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Abstract

The Job Shop Scheduling Problem (JSSP) has been widely studied in recent decades. Various approaches
have been proposed to support scheduling decisions according to the evolving production environment. The
emergence of technological advancements in the context of Industry 4.0 has brought many changes and made
production scheduling more and more efficient. Today’s Industry 5.0 environment pays much attention to
human considerations, sustainability, and resilience. These modern production environments can be accu-
rately represented by the flexible shop floor scheduling problem in which various coordinating machines (with
many alternative routing possibilities) and different operators are challenging. Recent literature on JSSP,
which considers the human in the loop, has shown that the well-being and skills of workers significantly
affect scheduling performance. In addition, knowing that industries are responsible for a significant part of
the world’s energy consumption and greenhouse gas (GHG) emissions, new studies in scheduling focus on
environmental factors. This paper introduces the Sustainable Flexible Scheduling Problem (SFJSSP) as a
human and energy-efficiency-centered scheduling problem. First, we review the last decade’s literature on
Flexible Job Shop Scheduling Problems (FJSSP) with human and/or environmental considerations. Next, we
analyze the development trends in manufacturing scheduling problems. Finally, we discuss future research
challenges to move towards scheduling 5.0 and suggest a mathematical model that considers human and
environmental factors (in addition to the factors considered by the Classical Flexible Job Shop Scheduling
Problem (CFJSSP)).

Keywords: Industry 5.0, Flexible job-shops Scheduling Problem, Literature review, Dynamic Scheduling,
Human Centric Manufacturing, Environmental consideration, Sustainability, Resilience
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1. Introduction

In recent years, manufacturing systems have undergone many changes thanks to new technologies, espe-
cially with the emergence of Industry 4.0 (I4.0). I4.0 combines revolutionary new information and commu-
nication technologies (ICT) with real-time production and virtual simulation approaches to make operations
management increasingly efficient. Cyber-Physical (Production) System CP(P)S, Internet of Things & Ser-
vices (IoT&S), Horizontal and Vertical Integration, Adaptive Manufacturing, Big Data and Cloud are the
major I4.0’s concepts and technologies. They have been introduced into factories to increase automation
and, thus, the production systems’ efficiency. These concepts and technologies impact scheduling the most
(Parente et al., 2020). To complement and expand the I4.0 industrial revolution, a new paradigm called
Industry 5.0 (I5.0) is emerging. I5.0 focuses on decisive factors, not only from an economic and technologi-
cal point of view but also concerning environmental and social dimensions. This relatively rapid transition
from I4.0 to I5.0 is driven by the ever-changing customers’ needs and aspirations and the new economic,
societal, and environmental pressing challenges worldwide. Indeed, I5.0 aims to develop and reinforce mainly
three characteristics: human-centricity, sustainability, and resilience. These characteristics are defined as the
literature’s three interconnected core values for I5.0 (Xu et al., 2021c).

Production systems of the I5.0 era should, first of all, be centered on humans. The latter are consid-
ered as a central element of a Human-Cyber-Physical Production System (HCPPS), which is part of a global
ecosystem value chain. This systemic approach is essential to meet the ever-increasing aspirations for sustain-
ability and to increase the resilience of HCPPS in the face of increasingly frequent and diverse disturbances.
Thus, Operator 5.0 is introduced as “a smart and skilled operator who uses human creativity, ingenuity,
and innovation, aided by information and technology, to overcome obstacles on the way to developing new,
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cost-effective solutions for ensuring manufacturing operations’ long-term sustainability and workforce well-
being in the face of difficult and/or unexpected conditions (...)” (Wang et al., 2022a). These new needs and
objectives of human-centricity, sustainability, and resilience are the concern of all functions of any company
(HR, Design, Production, Marketing, Logistics, Finance, etc.) and at the different decision-making levels, i.e.
operational, tactical, and strategic. Production scheduling is at the forefront of achieving these objectives at
the operational level. However, these new concerns of I5.0 will induce additional variables, constraints, and
criteria to be considered in scheduling problems, which are already generally very difficult to solve.

Scheduling problems have been widely studied in the literature of all industrial sectors, especially the
manufacturing industry, with various production workshops. In this paper, we focus only on Flexible Job-Shop
Scheduling Problems (FJSSP) incorporating human factors, environmental factor, or both in connection with
I5.0. This is in line with the flexible durable scheduling problem (SFJSSP) paradigm as recently defined in the
literature, e.g. Hongyu and Xiuli (2021). We review recent publications to analyze new trends in scheduling
problems and solutions considered in the context of I5.0. We highlight current issues and future research
challenges in FJSSP. The remainder of the paper is organized as follows. Section 2.1 describes scheduling
problems and their trends through the different industries’ evolution. Section 3 explains our literature search
methodology. Section 4 presents and analyzes articles integrating human and/or environmental factors.
Then, future research directions and challenges are discussed in Section 5.

2. Problem description

2.1. Scheduling problems introduction

Scheduling problems emerged in the 1950s as a decision-making process to accompany the advent of mass
production. Because of the direct impact of scheduling on production efficiency, much research has focused
on this problem since 1956 (Zhang et al., 2019a). In the scheduling problems, tasks are assigned to resources,
and their execution is sequenced under different constraints to optimize one or more objectives (that will
be detailed later in this section). Scheduling problems occur in various domains, such as manufacturing,
transportation, services, or finance.

Several criteria, illustrated in Figure 1, characterize scheduling problems. The first criterion is the ob-
jective function, which can be time-related (e.g. minimizing the makespan or the tardiness), cost-related
(e.g. minimizing resources operating costs), jobs number-related (e.g. minimizing the number of late jobs).
It can also be robustness-related (e.g. maximizing the robustness of the scheduling), or quality-related
(e.g. maximizing the number of tasks successfully realized). The time-related objective function minimiza-
tion is the most studied in literature due to customers’ demand. Recently, new objectives have emerged:
pro-environment-based (e.g. minimizing energy consumption or carbon emission) and human-based (e.g.
minimizing workers’ risks or maximum workload). These objectives can be considered separately (single
optimization objective) or in conjunction with each other (multi-objective optimization). The second crite-
rion is the scheduling environment/strategy, which can be static or dynamic. Dynamic scheduling considers
hazards, such as machine breakdowns or new job insertions, which makes the problem formulation closer to
reality but more challenging to solve. The third criterion is related to the nature of the scheduling problems’
parameters which can be stochastic or deterministic. Deterministic production ensures that parameters are
known, unlike stochastic production, where one or more parameters, such as processing time or machine
availability, are random variables revealed as production proceeds. Another criterion for classifying schedul-
ing problems is the production environment, specifically characterized by the numbers and types of resources
used and the way they are arranged to perform the different steps of the production process. In the case of a
single-step process, there is either the single-machine environment, where a single machine processes all tasks,
or the parallel machine environment, where several similar machines can do the step. When the process is
multi-step, i.e. tasks are divided into operations that have to be processed on different machines, we talk
about the workshop environment. Depending on the routing constraints of the process steps of different
products, a workshop can be configured as a flow shop, a job shop, or an open shop. In a flow shop, the
sequence of operations to execute is fixed and is similar for all tasks. In a job shop, the sequence is fixed
but can differ from task to task. In an open-shop environment, the sequence is not set. Jiang et al. (2021)
reported that the most studied production environments in literature are the flow shop and the job shop,
due to their many applications in real-life manufacturing systems. Beyond these classical environments, the
literature contains studies of specific industrial scheduling problems that have been formalized and solved,
and whose solutions are effectively applied. The specificities of these problems can be related to: i) pro-
duction process (reentrant/reverse flow, batch manufacturing, continuous/discrete flow, etc.), ii) resources
(setup time, availability, degradation, learning, etc.), iii) products (perishability, handling, quality, etc.), or
iv) decision approach (single/multi-objective, distributed/centralized, single/hybrid, etc.)
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Scheduling problems can be solved in different ways using exact and approximate methods. However,
most of the scheduling problems are NP-Hard and exact methods are not efficient in terms of computation
time and memory consumed. In this sense, simple and hybrid approximate approaches based on heuristic,
metaheuristic, simulation, and artificial intelligence methods allow finding suitable solutions close to the
optimum in a reasonable time.

To summarize, scheduling problems can take many forms depending on the resources, the available data,
and the requested objective. Moreover, they continue to evolve with the development of new technologies
and the appearance of new challenges changing the production environment and/or the objectives. These
new scheduling problems, which we focus on the most in this article, will be detailed in the following sections.
We are particularly interested in two key aspects of I5.0: the human and the environment.

SCHEDULING

PROBLEMS

*composed objective: multi-objective composed with those mentioned above.

Production
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Human resource

Dual resource

Machine resource
Single machine
Parallel machine
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Figure 1: Scheduling problems characterization.

2.2. Scheduling challenges in the I5.0 era

2.2.1. Towards more flexibility

Classical Job Shop Scheduling Problem (CJSSP) is the most basic JSSP. In the CJSSP, we are given a
set of n jobs J = {J1, J2, .., Jn} and a set of m machines M = {M1,M2, ..,Mm}. Each job j consists of
nj operations Oj =

{
O1j , O2j , .., Onjj

}
, which have to be processed in a predefined unique sequence, where

each operation must be processed on a predefined machine. All machines are different, and their processing
times are constant. The total number of machines of each type is equal to one. The objective of CJSSP is
to decide the start time of each job on each machine it must visit, while optimizing a targeted performance
requirement. This problem is characterized by two classical constraints related to the precedence between
the operations of the same job and the impossibility of simultaneously executing several operations on the
same machine. Even though the CJSSP model could be considered a typical “academic” case, it is often
used to approximate real-world problems and is very useful to understand and develop solutions/approaches
to scheduling problems. Therefore, this model has always attracted significant attention from academic
researchers.

A production workshop is said to be “flexible” when it allows some or all operations to be processed by
a set of machines, instead of only one in the case of a classical “non-flexible” environment. FJSSP can be
defined (as the CJSSP) by a set of jobs divided into operations to be processed on a set of machines in a
given sequence. Unlike the CJSSP, some operations in the FJSSP can be processed on a set of machines.
The goal is to find the optimal machine assignment for each operation and an optimal operations sequence on
each machine to minimize or maximize one or several desired performance criteria. The targeted criteria can
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be: (1) time-based (makespan, completion time, tardiness, earliness, etc.), (2) Job-Number-based (number
of tardy jobs, number of jobs in stock, number of jobs in the process, etc.), (3) cost-based (processing cost,
logistics cost, holding cost, etc.), (4) revenue-based (machine utilization, total production revenue, etc.) or
(5) energy- and/or pro-environment-based (noise emission, carbon footprint, etc.). FJSSP should consider
different constraints, the main ones related to the precedence between operations, the availability of resources,
and the release and/or due dates of the jobs considered.

