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Abstract:

There are over 350,000 registered chemicals and chemical combinations in use today
globally. This is a public health concern and an active area of research, as for majority
of these chemicals no scientific data is available on potential adverse effects on human
health. Both U.S. Environmental Protection Agency (EPA) and Word Health
Organization (WHO) have listed heavy metals, lead (Pb), mercury (Hg), cadmium (Cd)
and arsenic (As) among the top chemicals of public health concern. Adverse health
effects, induced by heavy metals and other non-heavy metal chemicals include
neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), cognitive
decline, behavioral problems, kidney diseases, cancer and cardiovascular diseases.
Thus, it is important to detect not only active chemical exposure but also past chemical
exposures. In this paper differential gene expression (DEG) analysis and machine
learning (ML) were combined to identify differentially expressed genes (DEGS) or heavy
metal toxicity signature genes that were used as features in ML to classify test samples
into heavy metal and non-heavy metal control groups. From NIH-GEO, RNA-seq gene
expression data from a total of 827 human neuronal cell culture samples treated with 87
different chemicals were downloaded and normalized. Two groups of DEGs consisting
of 80 genes (consensus of limma, edgeR and simple DEG analysis) and 879 genes
(consensus of atleast 2 of the three DEG methods limma, edgeR and simple) were
identified and designated as heavy metal biomarkers. The heavy metal biomarker gene
sets were enriched with metal metabolism gene ontology, kidney disease and cancer
diseases genes. Comparison of different ML models built with 80 DEGs and 879 DEGs
showed that Logistic Regression and Support Vector Machine (SVM) were accurate
(>90% success in classifying test samples into heavy metal and non-heavy metal
groups) for both 80 DEG and 879 DEG features. In this paper, a combined DEG
analysis and ML pipeline has been developed that can successfully detect heavy metal
exposure from gene expression data. This pipeline can be applied for identification of
chemical exposure, which is the first step for developing a treatment plan for patients
exposed to toxic chemicals.
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Introduction:

There are over 350,000 registered chemicals and chemical combinations in use today
globally[1]. This is a public health concern and an active area of research, as for
majority of these chemicals no scientific data is available on potential adverse effects on
human health[2]. Children are especially susceptible to chemical exposure induced
diseases such as autism, cerebral palsy, mental retardation, obesity and respiratory
diseases[3]. Both U.S. Environmental Protection Agency (EPA) and Word Health
Organization (WHO) have listed heavy metals, lead (Pb), mercury (Hg), cadmium (Cd)
and arsenic (As) among the top chemicals of public health concern[4; 5]. Heavy metal
refers to chemical elements with high molecular weight that cause toxicity in humans.
As heavy metals accumulate in the human body overtime (bioaccumulate), exposure to
even small amounts of heavy metals can cause toxicity and adverse health effects.
Adverse health effects, induced by heavy metals and other non-heavy metal chemicals
include neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease),
cognitive decline, behavioral problems, kidney diseases, cancer and cardiovascular
diseases[6].

Long-term adverse effects induced by chemical exposure in humans, remain even when
the chemical exposure itself has stopped. Animal studies showed that chronic lead (Pb)
exposure results in lead accumulation in choroid plexus and correlates with reduced
production of transthyretin by choroid plexus, required for regulation of thyroid hormone
critical for prenatal and early postnatal development [7; 8]. Chronic exposure to
chromium (Cr) and arsenic (As) through drinking water increased incidence and size of
tumors in mice [9]. Exposure to low levels of mercury (Hg) in form of methylmercury
(MeHg) prenatally was associated with learning and memory deficits in children [10].
Long-term effects may occur because of persistent gene expression changes that were
induced by the chemical during exposure, gene expression changes induced by release
of bioaccumulated chemicals later in life or due to other hereto unknown reasons.
Though the mechanism of how chemical induced gene effects persist after chemical
exposure has stopped is not clearly understood, it is certain that as genes regulate all
biological phenotypes, detection of these gene expression changes during the chemical
exposure and after chemical exposure has stopped, is the first step towards
understanding and treating the adverse disease phenotypes. Identification of chemicals
by analyzing its induced gene expression profile, must also account for presence of
other chemicals that work in combination with it, to produce a net chemical induced
gene expression profile in humans.

