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 14 

Abstract:  15 

Non-Small Cell Lung Carcinoma (NSCLC) is the most common form of lung cancer and the 16 

third most common cancer overall with respect to numbers, and deaths (American Cancer 17 

Society, Cancer Facts and Figures, Feb 2019). Previous studies have shown that targeting a 18 

commonly mutated NSCLC gene EGFR with Tyrosine kinase inhibitor (TKI) drugs is successful 19 

in patients who have EGFR mutations. It is now being recognized that overall NSCLC patient 20 

outcomes can be further improved by targeting other commonly mutated NSCLC genes in 21 

addition to the widely studies and targeted EGFR. However, DNA sequencing outputs show 22 

multiple mutations or variations in genes, which are too many to interpret, study and target with 23 

drugs. To overcome this limitation, the goal of the present study was to build a NSCLC specific 24 

knowledge base that can be used to prioritize mutated genes from a given patient genetic profile 25 

and drugs to target these genes. Commonly mutated NSCLC genes reported in NSCLC cases 26 

were used as a ‘bait’ to ‘capture’ and create a computable NSCLC knowledge base using BEL 27 

(Biological Expression Language) statements. This NSCLC specific knowledge base consisted 28 

of 33 pathogenic variants, 129 significant gene functional annotations (GO, gene ontology terms) 29 

and 568 drugs BEL knowledge statements. Overlaying 17 different NSCLC patient genetic 30 

profiles against our NSCLC specific knowledge base, successfully computed and prioritized 31 

distinct genes harboring mutations, and drugs to target these genes in patients. Here we 32 

developed this computational pipeline for NSCLC and this methodology can be adapted for other 33 

diseases with known common gene mutations. Taken together, we provide a paradigm to 34 

prioritize and select drugs based on patient’s genetic profile for precision medicine based clinical 35 

decision support.    36 

 37 

Introduction:  38 

Treatment options for NSCLC include surgery, radiation, chemotherapy, immunotherapy 39 

and targeted treatment. The advantage of targeted therapy is that unlike the other forms of 40 

treatment targeted therapy is designed to specifically attack cancer by blocking molecular targets 41 

in the cancer. EGFR is one of the most common mutations found in 10-35% of NSCLC patients 42 

and tyrosine kinase inhibitors (TKIs) drugs that target EGFR pathway specifically are 43 

successfully used in these cases (1). In addition to EGFR, there are also other gene mutations 44 

found in NSCLC that could be targeted with drugs avoiding a “one-size-fits-all” approach, and 45 

offers potential to use a combination of drugs to target multiple mutations in NSCLC for 46 
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successful treatment (2). It still remains a challenge to find an optimal combination of drugs, 47 

which targets most of the disease related cellular changes caused by gene mutation without drug 48 

overuse. One drug development strategy is to pick a combination of drugs that each directly 49 

target different regulatory hub genes in the networks, which can then initiate a ‘domino effect’ 50 

by modulating different cohorts of interacting genes connected to the hub gene. This strategy is 51 

the basis of the growing field of ‘network medicine’ (3).  52 

Given the growing appreciation of the benefit of taking a global systems approach to 53 

target an ensemble of commonly mutated NSCLC gene with drugs, the development of suitable 54 

biomedical knowledge and big data driven informatics tools and workflows to identify key 55 

regulatory NSCLC mutations and inform clinical decision making for development of 56 

combinatorial targeted drug delivery has become increasingly important. ‘Omics’ or genomics 57 

data and biomedical literature text data are the two major sources for information about genes 58 

and gene interaction in the context of human health and disease. Both omics data and text data 59 

resources have been the basis of extensive research for development of gene networks and 60 

pathways to identify key regulators underlying disease phenotype and can serve as drug targets. 61 

Extensive research endeavors have led to the collection of RNA-sequencing (RNA-seq), 62 

chromatin immunoprecipitation sequencing (ChIP-seq), ES (Exome Sequencing), Whole Exome 63 

Sequencing (WES), high-throughput proteomics and other ‘omics’ data from patients (4). The 64 

Cancer Genome Atlas Research Network (TCGA http://cancergenome.nih.gov/), International 65 