Figure 2 gives an example illustrating the difference between CJSSP and FJSSP. In this figure, solid arrows
mean that the machine for the next operation is fixed, while dashed arrows mean that the next operation can
be assigned to one of several possible machines. FJSSP does not contain the restriction of one production
resource per operation, which extends the size of the feasible solutions space, making the FJSSP a stronger
NP-hard problem than the CJSSP. Moreover, many FJSSP studies assumed that scheduling is carried out
in a static production environment. However, today’s production workshops are dynamic and subject to
multiple random events (random arrival of jobs, machine breakdowns, insertion of urgent orders, etc.). In
this case, scheduling must be dynamically updated in real-time. For this purpose, the dynamic version of
the FJSSP (DFJSSP) can respond effectively to fluctuations in demand and possible unexpected disruptive
events. Currently, dynamic scheduling problems, which better represent real manufacturing systems (subject
to randomness), are receiving more and more attention from scientists and industrialists in terms of models
and solution approaches suitable for fast, real-time decision-making.

J1

J2

M1

M2

M3

CJSSP

O11

O12

O13

O21

O23

O22

J1

J2

M1

M2

M3

O21 O12

O11 O21 O23

O22 O12 O13

FJSSP

Figure 2: CJSSP vs. FJSSP.

Several exact and approximate approaches can be used to solve the FJSSP. Exact methods such as mixed
integer programming, branch and bound, or constraint programming are used to guarantee solution opti-
mality. However, due to the NP-Hardness of the problem, this kind of method is only efficient with small
instances. As shown in Xie et al. (2019), most research has focused on solving this problem by applying
heuristics or metaheuristics (genetic algorithm, simulated annealing, etc.) to find near-optimal solutions.
Artificial intelligence methods represent another approach to deal with FJSSP, especially in a dynamic envi-
ronment (Luo, 2020; Luo et al., 2021). In particular, machine learning techniques can handle NP-complete
optimization problems with an extensive data set and improve the resolution of NP-hard manufacturing
problems (Wuest et al., 2016). These techniques can learn from dynamic events and react automatically,
thus helping to solve dynamic scheduling problems in a production system equipped with “smart” connected
components and commonly referred to as an intelligent manufacturing system.

2.2.2. Towards more responsiveness

Throughout the transition from Industry 3.0 (I3.0) to I4.0 (from the 90’s onwards) and thanks to several
technological advances, scheduling techniques have undergone many changes to improve responsiveness in the
face of not only internal technical and organizational hazards (machine breakdowns, workers absence, process
drifts, etc.), but also external hazards and constraints (fluctuations in demand, supplier disruptions, logistical
incidents, etc.). Intelligent scheduling, also known as smart scheduling, arises to support the evolution of
the industrial environment using smart manufacturing tools. The traditional job shop scheduling of the I3.0
era is based on centralized or semi-distributed control architecture. With the I4.0 revolution, decentralized
scheduling is enabled by new and emerging industrial ICT-based manufacturing technologies, thus allowing
the development of innovative approaches of intelligent distributed and parallel scheduling.

As shown in Figure 3 adapted from Jiang et al. (2021), production scheduling before the 3rd industrial
revolution was mainly concerned with mass production lines, making high volumes of standardized products.
Following the market trends with the increasing demand for customized products, mass production evolved
into mass customization, giving customers a wider choice of products (Alemão et al., 2021).
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Indeed, if in mass production the product market is segmented and usually only one product is offered in
each market segment, mass customization classifies customers into different segments and groups customers’
needs into the same market segment. Then, based on these grouped needs, customers are offered different
product configurations within a predefined product family (Tseng et al., 1996). Hu (2013) gives a compre-
hensive review and discusses the enabling technologies development allowing the evolution of manufacturing
paradigms from mass production to personalization. Mass customization focuses on products made only for
individuals, at scale, to meet the requirements of those individuals without compromising environmental,
economic and social impacts (Aheleroff et al., 2021). In a recent study, Aheleroff et al. (2022) point out that
in mass customization, customers have a wide choice of products but are not fully involved in the design
phase because the designer predetermines the choice of combinations. Today the demand for personalized
products (color, size, fit, etc.) has never been higher and personalization is the main challenge for companies
to meet customers’ needs. Mass customization then evolved into the paradigm of mass personalization by
combining the new technologies of I4.0 and the human creativity brought back with I5.0 to production. To
go beyond mass customization, mass personalization paradigm represents “a personalized experience based
on cocreation” (Baranauskas, 2019). In mass perzonalisation, customer’s needs are satisfied at the personal
level. The basic product design and features can change to provide unique products tailored to each individ-
ual (Tseng et al., 2010). Mass personalization differs from mass customization by expanding the design space,
improving the customer experience and enhancing the creativity and innovation by customers (Sikhwal and
Childs, 2021). While mass customization offers a choice from a range of available products, mass personal-
ization allows customers to create their own unique products. Moreover, as mentioned by Aheleroff et al.
(2021), mass personalization is primordial to meet the main challenges of I5.0.

From a manufacturing systems perspective, the traditional manufacturing of the I3.0 era turned into
smart manufacturing, becoming increasingly flexible and dynamic to face new production challenges. This
evolution has been possible thanks to new technologies and paradigms developed during the late 20th -
early 21st centuries, such as IoT, CPS, Cloud Computing, Digital Twin, Agent-based systems, Artificial
Intelligence, and Big Data. These technologies and techniques indicate the birth of I4.0 era. With I4.0,
centralized scheduling has become a decentralized one, where autonomous agents are connected to each other
and to the decision center, as presented in Leusin et al. (2018). In this system, each agent can make its own
decision and interact with the other agents continuously, which allows for real-time production monitoring
and control. In addition, big data tools make it possible to collect and store a large amount of data throughout
the production process, giving the possibility to analyze and understand the system and continuously improve
its performance (Rossit et al., 2019; Zhang et al., 2019a). With cloud computing, cyber-physical-system, and
the internet of things, manufacturing systems can be seen as the fusion of the physical process and the virtual
world, which led to the birth of the cloud manufacturing (CMfg) paradigm, including a scheduling service
(Wu et al., 2013; Zhang et al., 2014). In the virtual world, the process is simulated and adapted continuously
with real-time data collected in the physical process, which simulation improves in case of disturbance. These
technologies bring to the scheduling function the possibility to be more and more dynamic and flexible, being
able to react and adapt the production process in real-time. Adopting these new technologies is inevitable
to make scheduling solutions as efficient and robust as possible. Although CMfg has been around for several
decades already, scheduling problems in CMfg have only gained significant interest in the last decade. The
majority of published research in this area deals with dynamic scheduling problems using the multi-agent
systems paradigm combined with artificial intelligence tools (Liu et al., 2019a; Rashidifar et al., 2022; Zhou
et al., 2019; Wang et al., 2022c; Zhang et al., 2022; Liu et al., 2023). Two recent articles by Liu et al. (2019a)
and Rashidifar et al. (2022) give a more complete review of this subject.

2.2.3. Towards more sustainability

The rising concern for sustainability in the I5.0 context has led to a renewed focus on energy efficiency and
re-humanization of production systems (Grabowska et al., 2022). Nowadays, the impact of environmental
and social aspects on scheduling in manufacturing plants should be studied with the same importance, if not
more, than economic and technological aspects, given the rapidity of catastrophic climate and demographic
changes worldwide. This paper focuses on the FJSSP which considers the human and/or environmental
factors. In our survey, we refer to this problem as the Sustainable Flexible Job Shop Scheduling Problem
(SFSSP). In fact, even though I4.0 brought new approaches and tools to improve, among other things, the
efficiency and robustness of scheduling solutions, new types of challenges emerged in production systems and
value chains in general, in line with the economic, societal, and environmental changes worldwide. A new
type of scheduling appears with I5.0: sustainable scheduling, described in the following subsections.

Nowadays, the environmental aspects and the preservation of the planet’s health facing to the population
increase and the depletion of natural resources represent one of the most interesting challenges for the I5.0.
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Figure 3: History of production scheduling, based on the one in Jiang et al. (2021) completed with Industry 5.0.

The main reason for this interest is the impact of industrial processes, energy consumption, and carbon
emission on the planet (Dai et al., 2019). For many years, industries have been focused almost exclusively on
the economic aspects, but this no longer viable perspective must change. Alaouchiche et al. (2020) reported
that the industrial sector is responsible for 31.7% of the world’s energy consumption (see Figure 4). Moreover,
industries use resources that are not always renewable, and whose price becomes increasingly higher as they
become scarcer.

Reducing energy consumption and carbon emissions is a significant challenge to preserve the planet and
achieve considerable savings for industries. Sindhwani et al. (2022) provides examples of fields such as
agriculture, food, medicine, or surgery that need to shift into green industries.

Considering environmental factors in scheduling problems has gained interest in the last years with the
emergence of the I5.0 era. Scheduling problems in job shops are related to energy consumption. In order
to improve the energy efficiency of industrial plants, it is now necessary to take environmental factors into
account when developing scheduling strategies. In scheduling problems, environmental factors have been
studied in the last few years, as proved in Xiong et al. (2022). In this article, the authors review 297 articles
from 2016 to 2021. 54 of them consider environmental parameters, minimizing energy consumption, carbon,
or noise emission. The studied papers represent only 18 % of the literature, but this objective of green
production is increasingly studied, combined with efficiency objectives. The increasing number of articles
published, in the last few years, on energy-efficient scheduling problems makes our review a relevant topic.

31.6%

31.7%

36.7%

Transport

Industry

Others

Figure 4: Total world energy consumption (Alaouchiche et al., 2020).

2.2.4. Towards more human-centricity

One of the most significant challenges raised by scheduling problems in the context of I5.0 is the human
reintegration into the manufacturing environment, which has been greatly transformed by the increased
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automation and the use of some advanced, sometimes intriguing technologies such as VR/AR, AI, Blockchains,
etc. In fact, for many decades, most research on production scheduling has focused only on machine resources
while ignoring or simplifying the presence of operators in the process model. However, in most real-life cases,
the machines are operated by one or several workers and/or share with them the same workspace.