Accurate toxicity predictions have the potential can reduce uncertainty and expense of
clinical trials of drugs. To decipher chemical effects, artificial intelligence (Al) and
machine learning (ML) techniques are now being widely used. Al/ML algorithms can
learn from patterns in chemical assay results (activity) and chemical characteristics
(structural) data from known chemicals, and build AI/ML models that can make
predictions about unknown chemicals. Stress assay results from chemical-protein
binding assays, known toxicity endpoints (hepatotoxicity, oral toxicity, cardiotoxicity,
mutagenicity) and types of chemical functional groups in chemical structure are some of
the training data features employed to build toxicity predictor AI/ML models. These
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chemical structure and activity parameters called Quantitative Structure-Activity
Relationships (QSAR) parameters are commonly used for Al/ML methods, while
chemical induced gene expression data is not always used as training data features to
build toxicity predictor AI/ML models. eToxPred is a ML model trained on chemical
structural features and toxicity classification data for known chemicals, and can predict
toxicity of new unknown chemicals [11]. DeepTox, a deep learning model normalizes
and computes features to build a machine learning model that can predict toxicity of
new unknown chemical compounds [12]. DTox (Deep Learning for Toxicology) is a
deep learning model that takes as input chemical structure to predict its probable
toxicity assay result and part of its gene expression profile underlying toxicity effects
[13].

Neurotoxicity of a chemical is an underutilized toxicity endpoint relative to other toxicity
endpoints hepatotoxicity, oral toxicity, cardiotoxicity and mutagenicity in AI/ML models
because its difficult to maintain neural samples in culture that represent in vivo
neurotoxicity. Now, its known that Al/ML models perform better when they are trained
with more volume of data and more data types. However, comparison of ability of ML
models to reliably predict chemical toxicity was shown to be more robust for 2D neural
cell culture, than 3D neural cell culture (organoid) [14; 15]. As more drug induced gene
expression data gets generated from chemical treatment of 2D and 3D neural cell
culture assays, it would be a missed opportunity to not incorporate all data sources, 2D
and 3D, to increase size and type of data utilized for building AI/ML models and
potentially increase performance of Al/ML models. Variability in gene expression data
originating from different sources, is a known bottleneck for gene expression based
meta-analysis. Thus in the present study it was hypothesized that by reducing batch or
source variability in gene expression data using normalization, it will be possible to use
data from different sources for training a reliable and robust Al/ML model for prediction
of chemical toxicity. The goal of the present study was to develop a computational
pipeline that would normalize and enable utilization of different data types, 2D and 3D,
and from different sources, for building a reliable AI/ML model for toxicity prediction,
specifically heavy metal toxicity. Here, a pipeline was developed to normalize gene
expression data from different sources and identify heavy metal signature genes
(biomarkers). The biomarker genes were used as features train an Al/ML model for
prediction of heavy metal toxicity. The ML algorithms, logistic regression and Support
Vector Machine (SVM) were able to distinguish between heavy metal and non-heavy
metal samples for biomarker gene sets of both 80 genes and 879 genes.

Methods

Code Availability

Computational code with html or pdf rendering showing input and output of code chunks
is available as a git local repository at
https://icedrive.net/s/h3P65RbNvi5Dh8yT1DabXxyNgWag6 with all files and as a git
remote repository at https://gitlab.com/smukher2/pbothers _rnaseq _ml_feb2023 with
large files ignored or removed.
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Source of RNA-seq gene expression data

NCBI GEO repository https://www.ncbi.nlm.nih.gov/geo/, was searched for RNA-seq
gene expression data from human pluripotent or embryonic stem cell derived neural
tissue culture samples exposed to different chemicals. The results were filtered to retain
those datasets, which contained untreated and/or DMSO solvent treated samples. The
series numbers GSE166297, GSE128431, GSE63935 and GSE126786 were selected
as they met the filtering criteria.