Cancer Genome Consortium (ICGC http://icgc.org/), Alzheimer’s Disease Genetics Consortium 66 

(ADGC http://www.adgenetics.org/) are some of the examples of a few projects where the omics 67 

data is collected and stored from a wide sample of patients.  68 

Though omics datasets are fast growing, most of the biomedical research knowledge on 69 

gene interaction, effects and context is present in the form open text in biomedical literature. 70 

Pubmed https://www.ncbi.nlm.nih.gov/pubmed/ is the online site where a large volume of 71 

biomedical literature is houses and the vastness of this resource is demonstrated by the fact that a 72 

quick search with the term ‘non-small cell lung cancer’ shows 76958 results on Pubmed. The 73 

availability of omics data and text data has open unprecedented opportunities to study genes-74 

gene interaction networks, called ‘interactome’ and the effects of gene-gene interactions on 75 

phenotype in the context of human disease. For high throughput omics data, construction of 76 

disease specific networks relies on advanced computational and statistical methods that can 77 

handle the high complexity and high dimensionality of biological networks. Initial approaches 78 

for development of omics data based regulatory networks regulated by central hubs included 79 

Boolean networks, Bayesian networks and differential equation models, which due to limitation 80 

in scalability were later replaced by Poisson graphical models and negative binomial 81 

distributions (5, 6). For open text data on gene interactions, construction of disease specific 82 

networks relies on text-mining techniques and methods, where gene-gene interaction and context 83 

information extracted from a body of text called ‘coropus’ is used as a foundation, converted to a 84 

computable form and manually curated to build a regulatory network (7, 8). For text-mining 85 

biomedical literature and representing the biological relations, such as gene-gene interactions in 86 

a computable form, the well-established standards available are Systems Biology Markup 87 

Language (SBML), Biological Pathway Exchange Language (BPEL) and Biological Expression 88 

Language (BEL) (9).     89 

Presently, a NSCLC specific knowledge base was built to prioritize genes to target with 90 

drugs from patient genetic variation profile. Drugs for a given patient genetic profile was 91 

suggested based on overlap with gene variant and/or gene ontology NSCLC specific knowledge 92 
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base. Testing this pipeline on publicly available genetic variation profile of NSCLC patients 93 

revealed 3 classes of patients based on if matches were found or not in one or both NSCLC 94 

knowledge base subsets, genetic variation and gene ontology. In future, this NSCLC pipeline can 95 

be used to support development drug-gene pair rules-based treatment plans for a given gene 96 

mutation profile of NSCLC patients. 97 

 98 

 99 

Methods:  100 

Code Availability 101 

Computational code with html or pdf rendering showing input and output of code chunks is 102 

available as a git local repository at https://icedrive.net/s/Ww9Y35fjuZu6akSkYa8xaChFQTG6 103 

with all files and as a git remote repository at 104 

https://gitlab.com/smukher2/nsclc_drugtargetsmutations_nov2019 with large files ignored or 105 

removed.  106 

 107 

Retrieval of commonly mutated NSCLC genes  108 

Mycancergenome (https://www.mycancergenome.org/) is an online open source curated 109 

knowledge resource that has current information on cancer related mutations, clinical trials, 110 

drugs, pathways and biomarkers designed to facilitate development of precision medicine (10). A 111 

list of commonly mutated genes in NSCLC reported in this site 112 

(https://www.mycancergenome.org/content/disease/non-small-cell-lung-carcinoma/) were copied 113 

and stored in excel format. A total of 28 genes commonly mutated in NSCLC and the number of 114 

cases for each were retrieved in this manner. 115 

Python as the language of choice 116 

All computational codes in this work were written using python because of its human readable 117 

and intuitive syntax, fast performance and rich resource of libraries that enable accomplishment 118 

of complex tasks with only a few lines of code (11).  119 

 120 

NSCLC GO knowledgebase: GO annotation of commonly mutated NSCLC genes 121 

Enrichr (https://amp.pharm.mssm.edu/Enrichr/) is an online web-tool, also available through 122 