First, the complexity of adding human factors to a system model may partly explain this oversight.
A machine can be modeled as a resource, characterized by quantitative and qualitative attributes such as
availability, skills, speeds, etc. A worker is more difficult to analyze and model (Zhang et al., 2021b): he
(or she) may have different costs, skills, learning rates, etc., but above all, each worker has his (or her) own
behavioral patterns related to his private life, personality, age, morphology, or any other type of factor that
may directly or indirectly affect the performance of the production system. He (she) also presents various
constraints of unavailability associated with breaks, days off, training, sick leaves, etc. It has often been
reported in the literature that human operators impact the performance of production systems, primarily
through their skills and abilities (Rinaldi et al., 2022). Thus, despite the difficulty of modeling, human
behavior patterns must be considered to have the most realistic scheduling possible while optimizing resource
utilization and reducing the gap between theoretical and effective performance.

Secondly, with the advent of I4.0 new technologies, industrialists and researchers have focused on the
automation process, placing the objective of making machines more connected and more “intelligent” at the
center of research while almost ignoring the human aspect and the environmental aspect as well. Conse-
quently, industrial workers showed dissatisfaction and distrust of I4.0 and I5.0, seeing their jobs replaced
by machines and impacting their social prosperity (Nahavandi, 2019). As Rosenbrock (1990) mentioned,
“Humans should never be subservient to machines and automation, but machines and automation should be
subservient to humans”. As a result, operators and machines should work together, and a new generation
of operators appeared to meet the changing needs in the industry. An operator 4.0 can not only use and
co-work with new technologies but can also work helped, even augmented, by them (Romero et al., 2016).
The objective is to give repetitive and tedious tasks to machines and robots and transform them into “ideal
companions”, while workers operate more complex and high-value-added tasks that require thought and cre-
ativity (Nahavandi, 2019). This is possible with cobots, designed to work with humans and enable proper
human-machine interaction. This collaboration combines human creativity and machine efficiency, making
mass personalization more feasible. This is why cobots are considered as a fundamental element for a resilient
I5.0 taking better advantage of the relationship between machines, technology and human mind (Aheleroff
et al., 2022).

Human centricity and environmental efficiency-related new challenges have led to the birth of the I5.0
era, which will bring back the human touch (Maddikunta et al., 2022) and will be conscious of the future
generation by integrating sustainability as a primary decision criterion during the design and operation of
production systems. As mentioned by Breque et al. (2021), I5.0 recognizes “the power of industry to achieve
societal goals beyond jobs and growth, to become a resilient provider of prosperity, by making production
respect the boundaries of our planet and placing the worker well-being at the center of the production
process”. The industry needs to focus on integrating human values and environmental factors to take care
of current and future generations. Note that human, social and societal aspects are usually confused, which
is why the term “sustainable scheduling” is often used to refer to scheduling problems that consider the
environmental factor associated with human and/or social and/or societal factors.

2.2.5. Towards more resilience

The third value when discussing I5.0 is resilience (Xu et al., 2021c). The resilience of a system is its ability
to overcome alterations caused by one or more disruptive elements and return to its initial state with normal
functioning or even by improving it. Breque et al. (2021) define resilience as “the ability to cope flexibility
with change”.

Resilience is an essential property of systems, closely related to reliability, robustness and recoverability.
In the scheduling domain, reliability refers to the probability that a schedule will be executed correctly (as
planned) under given conditions for a specific period. Robustness defines the ability to perform well under
external disruptions and to sustain good scheduling performance. Therefore, scheduling resilience can be
defined as the ability to recover and maintain the scheduling performance after the occurrence of a disruptive
event. It is a post-disruption property that focuses on re-optimizing and maintaining production scheduling
performance.

Despite various existing methods to solve the JSSP, it is still challenging to implement these methods in
the real-time manufacturing system due to complex dynamic occurring events. The proactive, predictive and
reactive approaches were widely used in the production shops to deal with complexity. Proactive schedul-
ing considers the current predictable changes in advance when generating the original schedule. Reactive
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scheduling emphasizes adjustments to current scheduling when uncertain events occur. Predictive schedul-
ing considers uncertainties in generating the original schedule. In real systems, dynamic scheduling can be
completely-reactive, predictive reactive, or robust proactive (Ouelhadj and Petrovic, 2008). The differences
between the static and the different dynamic scheduling types are illustrated in Figure 5.

Static

Completely-reactive

Predictive-reactive

Pro-active

Pre-scheduling Processing time

Rescheduling

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

x x

Breakdown Repair

No pre-scheduling

t1 t2 t3 t4 t5 t6

x x

Breakdown Repair

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

x x

Breakdown Repair

t1 t2 t3 t4 t5 t6 t1 t2 t3 t4 t5 t6

x x

Breakdown Repair

Figure 5: Static and dynamic scheduling.

In the illustrative example of Figure 5, the objective is to schedule three jobs represented with three
different colors (pink, violet, and brown). Each of these jobs is composed of three operations, subject to
precedence constraints, i.e. an operation cannot start before the previous operation of the same job is
finished. We compare the efficiency of four different types of schedules when a disruption occurs. In this
example, the disruptive event is a breakdown of the first machine between t1 and t2, making the machine
unavailable until it is repaired. The impact of this machine failure is illustrated in Gantt charts showing
the difference between the pre-planning and what actually happens during the processing time. In a static
case, the pre-scheduling is applied no matter what. Thus, the process must wait for the machine to be
repaired before restarting. The difference between the pre-scheduling and the reality is significant. In a
dynamic completely-reactive case, there is no pre-scheduling, and the scheduling is done as tasks come into
the system. The breakdown of the machine has less impact on the process, which avoids that machine until
its repair. In predictive-reactive scheduling, when the machine breaks down, a rescheduling adapts to the
hazard. Finally, robust pro-active scheduling considers in the pre-scheduling the disruptions that may occur
during the process. Operations are sequenced one after the other with a short time interval between each one
to allow more time in case of trouble. In addition, robust proactive scheduling calculates the probability of a
hazard occurring so that scheduling is done accordingly. Thus, the gap between the two end dates is reduced.
As shown in the Figure, static scheduling is strongly impacted by disturbances, while dynamic scheduling
can return quickly to its initial state.

Proactive and reactive scheduling paradigms aim to reduce the impact of the disturbances but some
disruptive events’ impact may exceed, sometimes, the ability of the rescheduling to restore the system per-
formance. In this case, scheduling resilience should retain attention when solving the dynamic scheduling
problem. To the best of our knowledge, resilience is less considered in the literature than the proactive and
reactive scheduling approach and still needs more consideration. Recently, some papers deal with this new
paradigm. For example, Wang et al. (2019) examine the concept of resilient scheduling for manufacturing
systems and propose a three-layer resilient scheduling paradigm to divide the control policy into three modes:
processing sequence regulation, system parameter adjustment, and structure change. The authors designed
a big data-driven framework to protect manufacturing systems from these changes.

Thanks to new technologies arising in the I4.0 era, production is digitized and synchronized, and the
system becomes intelligent and capable of reconfiguring itself. More precisely, data processing enables the
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prediction of hazards that can occur, such as machine breakdown, new job insertion, missing operator, etc.
Also, artificial intelligence methods help the system learn from past events and permit real-time scheduling.
It allows the system variability adaptation while maintaining its quality and customer satisfaction objective.

Most studies in the literature deal with static scheduling because dynamic scheduling is more complex.
Moreover, solving the scheduling problem dynamically with new technologies will help the system to improve
its resilience and should be investigated more in the future. We can further enhance resilience by considering
the workers and environmental aspects. Restoring the human factor will lead to smart manufacturing inte-
grating human brains and the ability to think and react in an unexpected cases. Humans can manage disaster
recovery strategies while machines cannot (Maddikunta et al., 2022). Sindhwani et al. (2022) adds “Good
resiliency can only exist once people are incorporated in areas where the human touch is essential”. Regard-
ing environmental aspects, minimizing pollution and energy consumption in scheduling will lead to cleaner
production to preserve our planet and environment. Since most resources are non-renewable, encouraging
recycling and slowing consumption will lead to a more stable system.

I5.0 presents new challenges, and a trade-off must be made between ecology and society (Xu et al. (2021c);
Aheleroff et al. (2022)). The objective is to achieve sustainable, human-centric, and resilient manufacturing.
The following sections will describe and analyze these aspects in more detail.

3. Research method

This paper focuses only on FJSSP due to their various real-world applications (Weng et al., 2022). We limit
our review to articles published from 2013 onward, which marked the beginning of the I4.0 (Jiang et al., 2021).
I4.0 rhymes with digitalization, new technologies, smart manufacturing, and thus production efficiency. We
choose to examine the articles from the beginning of the fourth revolution to determine approximately when
human and environmental consciousness began to appear in the literature. We conducted our research on two
search engines, namely “Google Scholar” and “Scinapse” completed with papers found through “Connected
Papers”. The keywords used were Flexible Job Shop Scheduling Problem (FJSSP) combined each time with
a word related to the human factor (human, workers, dual resources, ergonomic) or the environmental factor
(green, energy, carbon, sustainable).
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Flexible Job Shop Scheduling Problem (FJSSP)

Figure 6: Research Method

After applying these keywords, another sorting was done. In the first stage, we retained only the papers
concerning FJSSP and eliminated the others. In the second step, we kept either the papers integrating
workers as a resource, the papers considering environmental concerns, or the papers combining both. After a
final screening to identify precise and reliable articles, 135 papers were selected for this survey. We also chose
to keep only the articles redacted in English. With this selection, we obtained articles that consider one or
more aspects of FJSSP in I5.0, namely the human factor or the environmental factor, thus towards more
sustainable and human values-based production scheduling. The studied articles are presented and analyzed
in the next section.
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4. Results and Analysis

In this section, we consider the 135 earlier selected articles. The selected papers are classified accord-
ing to three criteria: the environmental factor (Table 2), the human factor (Table 1) and the two factors
simultaneously (Table 3).

The papers considering the human factor are mentioned by the following metrics: Skills (Sk), Cost (Co),
Learning rate (Lr), Ergonomic risks (Er), Rest (Re) and Age (Ag).

Papers taking into account the environmental factor are specified in the ”Environmental factor” column
by the following parameters: Energy consumption (Ec), Carbon emission (Ce), Noise emission (Ne), or
Recycling (Re).

In most reviewed articles, the time or economic objective is associated with the energy objective. Only
few papers consider simultaneously the economic, environmental, and human factors. Once again, regarding
the growing importance of the human factor in the current manufacturing systems, this emphasizes the
importance of taking the human factor into account in future research.