Normalization of RNA-seq gene expression data

RNA-seq raw counts are number of reads overlapping annotated genes in human gene
annotation file Homo_sapiens.GRCh38.p13.gtf. RNA-seq raw counts generated by
NCBI were obtained from NCBI GEO repository,
https://www.ncbi.nlm.nih.gov/geo/info/rnasegcounts.html#locate. A bash script with
commandline tool wget was used to programmatically download the NCBI generated
raw RNA-seq counts available at url of format
https://www.ncbi.nlm.nih.gov/geo/download/?acc=<GSE Series ID> example,
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE166297, under ‘Series RNA-seq
raw counts matrix’ at url of format
https://www.ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=<GSE Series
ID>&format=file&file=<GSE Series ID>_raw_counts_ GRCh38.p13_NCBI.tsv.gz
example,
https://www.ncbi.nlm.nih.gov/geo/download/?type=rnaseq_counts&acc=GSE166297&fo
rmat=file&file=GSE166297 raw_counts GRCh38.p13 NCBI.tsv.gz. In R/Rstudio using
package limma_3.38.3, the downloaded NCBI generated raw counts were quantile
normalized and scaled to log2+1. Effect of limma quantile model normalization on batch
variation was visualized by comparing by comparing pre-limma quantile normalized
(before) and limma quantile normalized (after) expression data plots. Both raw counts
(not scaled to log2+1) and normalized counts (scaled to log2+1), were visualized with
density plots, Box-Whiskers plots, correlation plots and PCA analyses to estimate effect
of normalization on variability between samples from different GSE series. Density plots
and Box-Whiskers plots were made using ggplot2_3.1.1, while prcomp stats4 3.5.0 and
corrplot_0.84, were used to perform PCA analyses and correlation analysis,
respectively [16; 17].

Source of metadata for RNA-seq gene expression data

GEOquery R package was used to obtain metadata for all samples in the GSE series
numbers GSE166297, GSE128431, GSE63935 and GSE126786 [18]. The metadata
fields, sample id, source tissue (embryonic stem cells or pluripotent stem cells derived
neural tissue), organism (homo sapiens) and chemical name (87 unique chemicals) was
fetched with GEOquery for each GSE series. In the list of chemicals, lead, arsenic,
cadmium and mercury were heavy metals and others were non-heavy metal chemicals.

Identification of heavy metal biomarkers
To identify heavy metal biomarker genes, normalized log2+1 expression values were
used as input for estimation of DEGs (Differentially Expressed Genes). Gene
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expression normalization and differential gene expression (DEG) analysis was done
using previously published methods [19; 20]. Differentially expressed genes (DEGS)
were identified by comparing gene expression of heavy metal and non-heavy metal
exposed samples using limma_3.38.3, edgeR_3.24.3 and simple comparison
expression means [21; 22; 23]. In limma and edgeR model design step variable
(metadata fields) requires variables have more than one value, thus organism was not
used as it contained only one value ‘homo sapiens’. DEGs between heavy metal and
non-heavy metal was calculated while correction for false discovery and multiple testing
was done using Benjamini and Hochberf (BH) to correct for the presence of multiple
genes or features in the analysis [24]. In limma and edgeR, significantly upregulated
genes in heavy metal category with BH corrected adjP-values <0.05 and a fold changes
>5, were designated as heavy metal specific genes or biomarker genes. In simple
comparison of means method of DEG identification, gene expression from heavy metal
and non-heavy metal samples was compared, and genes with P-values <0.05 and a
fold changes >5, were designated as heavy metal specific genes or biomarker genes.
Gene expression of DEGs for all three methods of DEG analysis, was visualized with
volcano plots, Box-Whiskers plots, barplots and density plots using ggplot2_3.1.1 R
package[17]. Consensus strict DEGs were those DEGs that were present in DEG lists
of all three methods, limma, edgeR and simple comparison of means. Consensus
relaxed DEGs were those DEGs that were present in DEG lists of atleast two of the
three methods, limma, edgeR and simple comparison of means. Significance of overlap
between DEG lists were calculated using GeneOverlap_1.18.0 R package and number
of genes overlapping were visualized as Venn-diagrams using VennDiagram_1.6.20 R
package[25; 26].

Gene Ontology (GO) analysis of heavy metal biomarker genes

To determine biological significance of the heavy metal biomarkers, EnrichR_1.0 a R
package was performed to determine biological process gene ontology (GO) enriched in
the heavy metal strict DEGs and relaxed DEGs [27]. GOs with adjP-values <0.05 were
considered significant GOs.