API, which can perform statistical enrichment analysis on any list of genes by comparing the 123 

gene list to several biological functional annotation resources such as GO (12). The commonly 124 

mutated NSCLC genes, were searched using python search API to retrieve significant gene 125 

ontology terms characterized with GO terms significantly associated with NSCLC. Each GO 126 

term is associated with multiple genes so the results were parsed by gene name column to create 127 

a table of gene-GO term to build a population level NSCLC GO term knowledge base primed for 128 

comparison with patient genes. The results were exported and saved in .excel format.   129 

 130 

NSCLC pathogenic variants knowledgebase: Pathogenic variant annotation of commonly 131 

mutated NSCLC genes 132 

Simple ClinVar (http://simple-clinvar.broadinstitute.org/) is an online web-tool that curates 133 

reported variants associated with diseases as pathogenic, probable pathogenic, benign and 134 

unknown (13). Simple ClinVar was searched with search term “non-small cell lung cancer” to 135 

retrieve a table of NSCLC associated variants. The results were exported as excel file and used 136 

as input in the Python code to keep only the pathogenic NSCLC variants. The results from this 137 
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analysis comprised population level NSCLC pathogenic variants knowledge base primed for 138 

comparison with patient genes. The results were exported and saved in .excel format.   139 

 140 

NSCLC gene-drug pair knowledgebase: Drugs to target commonly mutated NSCLC genes 141 

The DGIdb (http://www.dgidb.org/search_interactions) is a drug gene interaction database built 142 

from over thirty sources, with each drug-gene interaction referenced to Pubmed (14). DGIdb is 143 

available as a web-tool and is also searchable through python search API. Python API search of 144 

DGIdb with commonly mutated NSCLC genes provided a list of drug-gene pairs and associated 145 

scores for number of citations associated with a given interaction. The resultant population level 146 

NSCLC gene-drug pair knowledge base was exported and saved in .excel format.   147 

 148 

Visualization of commonly mutated NSCLC network using BioDati Studio  149 

BioDati Studio (https://studio.demo.biodati.com/) is powered by a well-defined and extensive 150 

collection of essential gene interaction evidence lines extracted from biomedical literature in 151 

Pubmed and coded into BEL statements by BEL coding experts. This extracted BEL statements 152 

can be utilized by users using BioDati Studio’s user-friendly web interface for building gene 153 

networks. To build a network on BioDati Studio, the interactions in NSCLC pathogenic variants, 154 

NSCLC GO terms and NSCLC drug-gene pairs knowledgebases were converted to BEL 155 

statements. Next, the BEL statements annotated with citation urls and database urls, and other 156 

metadata were saved as nanopubs (small units of knowledge represented as BEL). The nanopubs 157 

were imported into BioDati Studio using the “import nanopubs” function and the network was 158 

visualized using “draft network” function. This network was then visualized by clicking 159 

‘Visualizer’ function on BioDati Studio and by using the “zoom” tool, it was possible to see the 160 

genes (nodes) and connections (edges) in the network.  161 

 162 

Retrieval of patient genetic profiles 163 

Full patient genetic profiles are not readily available through open access due to HIPA 164 

restrictions. A truncated list of total ~3.5K validated NSCLC patient genetic variation or 165 

mutation profiles were obtained for a total of 12 patients from previously published work (15).  166 

 167 

Overlay of patient genetic profile on NSCLC knowledgebase 168 

Validated patient genetic profiles for the 12 NSCLC patients were overlapped against the 169 

population level NSCLC knowledge base. The computational analysis resulted in 170 

recommendations of different potential drugs for each of the patients. Drug suggestions were 171 

computed based on overlap of patient’s genetic profile with NSCLC pathogenic variant 172 

knowledgebase and NSCLC GO term knowledgebase. For visualization, patient genes that 173 

overlapped with the population level NSCLC knowledgebase were zoomed on and viewed on the 174 

population level NSCLC knowledgebase or nanopubs that had been built on BioDati studio.  175 

 176 

 177 

Results:  178 

Pathogenic variants and GO terms knowledgebases from commonly mutated genes in NSCLC 179 

and knowledgebases 180 

The distribution of frequency of cases with mutations or variants that commonly occur in 181 