Human Factors Objective(s)
References Ag Lc Er Lr Re Sk Eco. Env. Hum.
Berti et al. (2021) × × × Cmax
Xixing and Yi (2018) × × Cmax, C, mW
Liu et al. (2021b) × × Cmax, mW, Lc
Ren et al. (2016) × × Js,C
Li et al. (2016a) ; Zhang et al. (2013) × × Cmax, C
Wu et al. (2018) × × Cmax
Tan et al. (2021) × × Cmax F
Sun et al. (2019) × Cmax, mW
Xiao et al. (2019) × Cmax, R
Müller and Kress (2021); Kress and Müller (2019); Zheng
and Wang (2016); Gong et al. (2020); Farjallah et al.
(2022); Zhang et al. (2021b); Peng et al. (2018); Gue-
vara et al. (2015); Lei and Guo (2014); Madenoğlu and
Baykasoğlu (2019); Yazdani et al. (2015)

× Cmax

Paksi and Ma’ruf (2016) × E/T
Andrade-Pineda et al. (2020)∗ Kress et al. (2019); Lei
and Tan (2016)

× Cmax, E/T

Huang et al. (2014)∗ × Rd
Gnanavelbabu et al. (2021) × Cmax, Rd
Vital-Soto et al. (2022) × Cmax, mW, E/T
Yazdani et al. (2019); Gong et al. (2018b) × Cmax, mW
Luo et al. (2022) × Cmax, mW wW
Zhongjie et al. (2013)∗∗ Cmax, C
Zhang et al. (2017b)∗∗ Cmax
Sano et al. (2016)∗∗ T, Wip wW

Table 1: Articles on FJSSP integrating the human factor from 2013 to 2022.
Ag: Age; Lc: labor cost; Er: Ergonomic risks; Lr: Learning rate; Re: Rest; Sk: Skill; Cmax: makesan; mW: Machine workload;
C: Cost; R: Reliability; E/T: Earliness/Tardiness; wW: Workers workload; Rd: Rescheduling disruptions; Js: Job satisfaction;
Wip: Work in process; ∗: dynamic scheduling; ∗∗: Human is considered as a dual resource and no specific factor is indicated.

Env. factors Objective(s)
References Ce Ec Ne Rc Eco. Env. Hum.
Yin et al. (2017b) × × × Cmax Ec; Ne
Hemmati Far et al. (2019) × × C; E/T;
Xu et al. (2021b) × × Cmax; C; Q; Ce
Liu et al. (2021a) × × Cmax; C; E/T Ce
Liu et al. (2017) × × Cmax Ce
Seng et al. (2018) × × Cmax Ec
Wang et al. (2020)∗ × × Cmax; mW;
Li et al. (2020d) ; Liang et al. (2021); Ning and Huang
(2021); Sun et al. (2020); Ning et al. (2021)

× × Cmax; mW Ce

Gu (2021) × × Cmax; mW Ec
Zhou et al. (2022)∗ × × Cmax; R Ec
Huo et al. (2020) ; Wen et al. (2021) × × Cmax; E/T Ce
Zhang et al. (2015) × × Cmax; Wip; mW Ce
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Jiang and Deng (2018) × × EC; E/T
Piroozfard et al. (2018) × × E/T Ce
Yin et al. (2017a) × × Cmax Ec; Ne
Wang et al. (2018) × C Ec
Barak et al. (2021) × C; EC Ec
Song et al. (2014) × Cmax; C Ec
Xu et al. (2016)∗ × Cmax; C; mW; Q Ec
Jiang et al. (2014) × Cmax; C; Q Ec
Mokhtari and Hasani (2017) × Cmax; C; R
Wu and Sun (2018);Gong et al. (2022) × Cmax Ec; IO
He et al. (2015); Dai et al. (2015); Zhang et al. (2018); Luo
et al. (2019); Yang et al. (2016); Li et al. (2020b); Wu et al.
(2019); Zhang et al. (2019b); Zhang et al. (2021a) ; Dai et al.
(2019); Li et al. (2021b); Li et al. (2021a); Ren et al. (2021);
Wu et al. (2021); Li et al. (2022b); Li et al. (2022d); Wang
et al. (2022d); Du et al. (2021); Wang et al. (2022b); Wei
et al. (2022) ; Nouiri et al. (2018)∗ ; Li et al. (2020c)∗ ;
Nouiri et al. (2020)∗ ; Duan and Wang (2021)∗; Li et al.
(2022c)∗; Naimi et al. (2021)∗

× Cmax Ec

Liu et al. (2019b); Zhang et al. (2017a) ; Grosch et al. (2021)
; Park and Ham (2022)

× Cmax; EC

Plitsos et al. (2017) × Cmax; Ft; IT
Luo et al. (2020) ; Zhang et al. (2017d)∗; Wang et al. (2021a) × Cmax; mW Ec
Ayyoubzadeh et al. (2021)∗ × Cmax; mW; E/T
Sang and Tan (2022b) ; Sang and Tan (2022a) × Cmax; mW; E/T; Q Ec
Wu et al. (2020)∗; Duan and Wang (2022)∗ × Cmax; Rd Ec
Caldeira et al. (2020)∗ × Cmax; R Ec
Lei et al. (2019) × Cmax; E/T
An et al. (2020) × Cmax; E/T; C Ec
Shi et al. (2020)∗ ; Karim Ahangar et al. (2021)∗; Li and Lei
(2021)∗

× Cmax; E/T Ec

Li et al. (2019) × Cmax; E/T; mW Ec
Meng et al. (2020); Zhang et al. (2017c); Meng et al. (2019a) ;
Ambrogio et al. (2020) ; Jiang et al. (2020) ; Rakovitis et al.
(2022) ; Ham et al. (2021); Jiang et al. (2022) ; Garcia-
Santiago et al. (2015)∗

× E

Ebrahimi et al. (2020) × EC; E/T
Lei et al. (2017) × mW Ec
Liu et al. (2014) ; Alotaibi et al. (2016)∗ × T Ec
Xu et al. (2021a)∗ × T; IT

Table 2: Articles on FJSSP integrating the environmental factor from 2013 to 2022.
Ce: Carbon emission; Ec: Energy consumption; Ne: Noise emission; Rc: Recycling; C: Cost; EC: Energy cost;

Cmax: makespan; Q: Quality; R: Reliability; Wip: Work in process; mW: Machine workload; E/T: Earliness/Tardiness;
Ec: Energy consumption; Ce: Carbon emission/footprint; Ne: Noise emission; Rd: Rescheduling disruptions; IO: Turn On/Off;

Js: Job satisfaction; ∗: dynamic scheduling

Human Factors Env. factors Objective(s)
References Ag Lc Er Lr Re Sk Ce Ec Ne Rc Eco. Env. Hum.

Lei and Guo (2015) × × × Cmax Ce
Gong et al. (2018a) × × × × × Cmax; Lc Ec; Ne; Rc S
Coca et al. (2019) × × × × Cmax Ce Lr
Gong et al. (2019) × × × Cmax; EC; Lc; mW
Meng et al. (2019b) × × Ec
Li et al. (2020a) × × Ec
Zhu et al. (2020) × × × × × Cmax; Lc Ce
Gong et al. (2021) × × × × × Cmax; Lc Ec; Ne; Rc S
Hongyu and Xiuli (2021) × × × Cmax Ec Lr
Li et al. (2021c) × × × Cmax; E/T; Lc; IT Ec
Peng et al. (2021) × × × × Cmax Ec; Ne
Hajibabaei and Behnamian (2022) × × × Cmax Ne
Liu et al. (2022) × × × × × Cmax; Lc Ec; Ne; Rc S
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Table 3: Articles on FJSSP integrating both human and environmental factors from 2013 to 2022.
Ag: Age; Lc: labor cost; Er: Ergonomic risks; Lr: Learning rate; Re: Rest; Sk: Skill; Ce: Carbon emission;

Ec: Energy consumption; Ne: Noise emission; Rc: Recycling; EC: Energy cost; IT: Idle time ; Cmax: makespan;
mW: Machine workload; C: Cost; E/T: Earliness/Tardiness; Ce: Carbon emission/footprint; Ec: Energy consumption;

Ne: Noise emission; Rc: Recycling; S: Safety.

The 135 referenced articles have been published in 67 different journals or books. However, about 50 %
of these publications have been found in only 10 journals, as shown in Figure 7.
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Figure 7: Top 10 journals publishing about FJSSP with human and/or environmental factors.

Figure 8 presents a chronological sorting of the reviewed articles. The Figure highlights the growth of
interest for green production. The articles that first considered the environmental factor in the FJSSP date
back to 2014. Over the last six years, at least eight papers per year consider energy consumption in their
study. The consideration of the human factor in FJSSP varies over the years. In 2013, only a few articles
were already considering the workers. Based on this graph, one can notice the lack of articles considering
both environmental and human factors. Therefore, moving towards the I5.0 and more resilient production
systems requires that research works focus more on integrating environmental and human factors.
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Figure 8: Enumeration of the surveyed literature integrating human and/or environmental factors.

Figure 9 details the proportion of articles incorporating the environmental and human factors separately or
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simultaneously in the two cases of static and dynamic FJSSP. As previously mentioned, there is a correlation
between these two dimensions and resilience. The Figure shows that most papers integrating at least one
of the two factors solve the problem in a static production environment. Specifically, 69% of the reviewed
papers consider the environmental factor, while 31% consider the workers. Only 9.6% integrate both factors,
and only 15.6% deal with a dynamic environment. Furthermore, papers including both factors always solve
static scheduling. Once again, the graph proves the lack of studies integrating workers and the environment
simultaneously and any such study solving the problem dynamically. The lack of research studies integrating
environmental and human factors in the case of dynamic FJSSP, demonstrates a real need to integrate these
aspects while improving the performance of today’s industrial systems. To achieve an increasingly sustainable,
human-value-based, and resilient industry, we must study the FJSSP in these directions. The following two
subsections provide more details on integrating human and environmental factors in the FJSSP.

Dynamic

Static

One factor Two factors

Resilience

74.8%

15.6%

9.6%

0%

Figure 9: Proportion of articles integrating one or two factors (Human and Environment), considering static or dynamic
scheduling.

4.1. Human Factor

In most cases, an FJSSP that considers the human factor is called a Dual Resource Constrained FJSSP
(DRCFJSSP). It means that we consider both machines and workers as resources. One or more workers
can operate the same machine, and a worker can operate one or more machines simultaneously. Figure 10
illustrates a DRCFJSSP, highlighting the difference between an FJSSP with only machine consideration, as
seen in Figure 2, and a DRCFJSSP. For each operation, a worker has to be assigned to the corresponding
machine to process it. Workers are also flexible, meaning that they can operate different machines. Workers’
consideration adds complexity to the model, as we have even more possibilities to make decisions. The three
sub-problems in a DRCFJSSP are: (1) allocating each operation on the optimal machine, (2) assigning an
optimal worker to process it, and (3) finding the optimal operation sequence on each machine. We can
apply the dual resource-constrained problem to automobile manufacturing, equipment manufacturing and
electronic products manufacturing, etc., see for example Wu et al. (2018).

