(1.8E-39) 

1.54±0.04 
(5.4E-28) 

1.64±0.02 
(7.2E-38) 

1.72±0.03 
(1.1E-31) 

1.65±0.02 
(1.3E-38) 

1.73±0.03 
(1.8E-32) 

1.70±0.02 
(2.6E-37) 

1.70±0.03 
(4.6E-33) 

1.67±0.02 
(4.7E-39) 

1985-2000 1.32±0.07 
(3.7E-11) 

1.41±0.04 
(3.3E-15) 

1.34±0.15 
(5.2E-07) 

1.46±0.05 
(1.4E-13) 

1.43±0.09 
(1.6E-10) 

1.52±0.04 
(5.00E-15) 

1.43±0.08 
(6.9E-11) 

1.50±0.05 
(4.6E-14) 

1.41±0.08 
(2.9E-11) 

1.49±0.04 
(1.6E-15) 

2001-2018 1.88±0.06 
(2.1E-15) 

1.76±0.03 
(9.6E-21) 

1.71±0.06 
(1.6E-14) 

1.76±0.05 
(4.7E-17) 

2.01±0.05 
(5.2E-17) 

1.82±0.04 
(1.30E-17) 

1.98±0.05 
(9.4E-17) 

1.91±0.03 
(8.1E-21) 

1.96±0.04 
(3.9E-18) 

1.84±0.03 
(9.3E-20) 

 1255 
 1256 
 1257 
 1258 
 1259 
 1260 
 1261 
 1262 
 1263 
  1264 
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Table 5: Rate of changes in CO2 fluxes (±standard deviation) (PgC yr-1 decade-1) in the Indian Ocean during different time periods. The p-value 1265 
of the regression of time-series CO2 variability is given in bracket. The negative values represent the decrease in source and vice versa for the 1266 
positive. 1267 
 1268 

1269 
Period 

 
Arabian Sea Bay of Bengal Equatorial Indian Ocean South Indian Ocean Indian Ocean 

hindcast Empirical hindcast Empirical hindcast Empirical hindcast Empirical hindcast Empirical 
1985-
2018 

-0.003±0.001 
(3.5E-05) 

-0.006±0.001 
(2.7E-09) 

-0.004±0.000 
(2.4E-09) 

-0.002±0.0001 
(3.14E-05) 

-0.007±0.001 
(7.3E-06) 

-0.006±0.002 
(6.0E-04) 

-0.010±0.002 
(1.9E-05) 

-0.008±0.002 
(1.8E-05) 

-0.023±0.003 
(1.4E-08) 

-0.021±0.003 
(1.2E-07) 

1985-
2000 

-0.001±0.002 
(5.4E-01) 

-0.002±0.002 
(4.7E-01) 

-0.002±0.002 
(2.4E-01) 

0.001±0.001 
(2.3E-01) 

-0.004±0.005 
(3.7E-01) 

0.010±0.003 
(4.2E-03) 

-0.020±0.006 
(4.2E-03) 

-0.003±0.005 
(5.0E-01) 

-0.028±0.012 
(3.2E-02) 

0.007±0.007 
(3.7E-01) 

2001-
2018 

-0.005±0.002 
(7.8E-03) 

-0.011±0.001 
(1.8E-07) 

-0.005±0.001 
(3.0E-06) 

-0.005±0.0001 
(8.5E-09) 

-0.006±0.003 
(8.1E-02) 

-0.018±0.002 
(1.1E-07) 

-0.006±0.005 
(2.0E-01) 

-0.012±0.004 
(9.1E-03) 

-0.023±0.007 
(4.0E-03) 

-0.046±0.005 
(6.2E-08) 



51 
 

Figure 1: a) Figure showing the sub-regions of the Indian Ocean used in this study: South 1270 
Indian Ocean (SIO; Brown), equatorial Indian Ocean (EIO; red), Arabian Sea (AS; Blue) and 1271 
Bay of Bengal (BoB; green). b) shows the location of observations of oceanic pCO2 collected 1272 
since 1958 (Bakker et al., 2020), c) CO2 flux climatology based on the observations and 1273 
interpolated to a 4 x 5o grid (Takahashi et al., 2009) and d) Annual mean uptake from 1274 
climatology, hindcast, empirical and atmospheric inversions models (PgC yr-1) for the 1275 
reference year of 2002. The error bars represent the standard deviation. The negative values 1276 
represent fluxes into the ocean and positive to the atmosphere. 1277 
 1278 
Figure 2: Annual mean uptake (in mol m-2 yr-1) from the 14 hindcasts (2 regional) models for 1279 
the reference year of 2002. The negative values reflect fluxes into the ocean and are positive 1280 
for the atmosphere. 1281 
 1282 
Figure 3: Annual mean uptake (in mol m-2 yr-1) from the 9 observation-based models for the 1283 
reference year of 2002. The negative values reflect fluxes into the ocean and are positive for 1284 
the atmosphere. 1285 
 1286 
Figure 4: Annual mean uptake (in mol m-2 yr-1) from the 2 atmospheric inversion models. The 1287 
CAMSv20r1 used inter-annually varying prior fluxes from an empirical model CEMES, 1288 
while MACTM used annually repeating prior flux seasonality from Takahashi et al. (2009). 1289 
The negative values reflect fluxes into the ocean and are positive for the atmosphere. 1290 
 1291 
Figure 5: The zonally integrated, annual mean CO2 uptake (30oN-37.5oS) from a) hindcast, b) 1292 
empirical and c) atmospheric inversion models.  1293 
 1294 
Figure 6: Seasonal cycle of the CO2 fluxes (PgC yr-1; left panel) and δpCO2 (μatm; right 1295 
panel) in the Indian Ocean from observations, mean hindcast, empirical and atmospheric 1296 
inversion models in the Indian Ocean, Arabian Sea, BoB, EIO and SIO. 1297 
 1298 

Figure 7: The inter-annual variability from hindcast, empirical and atmospheric inversion 1299 
models. The upper panel shows the ENSO (https://ggweather.com/enso/oni.htm) and IOD 1300 
index (http://www.bom.gov.au/climate/iod/) and the other panels for the entire Indian Ocean, 1301 
Arabian Sea, Bay of Bengal, equatorial Indian Ocean, and South Indian Ocean. The trends of 1302 
mean hindcast, empirical and atmospheric inversion are given in PgC yr-1 decade-1. 1303 
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