NSCLC was highest for TP53 (4463 cases) followed by KRAS (2637cases) and EGFR (1969 182 

cases) (Fig. 2A). The frequency of cases with mutations or variants was comparable for the 183 
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remainder of the 28 genes commonly mutated in NSCLC (Fig. 2A). From ClinVar, 13 KRAS 184 

variants, 8 EGFR variants, 4 PIK3CA variants and 8 BRAF variants reported to be pathogenic in 185 

NSCLC were computationally retrieved (Fig. 2B). The report of only 4 out of 28 commonly 186 

mutated genes known to be pathogenic suggests that more research is required to gather more 187 

information on the pathogenicity of NSCLC genetic variation. From enrichr, a total of 130 188 

significant (p-value <0.05) GO terms were obtained for the 28 commonly mutated NSCLC 189 

genes, with EGFR, TP53, ERBB4, NTRK3 and KDR genes associated with >40 GO terms (Fig. 190 

2C). This suggests that either these 5 highly GO term enriched genes have a multitude of 191 

biological functions or have been studied more by researchers relative to the other 23 commonly 192 

mutated NSCLC genes. Search of the DGIdb database for drugs that can target the 28 commonly 193 

mutated NSCLC genes, retrieved 329 drugs for the NSCLC pathogenic variants knowledgebase 194 

genes and 569 drugs for the NSCLC GO terms knowledgebase genes.  195 

 196 

Visualization of NSCLC pathogenic variants and drug-gene interaction knowledge bases on 197 

BioDati Studio 198 

Visualization of the NSCLC pathogenic variants knowledge base nanopub and NSCLC drug-199 

gene interaction knowledgebase nanopub revealed a complex network of interactions between 200 

the genes and drugs, with 1119 edges and 629 nodes (Fig. 3). The 4 NSCLC variant 201 

knowledgebase genes KRAS, EGFR, PIK3CA and BRAF genes, and the drugs they interact with 202 

accounted for ~50% of all nodes (sub-node count of 333), with the drugs targeting one or more 203 

of these 4 genes (Fig. 3).  204 

 205 

Visualization of NSCLC GO terms and drug-gene interaction knowledge bases on BioDati 206 

Studio 207 

Visualization of the NSCLC GO terms knowledge base nanopub and NSCLC drug-gene 208 

interaction knowledgebase nanopub revealed a complex network of interactions between the 209 

genes and drugs, with 1697 edges and 725 nodes (Fig. 4). The 28 NSCLC GO terms enriched 210 

genes and the drugs they interact with accounted for ~80% of all nodes (sub-node count of 597), 211 

with the drugs targeting one or more of these 4 genes (Fig. 4). The other 20% of the nodes were 212 

comprised of the GO terms themselves and with the most significant GO terms of the knowledge 213 

base also accounted for the highest number of connections. These highly connected and most 214 

significant GO terms all belonged to regulation of cell signaling, namely “negative regulation of 215 

cell communication” (GO:0010648, p-value = 9.98E-12),  216 

“negative regulation of response to stimulus” (GO:0048585, p-value = 5.54E-12),  217 

“negative regulation of signaling” (GO:0023057, p-value = 5.92E-12),  218 

“regulation of kinase activity” (GO:0043549, p-value = 2.72E-11), and  219 

“positive regulation of protein phosphorylation” (GO:0001934, p-value = 3.24E-10) (Fig. 4).   220 

 221 

‘Best scenario’ patients with genetic profile overlap with NSCLC pathogenic variants and GO 222 

terms knowledge bases 223 

Comparison of patient genetic profile with the NSCLC knowledge bases computationally 224 

revealed three types of overlaps and formed the basis of classification of the patients. The first 225 

category of patients called ‘best scenario’ comprised of patients (Patient 1, 2, 6, 10 and 13) 226 

whose genetic profile found matches in both the NSCLC pathogenic variants and GO terms 227 

knowledge bases (Fig. 5A). Patients 1, 2 and 6 had only one overlapped gene, while patient 10 228 