Generally, workers are difficult to represent in a mathematical model. The complexity of providing an
accurate decision or action that a worker would make is very high, and operator errors are responsible for
about 60-90 % of failures in a system (Kumar et al., 2020). In the literature, we notice various criteria for
modelling a worker. First, some articles identify a worker by his skills (Lei and Tan, 2016; Zheng and Wang,
2016; Tan et al., 2021). With this characterization, a worker can have different skills, meaning that he can be
more or less efficient depending on the machine. These skills vary from one worker to another and change the
processing time of a task, thus impacting the scheduling. Directly linked to the worker’s qualifications, some
papers take into account the worker’s learning rate (Wu et al., 2018; Zhu et al., 2020; Peng et al., 2021). In
these models, workers’ skills evolve as they spend more time on a machine. Therefore, a worker who spends
a lot of time on a machine will quickly increase his competence and thus reduce the processing time of the
tasks he performs on this one. On the other hand, if he varies and spends time on several machines, he will
be more versatile, which improves the production system’s flexibility. During his/her working time, a worker
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Figure 10: Dual Resource Constrained Flexible job-shop Scheduling Problem.

is exposed to different kinds of health risks, often called ergonomic risks (Coca et al., 2019; Hongyu and
Xiuli, 2021; Hajibabaei and Behnamian, 2022). In a production process, ergonomic risks can be exposure
to temperature and noise, vibrations affecting tendons, muscles, bones, or the nervous system, physical and
mental effort, or bad postures that can cause musculoskeletal disorders. Different methods such as OCRA,
RULA, REBA or EAWS were proposed in the literature to measure the human-related work risks. These
methods, among others, are summarized in Table 4 (adapted from Savino et al. (2016)). The upper limbs
correspond to the neck, trunk, waist, wrist, arms, and forearms, and the lower limbs correspond to the knees
and legs (Savino et al., 2017).

Method Body part Parameters considered

RULA Upper limb Posture, muscle use, weight, task duration, frequency

OCRA Upper limb Rest, frequency, strength, posture, temperature, vibration

REBA Upper and lower
limb

Posture, muscle use, weight, task duration, frequency, hand coupling

OWAS Full body posture, lifted weight

EAWS Full body posture, strength, manual material handling

Table 4: Ergonomic methods description.

The ergonomic methods presented in Table 4 are used in particular in assembly line problems due to the
repetitiveness of worker’s movement (Bautista et al., 2016) or workforce assignment problems (Rinaldi et al.,
2022), but also in some FJSSP (Hongyu and Xiuli, 2021). For example, the OCRA index provides results
such as “no risk”, “low risk” or “high risk” on the worker regarding the achieved task. We often model the
ergonomic risk as a not-to-exceed limit in the constraints. Workers must therefore be assigned tasks that
do not expose them to too many risks. For instance, if a machine requires an awkward posture, the same
worker will not be assigned to this one for too long during the day. Also, we can consider the fatigue and
rest time of the workers (Sun et al., 2019; Berti et al., 2021; Tan et al., 2021). Fatigue can be calculated
as in Berti et al. (2021) with energy expenditure during the work process and the workers’ rest time. Tan
et al. (2021) implements a worker-dependent recovery parameter to model workers’ fatigue reduced during
rest time. Workers’ fatigue influences the scheduling as the more an operator is tired, the less efficient he will
be (Savino et al., 2017), affecting processing times. Including rest time during a schedule can change tasks
order or tasks beginning. For example, if no pre-emption is allowed, a worker cannot start to process an
operation if the latter cannot be over before the worker’s rest time. Berti et al. (2021) also considers workers’
age, influencing workers’ fatigue and physical condition. Finally, the cost of workers can be considered, as in
Li et al. (2016a); Gong et al. (2018a); Liu et al. (2022). The cost to employ a worker depends on his skills
and experiences. It can be calculated as an hourly wage or a sum for each task processed, depending on the
task. Thus, we can model workers with many parameters that greatly influence the schedule.

Figure 11 summarizes the most taken-into-account parameters based on the 47 selected articles and
considering the human factor. Almost all found papers distinguish workers’ skills, whereas about a quarter
consider labor cost, and only a few of them take into account learning rate, rest time, ergonomic risk, or
age. What emerges from this figure is that most of the models treat workers almost as if they were machine
resources. A machine has a capacity and a processing cost, and so do the workers. However, human operators
are much more complex, and workers’ differences (age, gender, anthropometry, etc.) and well-being should
be considered more. A worker feeling safe, healthy, well surrounded (machines, teams, managers), valued,
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and involved is more motivated at work. Thanks to that, the production process is improved, and the system
becomes more resilient, employing operators feeling good in their work environment and therefore more
likely to perform better. Lu et al. (2022) proposes an Industrial Human Needs Pyramid which links everyday
human needs with the manufacturing system. This pyramid highlights the parameters needed to model the
operators. Five levels are presented: safety, health, belonging, esteem, and self-actualization. The authors
conclude that manufacturing should consider workers personally, considering their differences on all levels,
from physical to psychological. The goal is to create a system where “individual well-being and sustained
manufacturing growth are mutually reinforcing” (Lu et al., 2022). In addition, nowadays and for years to
come, the active population is ageing, which should increase the need to reduce ergonomic risks at work
(Otto and Battäıa, 2017).
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Figure 11: Distribution of the reviewed papers regarding human’s parameters.
Sk: skill, Lc: Labor cost, Lr: learning rate, Re: rest, Er: Ergonomic risks, Ag: age.

To go further, we can divide the articles integrating human factors into two families: the ones considering
the human factor in the objective function and those considering the human in the constraints. Only 28% of
these articles measure the human factor in the objective function. In the other types of objectives, the most
repeated are minimizing the makespan, the production cost, or the total tardiness. As detailed in Figure 12,
papers adding human factors to the objective function optimize the workers’ cost most of the time. On the
same time, some papers minimize ergonomic risks (Hongyu and Xiuli, 2021; Coca et al., 2019), worker’s
fatigue (Tan et al., 2021) or worker’s workload (Luo et al., 2022; Sano et al., 2016).

Regarding resolution methods, different exact, heuristic, meta-heuristic and hybrid methods are widely
explored in the literature. In our analysis, we focus only on the papers considering the Human or/and
environmental factors and try to analyze the trends in the FJSSP regarding the resolution methods. Most
papers use a hybrid method, composed of meta-heuristics combined with local search, as shown in Figure 13.
Most often, the genetic algorithm or an improvement of it is used.

As previously mentioned, 28% of the papers integrating human parameters also consider environmental
parameters, such as energy consumption, carbon emission, or noise emission. Meng et al. (2019b) has proven
that workers’ skills can impact energy consumption in production. A worker with high skills will be more
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objective function.
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efficient, decreasing processing time and thus energy consumption. As seen in this Section, bringing back the
human touch in manufacturing leads to many changes in the scheduling problems, especially in the FJSSP,
creating challenges for future research. Future studies must focus more on ergonomic risks and differences
between workers to ensure human well-being.

4.2. Environmental Factor

According to Li and Wang (2022), green production has started to attract attention since 2013. From this
date, this topic’s research has increased, especially during the last three years. FJSSP follows this trend as
shown in Figure 8. The industry is responsible for a third of energy consumption in the world (Alaouchiche
et al., 2020), so being aware of energy saving in manufacturing could help reduce pollution emissions and
improve resource utilization. Green production can pay attention to energy consumption, carbon emission,
noise emission, or even recycling. The challenge here is to provide “environment-friendly” scheduling, while
trying to optimize economic aspects and satisfy customers. For instance, if a machine is very efficient but
needs lots of power to work, there is a trade-off between speeding up the production process and reducing
pollution. Generally, the age of machines is heterogeneous in factories. New ones use less energy than older
ones, which use more energy and emit more pollutants (Li et al., 2016b). As a result, the choice of machines
for production must be adapted.

Concerning FJSSP, we collected 101 papers integrating environmental parameters in their models since
2013, detailed in Table 2. Figure 14 shows which factors are the most used. Undeniably, energy consumption
is the one that has received the most attention, present in 100 articles on 101. Besides, carbon emission
has attracted attention in 22 articles directly linked to energy consumption. Most of the time, the models
measure environmental parameters in the objective function. 98% of these 101 articles try to maximize green
production, and 89% of them are multi-objective, meaning that there is a trade-off between several objectives.
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Figure 14: Environmental parameters considered in the literature. Ec: energy consumption, Ce: carbon emission, Ne: noise
emission, Re: recycling.

Among all these articles, we notice different ways of modeling energy consumption. First, as described
in Figure 15, the machines go through various stages during the process. These stages don’t use the same
quantity of energy. For instance, Wu and Sun (2018) proposed an approach to simultaneously reduce the
makespan, the energy consumption and the number of turning-on/off machines. Other works consider the
idle state of a machine, e.g. Meng et al. (2019a). A set-up or a maintenance intervention can be carried out on
a machine before or after the execution of an operation, consuming another amount of power, as considered
in Li and Lei (2021) and Mokhtari and Hasani (2017). Finally, when a machine processes a task, it can have
different energy consumption, linked with the operation’s type and duration (Gong et al., 2018a). In addition,
a machine can have different speeds during the process, leading to a variation in energy consumption or even
noise emission (Duan and Wang, 2021). Some articles schedule the shutdown of a machine if idle times are
too long to reduce consumption (Zhang et al., 2017c).

At the same time, other activities in the factory also need power, such as transport, loading and unloading
(Dai et al., 2019; Zhang et al., 2017c). In fact, when a product goes from one machine to another, it has
to be transported, loaded on the machine, and therefore unloaded, which is energy-consuming. In this way,
transport can have an impact on the schedule. For instance, the machine chosen for an operation can depend
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on the previous machine selected for the same job while trying to limit transport time and thus the power
consumed. Finally, the lighting, the heating, the air conditioning, etc. are auxiliary energies used during a
production process, which are also considered in FJSSP literature, e.g. Ham et al. (2021). These energies
are related to the makespan because the longer it takes to produce, the more power is required. Figure 15
summarizes all the activities that consume energy within a production workshop. We can model different
parameters associated to these activities to optimize the overall energy consumption, without deteriorating
other performance indicators related to customers’ satisfaction. However, this is still a significant challenge
for future research in the scheduling domain, especially the dynamic FJSSP.

J1

Transport

Loading

O12, O13, ..

Transport

Unloading

Machine different stages

O11

Turn on Idle Set up MaintenanceProcessing Turn off

Auxiliary

Figure 15: Energy consumption in a workshop.