Machine Learning Models

Two sets of differentially expressed genes were used as features (set of 80 DEGs
consensus of all 3 methods and set of 880 DEGs consensus of atleast 2 methods) to
train the machine learning algorithm with gene expression data for classifying or
distinguishing between heavy metal exposure and non-heavy metal exposure human
samples. To avoid class sample size bias, the non-heavy metal chemical exposure
samples were not included in the ML training, as there were more non-heavy metal
chemical exposure samples than heavy metal chemical exposure samples. Only 33
heavy metal chemical exposure samples, 25 untreated control samples and 15 solvent
DMSO treated control samples, were included in the ML training. In
Python/Spyder/Jupyter Notebook, samples were split into training (70%) and test
datasets (30%) using scikit-learn train_test_split function. The models were built with
scikit-learn using five ML methods Logistic Regression, Support Vector Machine (SVM),
Naive Bayes, K-means, Random Forest, and XGB.
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For ML model building, supervised learning methods learn about patterns in dataset
from labeled datasets, while unsupervised learning methods learn about patterns in the
dataset without being given labeled datasets. Logistic Regression is a supervised
learning method, which relies on odds ratio calculation to predict the probability of an
event (here heavy metal and non-heavy metal) occurrence depending on value of input
features (here biomarker genes). SVM is a supervised learning method, which uses
labeled training dataset to create a partition or hyperplane that separates the groups
(here heavy metal and non-heavy metal) using input features (here biomarker genes).
Naive Bayes, is a supervised learning method, which classifies based on probability of a
feature (here biomarker genes) occurring in a group (here heavy metal and non-heavy
metal). K-means, is an unsupervised leaning method, in which the datasets are split into
clusters or groups (here heavy metal and non-heavy metal) based on their input
features (here biomarker genes), and by an iterative process the centroid of the cluster
is matched with the mean of the samples assigned into the cluster until changing
assignment of samples in the cluster does not change the mean or centroid does not
move anymore. Random Forest is a supervised learning method, which consists of
many decision trees built using features (here biomarker genes) and prediction of class
(here heavy metal and non-heavy metal) is done by calculating average prediction of
each tree. XGB or XGBoost, is another decision tree based method that is fast because
of parallel processing of decision trees.

Evaluation of Machine Learning (ML) heavy metal and non-heavy metal classifier
models

To compare performance of these ML models, accuracy, f1-score, ROC curve and AUC
were calculated and confusion matrix was plotted. To visually display quality of
classification models a confusion matrix was plotted for each using scikit-learn_1.2.1
python package[28]. In confusion matrix, the columns represent model predicted labels
and rows represent true labels of samples in the test dataset. Receiver Operating
Characteristic (ROC) curve was plotted using scikit-learn_1.2.1 python package, where
Area Under the Curve (AUC) in the ROC plot indicates resolving power of classifier
models[28]. Accuracy, precision, recall and f1-score were calculated using
classification_report function of the scikit-learn_1.2.1 python package[28].

Results:

Quantile normalization reduces batch effects in RNA-seq gene expression count data
As publicly available chemical exposure induced neural tissue gene expression count
data was obtained from different research studies or batches, the counts were
normalized to reduce cross-study variability and effect of normalization was visualized
with different plots. Density and Box-Whiskers plots showed a greater overlap of
samples from different batches and greater overlap of gene expression means,
respectively, in limma quantile normalized count data relative to pre-normalized count
data (Figure 1A, Figure 1B). Correlation plots showed greater correlation of batches
after quantile normalization relative to that before quantile normalization (Figure 1C).
PCA plots showed that variability or wide dispersion of samples was less in quantile
normalized count data relative to pre-normalized count data (Figure 1D). Thus, limma
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guantile normalization reduced variability unrelated to chemical exposure gene
expression counts, making the data suitable for further analysis.

Limma identified 85 DEGs upreqgulated in heavy metals relative to other samples

To identify heavy metal signature genes, heavy metal samples were contrasted with
samples that were treated with non-heavy metal samples (other chemical treatments
and untreated controls), using limma DEG analysis. DEGs significantly upregulated or
downregulated (p-value < 0.05) in heavy metals relative to other samples were
visualized in volcano plot (Figure 2A). From the DEGs, 85 genes were significantly (p-
value < 0.05) upregulated (fold-change > 5) in heavy metals relative to other samples
were putative heavy metal signature genes. Density, Box-Whiskers and bar plots
showed that the average normalized gene expression count of upregulated heavy metal
DEGs was higher in heavy metal samples relative to non-heavy metal samples (Figure
2B, Figure 2C, Figure 2D).

EdgeR identified 1072 DEGs upregulated in heavy metals relative to other samples

To identify heavy metal signature genes, heavy metal samples were contrasted with
samples that were treated with non-heavy metal samples (other chemical treatments
and untreated controls), using edgeR DEG analysis. DEGs significantly upregulated or
downregulated (p-value < 0.05) in heavy metals relative to other samples were
visualized in volcano plot (Figure 3A). From the DEGs, 1072 genes were significantly
(p-value < 0.05) upregulated (fold-change > 5) in heavy metals relative to other samples
were putative heavy metal signature genes. Density, Box-Whiskers and bar plots
showed that the average normalized gene expression count of upregulated heavy metal
DEGs was higher in heavy metal samples relative to non-heavy metal samples (Figure
3B, Figure 3C, Figure 3D).