and 13 had more than one overlapped gene. Though several drugs were suggested to target the 229 
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overlapped genes from the patients, a score based on number of citations was used to prioritize 230 

drug selection (Fig. 5A). As an illustration of the utility of the BioDati Studio for visualization of 231 

patient overlapped genes, a zoomed view of Patient 1’s overlapped gene KRAS on the NSCLC 232 

pathogenic variants knowledge base nanopub and NSCLC drug-gene interaction knowledgebase 233 

nanopub is shown (Fig. 5B). Also shown is a zoomed view of Patient 1’s overlapped gene KRAS 234 

on the NSCLC GO terms knowledge base nanopub and NSCLC drug-gene interaction 235 

knowledgebase nanopub is shown (Fig. 5C). 236 

 237 

‘Good scenario’ patients with genetic profile overlap with NSCLC pathogenic variants and GO 238 

terms knowledge bases 239 

The second category of patients called ‘good scenario’ comprised of patients (Patient 4, 8, 9, 11 240 

and 14) whose genetic profile found matches in only the NSCLC GO terms knowledge base (Fig. 241 

6A). Patients 4 and 11 had only one overlapped gene, while patient 8, 9 and 11 had more than 242 

one overlapped gene. Though several drugs were suggested to target the overlapped genes from 243 

the patients, a score based on number of citations was used to prioritize drug selection (Fig. 6A). 244 

As an illustration of the utility of the BioDati Studio for visualization of patient overlapped 245 

genes, a zoomed view of Patient 1’s overlapped gene KRAS on the NSCLC GO terms 246 

knowledge base nanopub and NSCLC drug-gene interaction knowledgebase nanopub is shown 247 

(Fig. 6B). 248 

 249 

‘No Good scenario’ patients with no genetic profile overlap with NSCLC pathogenic variants 250 

and GO terms knowledge bases 251 

The third category of patients called ‘no good scenario’ comprised of patients (Patient 4 and 16) 252 

whose genetic profile found no matches in either the NSCLC pathogenic variants and GO terms 253 

knowledge bases (no data to show). These patients potentially house novel variants on genes not 254 

common in the population and require further investigative research.  255 

 256 

 257 

Discussion:  258 

There is increasing demand for global systems based unbiased approaches for 259 

identification of druggable targets for development of safer and effective combinatorial patient 260 

treatment. NSCLC is the most common form of lung cancer, accounting for 85% of lung cancers 261 

and the third most prevalent cause of cancer deaths (American Cancer Society, Cancer Facts and 262 

Figures, Feb 2019). Therefore, there is a great need to understand NSCLC mechanism and drug 263 

development. In the context of NSCLC, geftinib that targets EGFR has become the most widely 264 

used drug, but development of drug resistance is NSCLC has made it critical to develop 265 

alternative approaches to treatment of NSCLC (2). In the present project, an informatics 266 

workflow for ‘network medicine’ using different existing web-tools is demonstrated.  267 

The biochemical process by which cells communicate and coordinate activities in 268 

response to stimuli from their environment is called cell signaling. Here we found several cells 269 

signaling pathways, especially kinase activity and kinase activity regulation through 270 

phosphorylation as the major theme underlying the significant GO terms enriched in NSCLC. 271 

This is consistent with the presence of several protein kinases, 11 out of 28 genes, among the 272 

commonly mutated NSCLC genes, EGFR, STK11, ATM, BRAF, MET, ALK, EPHA3, ERBB4, 273 

EPHA5, NTRK3 and KDR. Phosphorylation of target proteins by kinases is one of the major 274 

mechanisms of on-off switch for regulation of signaling pathways. Several studies have 275 
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demonstrated the importance of maintenance of protein kinase activity in NSCLC or other 276 

cancers. NSCLC cells that depend on EGFR for survival, constitutively maintain activation of 277 

EGFR through its overexpression and overexpression its binding partners from the ERBB family 278 

such as ERBB4 (16). Overexpression, gene amplification and increases activation of MET has 279 

been reported to be associated with poor prognosis in NSCLC (17). BRAF mutations that occur 280 

in NSCLC either enhance its kinase activity, which increases activation of its target MAPK 281 

pathway and PI3K pathway, while other mutation in BRAF render it completely inactive (18). 282 