The parameters described previously are not always considered in mathematical models. Figure 16 details
how much articles integrate them in their studies, based on those optimizing energy consumption. The power
consumed during the processing time is always considered. Most of them take into account the idle times of
the machines but apart from these two, the other parameters are less studied in the literature.
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Figure 16: Energy parameters considered in flexible job-shops. Pr: processing time, Id: idle time, To: turn on and off, Tr:
transport, Ax: auxiliary, Su: set-up, Sp: machine speeds, Lo: loading and unloading, Ma: maintenance.

Regarding resolution methods, most papers use hybrid methods to solve the green scheduling as shown
in Figure 17. These hybrid methods are composed of meta-heuristics combined with local search or artificial
intelligence methods. The latter can improve the solution by learning the system the right or wrong solutions.
Moreover, artificial intelligence methods can deal with a dynamic environment. The rest of the studies use
meta-heuristics (e.g. genetic algorithm), heuristics, artificial intelligence methods (e.g. agent-based methods,
Q-learning) or exact methods.

To summarize, energy consumption during the production process is increasingly studied in the literature,
often including the consumption of processing time and idle time. However, few studies have worked on energy
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Figure 17: Resolution method used based on the 101 articles considering environmental factor.

consumption during transport, set-up, loading, unloading, and maintenance times. Similarly, auxiliary energy
needs, such as lighting or air conditioning, need to be further considered. This environmental awareness helps
factories to become more sustainable and to take the first step towards Industry 5.0. Then, the human factor
should be increasingly considered as same as the economic and environmental factors. In fact, based on
the 101 articles trying to maximize green production in FJSSP, only 13 of them integrate the human factor
in their models. Nevertheless, the majority of reviewed papers emphasize the necessity for research to be
conscious of both human and environmental values to improve the manufacturing systems’ performance and
the well-being of the present generation as well as future generations.

5. Future research

This paper reviewed and analyzed how human and environmental factors are considered in the literature
of FJSSP. The scheduling models and methods were transformed by the arising of Industry 4.0 concepts
and technologies and are nowadays challenged by the new concerns related to the human-centricity and
environment efficiency of the current Industry 5.0 context. Looking at our analysis, only few papers consider
the sustainable (economic-human-environment) scheduling problem, and efforts still need to be directed
towards this problem exploration. In this section, we suggest a mathematical model to solve a Sustainable
Flexible Job Shop Scheduling Problem (SFJSSP) with Dual Resource Constraint, aiming to minimize the
total energy consumption. Our model should limit the worker’s exposure to repetitive upper limb movements
based on the standard OCRA index. The following subsections briefly described our model and provide the
general mathematical model. Future extensions of the model are also discussed.

5.1. Problem statement

In our model, we consider both human and machine resources. For this purpose, we divide the tasks
into four categories: the ones managed by both workers and machines (human-robot collaboration), the ones
handled by either workers or machines, the ones operated only by workers (e.g. customized item), and the
ones processed only by machines (e.g. difficult tasks). In addition, multiple workers can handle one operation,
and a resource cannot perform several tasks simultaneously. Thus, we must specify the number of workers
needed for each task. Obviously, both resources are not always available. Each operation allocated to a
resource must wait until the previous task on that resource is completed. In addition, set-up times must be
executed on machines when two consecutive jobs require different settings. Added to this is the maintenance
time, whether it is predictive maintenance to anticipate breakdowns or repair. These procedures cause the
unavailability of the machines that should be considered in the model.

For workers’ availability, we must take into account more parameters. As mentioned earlier in this paper,
recovery times and maximum workload must be included in the model to prevent and reduce workers’ fatigue.
In parallel, the ergonomic risks for each worker must be limited, affecting their health and efficiency. It can
be calculated by an index such as OCRA, EAWS, RULA, etc. Several uses of these indexes in the same
model can help to consider the problem entirely. These ergonomic constraints will impact the distribution
of workers’ tasks. Directly linked, the sequence of tasks that the worker performs can influence his efficiency
(Rinaldi et al., 2022), affecting resource allocation. In addition, when a worker moves from one machine to
another, there is an additional time involved, namely travel time. Moreover, the workers have different skills
that can evolve along the production process according to their learning rate. The model must consider these
aspects. Finally, the operators have different costs (wages) depending on their skills and experience. These
costs must be integrated into the model, affecting the total production cost.
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All these parameters will make the model more complex but more conscious of resource availability and
efficiency. So, first, we integrate them as constraints. Then, we can easily adapt the model to maximize
workers’ well-being in the objective function, placing humans at the center of the problem.

Our choice is to minimize the total energy consumption. The first reason for this choice is that the
environment is one of the two topics we want to focus on to move towards an I5.0. Second, defining energy as
a constraint is complex because we don’t have a clear idea of the limit not to be exceeded during the process.
If we set the energy in the objective, the model will provide the most energy-efficient scheduling, regardless
of the energy consumption limit.

5.2. Mathematical modelling

5.2.1. Assumptions

The following assumptions are made to model the considered SFJSSP:

• Each operation is processed by one operator on one machine;
• An operator can execute only one operation at a time;
• An operator rests 12.5% of his worked time when he wants during the day. It can be adapted according
to factory rules;

• A period is equal to 7h or 8h, and a worker is assigned to one period to two (A worker is assigned every
morning, afternoon, or night. These constraints can be adapted according to factory rules).

5.2.2. Objective function

We suggest a mono-objective formulation of the SFJSSP to minimize the total energy consumption as
follows:

min ET + EM + EC

ET corresponds to the energy linked to transport. EM denotes the machines’ related energy and EC refers
to the auxiliary energy. The latter is directly related to the makespan: the longer the production process, the
more energy is consumed for lighting, heating, etc. Thus, by minimizing energy consumption, the makespan
should also be minimized. Through this objective, the environmental factor is considered. Human factors,
on its side, will be considered in the constraints.

5.2.3. Constraints

We consider three family constraints: workers-related, precedence-related, and tasks-related. First, the
workers’ constraints are defined as follows:

• OCRA ≤ 2.2 → OCRA index respected for all workers;
• Rest time ≥ 12.5 % × work time → Rest time respected for all workers;
• Period + next period = 1 → A worker can’t be assigned on two consecutive periods.

Besides, we have three types of precedence constraints. The first type is related to tasks of the same job,
as a task can’t start before the completion time of the previous task added to transport time and waiting
time. Waiting time can be for example cooling or drying. The second type of precedence constraint concerns
the precedence of tasks assigned to the same worker, as a task can’t start before the completion time of the
previous task added to travel time and rest time for the chosen worker. Finally, the third type is related
to tasks executed on the same machine and states that a task can’t start before the completion time of the
previous task added to the set-up time. The precedence-related constraints are defined as follows:

• Completion time + Transport + Waiting ≤ Starting time of the next task;
• Completion time + Transport + Rest ≤ Starting time of the next task;
• Completion time + Set-up ≤ Starting time of the next task.

Finally, the task-related constraints ensure respecting due dates, starting time and completion time in the
period the task is assigned on. We define these constraints as follows:

• Completion time ≤ End time of the period;
• Starting time ≥ Starting time of the period;
• Completion time ≤ Due date.
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5.3. Perspectives

In this study, we propose a mono-objective model to minimize energy consumption. Our model considers
the human factor in the constraints by limiting workers’ repetitive movements. However, the human factor
can be modeled as an objective function making our model multi-objective, for example, one considers to:

• Maximize the workers’ flexibility: the purpose is to reinforce the worker’s multi skills. In this sense,
the system would be more flexible, allowing the operators to use more machines.

• Maximize the worker’s well-being, thanks to ergonomic indexes as mentioned previously. For example,
we can minimize the maximum ergonomic index, thus reducing the ergonomic index of each worker.

By combining these objectives, we should be able to measure how much the workers and the environmental
factors can impact the performance of the shop floor. We can imagine a multi-objective human-environment-
economic model.

The SFJSSP we suggest in this paper is static. For small instances, our model can be solved with an
exact method. Besides, the objective will be to provide a dynamic SFJSSP able to deal with uncertainties
that can occur during the production process. The resilience will also be enhanced by improving the system’s
ability to react to disruptive events. We may use, among others, the triangular fuzzy number to represent
uncertainties in manufacturing systems as presented by Li et al. (2022a). In the last few decades, several
methods have been used to solve the dynamic FJSSP. The two most used are metaheuristics and dispatching
rules; however, these later are ineffective in finding an optimal solution (Luo, 2020). Metaheuristics deal with
the dynamic scheduling problem by decomposing it into several static sub-problems, which leads to a time-
consuming solution (Luo, 2020). On the contrary, artificial intelligence methods have proved their efficiency
in dealing with real-time scheduling problems. To confirm this point, regarding the 135 articles selected in
our studies, we notice differences between the resolution methods used in static and dynamic cases. Figure
18a shows that exact methods can solve static FJSSP, and on the contrary, Figure 18b demonstrates that
no study has used these methods to solve dynamic scheduling. Moreover, artificial intelligence methods are
used in dynamic cases while no static scheduling is solved with them. Hybrid methods used in dynamic cases
most of the time combine meta-heuristics and artificial intelligence methods.

9%

7%
6%

78%

Metaheuristics

Heuristics

Exact methods

Hybrid

(a) In static cases

10%

9%24%

57%

Metaheuristics

Heuristics

AI methods

Hybrid

(b) In dynamic cases

Figure 18: Resolution method used in case of static or dynamic FJSSP, based on the 135 articles selected.

We plan to solve our model using machine learning methods. In particular, we are interested in the deep
reinforcement learning technique. Wang et al. (2021b) assures that “deep reinforcement learning can give
immediate action for the problem if the model is well trained” and can handle combinatorial optimization
problems. Further, Ansari and Bakar (2014) states that the fuzzy logic method can optimize multiple goals.
In that sense, we will study the fuzzy logic to solve our multi-objective model. To go further in our approach,
we plan to test our model on a real industrial case to improve it.

6. Conclusion

This paper presents a survey of FJSSP considering the environmental and human factors. We start
by introducing the evolution of scheduling problems, particularly in the last decade from the emergence
of Industry 4.0 to now. Scheduling problems have been widely studied in the literature under different
production types, characteristics, environments, and objective functions. This interest is due to the high
impact that scheduling has on the production process. FJSSP is the most encountered in the real-world case.
For decades, research focused on economic aspects, minimizing the makespan or the production cost as an
evaluation criterion. Recently, I4.0 has brought new technologies that increase production efficiency, driving
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the research on solving the scheduling problem in this new context. Today new challenges are emerging,
namely human’s well-being, sustainability, and resilience. They tend to move towards an I5.0, filling in the
gaps of I4.0. The objective is to use technologies in an intelligent way, placing humans at the head of the
system and being conscious of our planet.

Most of the articles reviewed primarily consider economic and energy consumption objectives. Few papers
consider, at the same time, the economic, environmental, and social dimensions. Growing importance is
increasingly accorded to the sustainable FJSSP. Also, most previous studies consider the makespan as the
main and single objective. Considering multi-objective models which take into account the three pillars of
sustainability, is becoming trend research. Regarding resolution methods, most papers use hybrid methods
to solve the scheduling problem considering human or environmental factors. These hybrid methods are
composed of meta-heuristics combined with local search or Artificial Intelligence (AI) methods.

This survey proved a lack of studies integrating both factors linked to I5.0, namely human and environ-
mental consideration, and a lack of dynamic FJSSP studies. These gaps provide a direction for future work
to keep up with the manufacturing trend towards Industry 5.0.
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ergy Consumption. Tehnički glasnik 15, 76–83. URL: https://hrcak.srce.hr/253025, doi:10.31803/
tg-20200815184439.

Kress, D., Müller, D., 2019. Mathematical Models for a Flexible Job Shop Scheduling Problem with Machine
Operator Constraints. 9th IFAC Conference on Manufacturing Modelling, Management and Control MIM
2019 52, 94–99. URL: https://www.sciencedirect.com/science/article/pii/S2405896319310936,
doi:10.1016/j.ifacol.2019.11.144.

Kress, D., Müller, D., Nossack, J., 2019. A worker constrained flexible job shop scheduling problem
with sequence-dependent setup times. OR Spectrum 41, 179–217. URL: https://doi.org/10.1007/
s00291-018-0537-z, doi:10.1007/s00291-018-0537-z.

Kumar, P., Gupta, S., Gunda, Y., 2020. Estimation of human error rate in underground coal mines through
retrospective analysis of mining accident reports and some error reduction strategies. Safety Science 123,
104555. URL: https://www.sciencedirect.com/science/article/pii/S0925753519321666, doi:10.
1016/j.ssci.2019.104555.

24

https://www.sciencedirect.com/science/article/pii/S0959652614010464
http://dx.doi.org/10.1016/j.jclepro.2014.10.006
http://dx.doi.org/10.1016/j.jclepro.2014.10.006
https://doi.org/10.1007/s00170-019-03797-w
http://dx.doi.org/10.1007/s00170-019-03797-w
https://onlinelibrary.wiley.com/doi/10.1049/cim2.12003
https://onlinelibrary.wiley.com/doi/10.1049/cim2.12003
http://dx.doi.org/10.1049/cim2.12003
https://www.scientific.net/AMR.933.708
http://dx.doi.org/10.4028/www.scientific.net/AMR.933.708
http://www.ijsimm.com/Full_Papers/Fulltext2020/text19-3_CO12.pdf
http://www.ijsimm.com/Full_Papers/Fulltext2020/text19-3_CO12.pdf
http://dx.doi.org/10.2507/IJSIMM19-3-CO12
http://dx.doi.org/10.1109/ACCESS.2018.2866133
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-191370
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-191370
http://dx.doi.org/10.3233/JIFS-191370
https://www.sciencedirect.com/science/article/pii/S2210537922000233
http://dx.doi.org/10.1016/j.suscom.2022.100680
http://hdl.handle.net/10419/188621
http://hdl.handle.net/10419/188621
http://dx.doi.org/10.3926/jiem.1075
https://doi.org/10.1080/00207543.2021.1925772
https://doi.org/10.1080/00207543.2021.1925772
http://dx.doi.org/10.1080/00207543.2021.1925772
https://hrcak.srce.hr/253025
http://dx.doi.org/10.31803/tg-20200815184439
http://dx.doi.org/10.31803/tg-20200815184439
https://www.sciencedirect.com/science/article/pii/S2405896319310936
http://dx.doi.org/10.1016/j.ifacol.2019.11.144
https://doi.org/10.1007/s00291-018-0537-z
https://doi.org/10.1007/s00291-018-0537-z
http://dx.doi.org/10.1007/s00291-018-0537-z
https://www.sciencedirect.com/science/article/pii/S0925753519321666
http://dx.doi.org/10.1016/j.ssci.2019.104555
http://dx.doi.org/10.1016/j.ssci.2019.104555


Lei, D., Guo, X., 2014. Variable neighbourhood search for dual-resource constrained flexible job shop schedul-
ing. International Journal of Production Research 52, 2519–2529. URL: https://doi.org/10.1080/
00207543.2013.849822, doi:10.1080/00207543.2013.849822. publisher: Taylor & Francis.

Lei, D., Guo, X., 2015. An effective neighborhood search for scheduling in dual-resource constrained in-
terval job shop with environmental objective. International Journal of Production Economics 159, 296–
303. URL: https://www.sciencedirect.com/science/article/pii/S0925527314002436, doi:10.1016/
j.ijpe.2014.07.026.

Lei, D., Li, M., Wang, L., 2019. A Two-Phase Meta-Heuristic for Multiobjective Flexible Job Shop Scheduling
Problem With Total Energy Consumption Threshold. IEEE Transactions on Cybernetics 49, 1097–1109.
doi:10.1109/TCYB.2018.2796119.

Lei, D., Tan, X., 2016. Local search with controlled deterioration for multi-objective scheduling in dual-
resource constrained flexible job shop, in: 2016 Chinese Control and Decision Conference (CCDC), pp.
4921–4926. doi:10.1109/CCDC.2016.7531874. journal Abbreviation: 2016 Chinese Control and Decision
Conference (CCDC).

Lei, D., Zheng, Y., Guo, X., 2017. A shuffled frog-leaping algorithm for flexible job shop scheduling with the
consideration of energy consumption. International Journal of Production Research 55, 3126–3140. URL:
https://doi.org/10.1080/00207543.2016.1262082, doi:10.1080/00207543.2016.1262082. publisher:
Taylor & Francis.

Leusin, M., Frazzon, E., Uriona Maldonado, M., Kück, M., Freitag, M., 2018. Solving the Job-Shop Scheduling
Problem in the Industry 4.0 Era. Technologies 6. URL: https://www.mdpi.com/2227-7080/6/4/107,
doi:10.3390/technologies6040107.

Li, H., Duan, J., Zhang, Q., 2021a. Multi-objective integrated scheduling optimization of semi-combined
marine crankshaft structure production workshop for green manufacturing. Transactions of the Insti-
tute of Measurement and Control 43, 579–596. URL: http://journals.sagepub.com/doi/10.1177/
0142331220945917, doi:10.1177/0142331220945917.

Li, H., Zhu, H., Jiang, T., 2020a. Modified Migrating Birds Optimization for Energy-Aware Flexible Job
Shop Scheduling Problem. Algorithms 13. doi:10.3390/a13020044.

Li, J., Huang, Y., Niu, X., 2016a. A branch population genetic algorithm for dual-resource constrained
job shop scheduling problem. Computers & Industrial Engineering 102, 113–131. URL: https://www.
sciencedirect.com/science/article/pii/S0360835216303813, doi:10.1016/j.cie.2016.10.012.

Li, J.q., Deng, J.w., Li, C.y., Han, Y.y., Tian, J., Zhang, B., Wang, C.g., 2020b. An improved Jaya
algorithm for solving the flexible job shop scheduling problem with transportation and setup times.
Knowledge-Based Systems 200, 106032. URL: https://www.sciencedirect.com/science/article/pii/
S0950705120303270, doi:10.1016/j.knosys.2020.106032.

Li, J.q., Liu, Z.m., Li, C., Zheng, Z.x., 2021b. Improved Artificial Immune System Algorithm for Type-
2 Fuzzy Flexible Job Shop Scheduling Problem. IEEE Transactions on Fuzzy Systems 29, 3234–3248.
doi:10.1109/TFUZZ.2020.3016225.

Li, K., Zhang, X., Leung, J.T., Yang, S.L., 2016b. Parallel machine scheduling problems in green manufac-
turing industry. Journal of Manufacturing Systems 38, 98–106. URL: https://www.sciencedirect.com/
science/article/pii/S0278612515001296, doi:10.1016/j.jmsy.2015.11.006.

Li, M., Lei, D., 2021. An imperialist competitive algorithm with feedback for energy-efficient flexible
job shop scheduling with transportation and sequence-dependent setup times. Engineering Applications
of Artificial Intelligence 103, 104307. URL: https://www.sciencedirect.com/science/article/pii/
S095219762100155X, doi:10.1016/j.engappai.2021.104307.

Li, M., Lei, D., Xiong, H., 2019. An Imperialist Competitive Algorithm With the Diversified Operators
for Many-Objective Scheduling in Flexible Job Shop. IEEE Access 7, 29553–29562. URL: https://
ieeexplore.ieee.org/document/8626145/, doi:10.1109/ACCESS.2019.2895348.

Li, M., Wang, G.G., 2022. A review of green shop scheduling problem. Information Sciences 589, 478–
496. URL: https://www.sciencedirect.com/science/article/pii/S0020025521013438, doi:10.1016/
j.ins.2021.12.122.

25

https://doi.org/10.1080/00207543.2013.849822
https://doi.org/10.1080/00207543.2013.849822
http://dx.doi.org/10.1080/00207543.2013.849822
https://www.sciencedirect.com/science/article/pii/S0925527314002436
http://dx.doi.org/10.1016/j.ijpe.2014.07.026
http://dx.doi.org/10.1016/j.ijpe.2014.07.026
http://dx.doi.org/10.1109/TCYB.2018.2796119
http://dx.doi.org/10.1109/CCDC.2016.7531874
https://doi.org/10.1080/00207543.2016.1262082
http://dx.doi.org/10.1080/00207543.2016.1262082
https://www.mdpi.com/2227-7080/6/4/107
http://dx.doi.org/10.3390/technologies6040107
http://journals.sagepub.com/doi/10.1177/0142331220945917
http://journals.sagepub.com/doi/10.1177/0142331220945917
http://dx.doi.org/10.1177/0142331220945917
http://dx.doi.org/10.3390/a13020044
https://www.sciencedirect.com/science/article/pii/S0360835216303813
https://www.sciencedirect.com/science/article/pii/S0360835216303813
http://dx.doi.org/10.1016/j.cie.2016.10.012
https://www.sciencedirect.com/science/article/pii/S0950705120303270
https://www.sciencedirect.com/science/article/pii/S0950705120303270
http://dx.doi.org/10.1016/j.knosys.2020.106032
http://dx.doi.org/10.1109/TFUZZ.2020.3016225
https://www.sciencedirect.com/science/article/pii/S0278612515001296
https://www.sciencedirect.com/science/article/pii/S0278612515001296
http://dx.doi.org/10.1016/j.jmsy.2015.11.006
https://www.sciencedirect.com/science/article/pii/S095219762100155X
https://www.sciencedirect.com/science/article/pii/S095219762100155X
http://dx.doi.org/10.1016/j.engappai.2021.104307
https://ieeexplore.ieee.org/document/8626145/
https://ieeexplore.ieee.org/document/8626145/
http://dx.doi.org/10.1109/ACCESS.2019.2895348
https://www.sciencedirect.com/science/article/pii/S0020025521013438
http://dx.doi.org/10.1016/j.ins.2021.12.122
http://dx.doi.org/10.1016/j.ins.2021.12.122


Li, R., Gong, W., Lu, C., 2022a. Self-adaptive multi-objective evolutionary algorithm for flexible
job shop scheduling with fuzzy processing time. Computers & Industrial Engineering 168, 108099.
URL: https://www.sciencedirect.com/science/article/pii/S0360835222001693, doi:10.1016/j.
cie.2022.108099.