Thus, modulation of protein phosphorylation by kinases that makes them hyperactive or inactive 283 

can both be detrimental to the cell and promote NSCLC. Presently, we have developed a 284 

computational pipeline that can prioritize patient genetic variants in kinases that are commonly 285 

mutated in NSCLC and suggest drugs to target these kinases.  286 

In this study, we built a NSCLC specific knowledge base to filter and prioritize patient 287 

genetic variation data aimed towards personalized medicine. The pipeline successfully suggested 288 

drugs that could be used for 10 out of 12 patients whose genetic profile overlapped with the 289 

NSCLC knowledge bases built for this work. However, two patients’ genetic profiles showed no 290 

overlap with any of the genes present in the NSCLC knowledge bases built for this work. One 291 

possible solution is to expand the avenues of NSCLC knowledge bases to increase the 292 

probability of overlap with patients’ genetic profiles. During the data mining for reported 293 

pathogenic variants of genes in NSCLC we retrieved reported pathogenic variants for only 4 out 294 

of the 28 genes commonly mutated in NSCLC, while other genes had unknown or benign 295 

reported variants. Thus, more research is required into pathogenicity of variants, which will help 296 

expand the NSCLC pathogenic variants knowledgebase. Modern high-throughput sequencing 297 

tools such as Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS) have 298 

provided a plethora of data to analyze for identification of disease related variants (19). 299 

However, gene variant disease pathogenicity are challenging to study because any given gene-300 

disease association may involve multiple genetic interactions and depend on context related 301 

variables (20). Recently big data analytics methodologies are being applied and developed, such 302 

as VarCoPP specifically to predict the causal role of combination of genetic variants and their 303 

combined pathogenicity in diseases (21).  304 

This project provides a paradigm for utilization of BEL statements derived from 305 

biomedical literature to build networks and identify hubs/modules in diseases such as NSCLC. 306 

Furthermore, the workflow presented here shows the utility of online web-tools for 307 

characterization of the modules and identification of drugs that can target the hub genes. Taken 308 

together the power of a systems based global approach for network building, network 309 

characterization and identifying drug targets at network hubs is demonstrated.  310 

 311 

 312 
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Figure 1: Workflow showing all steps of project  
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Figure 2: A: Commonly mutated genes in NSCLC obtained from mycancergenome B: 

Pathogenic variants reported in ClinVar for commonly mutated NSCLC genes C: 

Significant Gene Ontology (GO) terms from enrichr for commonly mutated NSCLC genes 
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Figure 3: BioDati Studio network for population level NSCLC drug-gene interaction 

knowledgebase (blue-green and red square) and NSCLC pathogenic variant 

knowledgebase genes (red square).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: 
Blue circles=drugs 
Blue-green squares=genes 
and their variants 

329 drugs for the 4 genes from NSCLC 
pathogenic variants knowledgebase 
Sub-Node: 329 + 4 = 333 
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Figure 4: BioDati Studio network for population level NSCLC drug-gene interaction 

knowledgebase (blue-green squares) and NSCLC significant GO terms knowledgebase 

genes (blue-green squares).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: 
Blue circles=drugs 
Blue-green squares=genes 
Pink+ = GO terms 

569 drugs for the 28 genes from NSCLC 
GO terms knowledgebase 
Sub-Node: 569 + 28 = 597 
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population level NSCLC pathogenic variants, GO terms and drug-gene knowledgebases. B: 

BioDati Studio visualization showing Patient 1 overlapping gene in the population level 

NSCLC pathogenic variants and drug-gene knowledgebases. C: BioDati Studio 

visualization showing Patient 1 overlapping gene in the population level NSCLC GO terms 

and drug-gene knowledgebases. 
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population level NSCLC GO terms and drug-gene knowledgebases, but not with NSCLC 

pathogenic variants knowledgebase. B: BioDati Studio visualization showing Patient 8 

overlapping gene in the population level NSCLC GO terms and drug-gene knowledgebases. 
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