Li, R., Gong, W., Wang, L., Lu, C., Jiang, S., 2022b. Two-stage knowledge-driven evolutionary al-
gorithm for distributed green flexible job shop scheduling with type-2 fuzzy processing time. Swarm
and Evolutionary Computation , 101139URL: https://www.sciencedirect.com/science/article/pii/
S2210650222001092, doi:10.1016/j.swevo.2022.101139.

Li, W., He, L., Cao, Y., 2021c. Many-Objective Evolutionary Algorithm With Reference Point-Based Fuzzy
Correlation Entropy for Energy-Efficient Job Shop Scheduling With Limited Workers. IEEE Transactions
on Cybernetics , 1–14doi:10.1109/TCYB.2021.3069184.

Li, Y., Gu, W., Yuan, M., Tang, Y., 2022c. Real-time data-driven dynamic scheduling for flexible job
shop with insufficient transportation resources using hybrid deep Q network. Robotics and Computer-
Integrated Manufacturing 74, 102283. URL: https://www.sciencedirect.com/science/article/pii/
S0736584521001630, doi:10.1016/j.rcim.2021.102283.

Li, Y., He, Y., Wang, Y., Tao, F., Sutherland, J.W., 2020c. An optimization method for energy-conscious
production in flexible machining job shops with dynamic job arrivals and machine breakdowns. Jour-
nal of Cleaner Production 254, 120009. URL: https://www.sciencedirect.com/science/article/pii/
S0959652620300561, doi:10.1016/j.jclepro.2020.120009.

Li, Y., Huang, W., Wu, R., Guo, K., 2020d. An improved artificial bee colony algorithm for solv-
ing multi-objective low-carbon flexible job shop scheduling problem. Applied Soft Computing 95,
106544. URL: https://www.sciencedirect.com/science/article/pii/S156849462030483X, doi:10.
1016/j.asoc.2020.106544.

Li, Y., Yang, Z., Wang, L., Tang, H., Sun, L., Guo, S., 2022d. A hybrid imperialist competitive algorithm for
energy-efficient flexible job shop scheduling problem with variable-size sublots. Computers & Industrial En-
gineering 172, 108641. URL: https://linkinghub.elsevier.com/retrieve/pii/S0360835222006295,
doi:10.1016/j.cie.2022.108641.

Liang, X., Chen, J., Gu, X., Huang, M., 2021. Improved Adaptive Non-Dominated Sorting Genetic Algorithm
With Elite Strategy for Solving Multi-Objective Flexible Job-Shop Scheduling Problem. IEEE Access 9,
106352–106362. URL: https://ieeexplore.ieee.org/document/9492149/, doi:10.1109/ACCESS.2021.
3098823.

Liu, C., Yao, Y., Zhu, H., 2022. Hybrid Salp Swarm Algorithm for Solving the Green Scheduling Problem in
a Double-Flexible Job Shop. Applied Sciences 12. doi:10.3390/app12010205.

Liu, Q., Gui, Z., Xiong, S., Zhan, M., 2021a. A principal component analysis dominance mechanism
based many-objective scheduling optimization. Applied Soft Computing 113, 107931. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S156849462100853X, doi:10.1016/j.asoc.2021.107931.

Liu, Q., Zhan, M., Chekem, F.O., Shao, X., Ying, B., Sutherland, J.W., 2017. A hybrid fruit fly algorithm for
solving flexible job-shop scheduling to reduce manufacturing carbon footprint. Journal of Cleaner Produc-
tion 168, 668–678. URL: https://www.sciencedirect.com/science/article/pii/S0959652617320255,
doi:10.1016/j.jclepro.2017.09.037.

Liu, Y., Dong, H., Lohse, N., Petrovic, S., Gindy, N., 2014. An investigation into minimising total en-
ergy consumption and total weighted tardiness in job shops. Journal of Cleaner Production 65, 87–
96. URL: https://www.sciencedirect.com/science/article/pii/S0959652613005258, doi:10.1016/
j.jclepro.2013.07.060.

Liu, Y., Ping, Y., Zhang, L., Wang, L., Xu, X., 2023. Scheduling of decentralized robot services in cloud
manufacturing with deep reinforcement learning. Robotics and Computer-Integrated Manufacturing 80,
102454.

Liu, Y., Wang, L., Wang, X.V., Xu, X., Zhang, L., 2019a. Scheduling in cloud manufacturing: state-of-the-art
and research challenges. International Journal of Production Research 57, 4854–4879.

26

https://www.sciencedirect.com/science/article/pii/S0360835222001693
http://dx.doi.org/10.1016/j.cie.2022.108099
http://dx.doi.org/10.1016/j.cie.2022.108099
https://www.sciencedirect.com/science/article/pii/S2210650222001092
https://www.sciencedirect.com/science/article/pii/S2210650222001092
http://dx.doi.org/10.1016/j.swevo.2022.101139
http://dx.doi.org/10.1109/TCYB.2021.3069184
https://www.sciencedirect.com/science/article/pii/S0736584521001630
https://www.sciencedirect.com/science/article/pii/S0736584521001630
http://dx.doi.org/10.1016/j.rcim.2021.102283
https://www.sciencedirect.com/science/article/pii/S0959652620300561
https://www.sciencedirect.com/science/article/pii/S0959652620300561
http://dx.doi.org/10.1016/j.jclepro.2020.120009
https://www.sciencedirect.com/science/article/pii/S156849462030483X
http://dx.doi.org/10.1016/j.asoc.2020.106544
http://dx.doi.org/10.1016/j.asoc.2020.106544
https://linkinghub.elsevier.com/retrieve/pii/S0360835222006295
http://dx.doi.org/10.1016/j.cie.2022.108641
https://ieeexplore.ieee.org/document/9492149/
http://dx.doi.org/10.1109/ACCESS.2021.3098823
http://dx.doi.org/10.1109/ACCESS.2021.3098823
http://dx.doi.org/10.3390/app12010205
https://linkinghub.elsevier.com/retrieve/pii/S156849462100853X
https://linkinghub.elsevier.com/retrieve/pii/S156849462100853X
http://dx.doi.org/10.1016/j.asoc.2021.107931
https://www.sciencedirect.com/science/article/pii/S0959652617320255
http://dx.doi.org/10.1016/j.jclepro.2017.09.037
https://www.sciencedirect.com/science/article/pii/S0959652613005258
http://dx.doi.org/10.1016/j.jclepro.2013.07.060
http://dx.doi.org/10.1016/j.jclepro.2013.07.060


Liu, Y., Zhang, L., Sun, T., 2021b. An Improved Nondominated Sorting Genetic Algorithm-II for Multi-
objective Flexible Job-shop Scheduling Problem Considering Worker Assignments, in: 2021 International
Conference on Communications, Information System and Computer Engineering (CISCE), pp. 837–843.
doi:10.1109/CISCE52179.2021.9445969. journal Abbreviation: 2021 International Conference on Com-
munications, Information System and Computer Engineering (CISCE).

Liu, Z., Guo, S., Wang, L., 2019b. Integrated green scheduling optimization of flexible job shop and crane
transportation considering comprehensive energy consumption. Journal of Cleaner Production 211, 765–
786. URL: https://www.sciencedirect.com/science/article/pii/S0959652618336345, doi:10.1016/
j.jclepro.2018.11.231.

Lu, Y., Zheng, H., Chand, S., Xia, W., Liu, Z., Xu, X., Wang, L., Qin, Z., Bao, J., 2022. Outlook
on human-centric manufacturing towards Industry 5.0. Journal of Manufacturing Systems 62, 612–
627. URL: https://www.sciencedirect.com/science/article/pii/S0278612522000164, doi:https:
//doi.org/10.1016/j.jmsy.2022.02.001.

Luo, Q., Deng, Q., Gong, G., Guo, X., Liu, X., 2022. A distributed flexible job shop scheduling problem
considering worker arrangement using an improved memetic algorithm. Expert Systems with Applica-
tions 207, 117984. URL: https://www.sciencedirect.com/science/article/pii/S095741742201212X,
doi:10.1016/j.eswa.2022.117984.

Luo, Q., Deng, Q., Gong, G., Zhang, L., Han, W., Li, K., 2020. An efficient memetic algorithm for dis-
tributed flexible job shop scheduling problem with transfers. Expert Systems with Applications 160,
113721. URL: https://linkinghub.elsevier.com/retrieve/pii/S0957417420305455, doi:10.1016/
j.eswa.2020.113721.

Luo, S., 2020. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning.
Applied Soft Computing 91, 106208. URL: https://www.sciencedirect.com/science/article/pii/
S1568494620301484, doi:10.1016/j.asoc.2020.106208.

Luo, S., Zhang, L., Fan, Y., 2019. Energy-efficient scheduling for multi-objective flexible job shops
with variable processing speeds by grey wolf optimization. Journal of Cleaner Production 234, 1365–
1384. URL: https://www.sciencedirect.com/science/article/pii/S0959652619321110, doi:10.
1016/j.jclepro.2019.06.151.

Luo, S., Zhang, L., Fan, Y., 2021. Dynamic multi-objective scheduling for flexible job shop by deep reinforce-
ment learning. Computers & Industrial Engineering 159, 107489. URL: https://www.sciencedirect.
com/science/article/pii/S0360835221003934, doi:10.1016/j.cie.2021.107489.

Maddikunta, P.K.R., Pham, Q.V., B, P., Deepa, N., Dev, K., Gadekallu, T.R., Ruby, R., Liyanage, M.,
2022. Industry 5.0: A survey on enabling technologies and potential applications. Journal of Indus-
trial Information Integration 26, 100257. URL: https://www.sciencedirect.com/science/article/
pii/S2452414X21000558, doi:10.1016/j.jii.2021.100257.
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