Simple method identified 2237 DEGs upregulated in heavy metals relative to other
samples

To identify heavy metal signature genes, heavy metal samples were contrasted with
samples that were treated with non-heavy metal samples (other chemical treatments
and untreated controls), using edgeR DEG analysis. DEGs significantly upregulated or
downregulated (p-value < 0.05) in heavy metals relative to other samples were
visualized in volcano plot (Figure 4A). From the DEGs, 2237 genes were significantly
(p-value < 0.05) upregulated (fold-change > 5) in heavy metals relative to other samples
were putative heavy metal signature genes. Density, Box-Whiskers and bar plots
showed that the average normalized gene expression count of upregulated heavy metal
DEGs was higher in heavy metal samples relative to non-heavy metal samples (Figure
4B, Figure 4C, Figure 4D).

Heavy metal biomarker genes identified by overlaping of limma, edgeR and simple
DEGs

Overlapping DEGs identified by limma, edgeR and simple comparison of means
methods, identified 80 DEGs common to all 3 methods (strict overlap), and 879 DEGs
common to atleast 2 methods (relaxed overlap) (Figure 5A). Jaccard index calculations
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showed that edgeR and limma has significant overlap, while simple method did not
significantly overlap with edgeR or limma (Figure 5B).

Gene Ontology (GO) of heavy metal biomarkers

Metal related cellular response and homeostasis were the most enriched biological
processes in heavy metal GO Biological Process (Figure 5C, Figure 5D). GOs related to
cellular response to metals, "cellular response to zinc ion" (GO:0071294 p-values
1.71E-10 and 1.87E-05), "response to copper ion" (GO:0046688 p-values 1.71E-10 and
1.87E-05) and "cellular response to cadmium ion" (GO:0071276 p-values 1.47E-09 and
5.11E-05), were the most significant GOs in both heavy metal biomarkers in strict group
of 80 genes and relaxed group of 879 genes (Figure 5C, Figure 5D). These results are
consistent with the group of genes being heavy metal biomarkers. GOs "cellular
response to unfolded protein” (G0O:0034620 p-value 5.29E-08) and "negative regulation
of growth" (GO:0045926 p-value 4.88E-09) were significant in heavy metal biomarkers
in strict group of 80 genes (Figure 5C).

Performance of ML models with heavy metal 80 and 879 biomarker as features

To build and test ML models, randomly picked 70% of samples (25 heavy metal and 26
control DMSO or untreated samples) were used for training and 30% of samples (8
heavy metal and 14 control DMSO or untreated samples) were used as testing datasets
(Figure 6A, Figure 7A). A total of seven models, Logistic Regression, K-means, Naive-
Bayes, SVM, Random Forest, XGB with grid and XGB without grid were compared to
determine their ability to distinguish or classify heavy metal and control non-heavy metal
samples. The performance of the models was compared using confusion matrix,
accuracy, precision, fl1-score, recall, ROC and AUC (Figure 6, Figure 7). For 80 heavy
metal biomarker genes as features, both Logistic Regression and SVM outperformed
other models, with 95.4% accuracy, 100% precision, 0.94 AUC, 0.875 recall and 0.933
f1-score (Figure 61). Random Forest also showed good performance, with 90.9%
accuracy, 100% precision, 0.88 AUC, 0.75 recall and 0.857 f1-score (Figure 6l1). Other
models, K-Means, Naive-Bayes, XGB with grid and XGB without grid showed an
accuracy between 27.27% to 81.81% (Figure 61). For 879 heavy metal biomarker genes
as features, both Logistic Regression and SVM outperformed other models, with 95.4%
accuracy, 100% precision, 0.94 AUC, 0.875 recall and 0.933 fl-score (Figure 71). XGB
without grid also showed good performance, with 90.9% accuracy, 100% precision, 0.88
AUC, 0.75 recall and 0.857 f1-score (Figure 71). Other models, K-Means, Naive-Bayes,
Random Forest and XGB with grid showed an accuracy between 45.45% to 86.36%
(Figure 71). For both 80 genes and 879 gene features (heavy metal biomarkers),
confusion matrix constructed from the different ML models showed visually the true and
predicted, heavy metal and control non-heavy metal labels consistent with the precision,
AUC, recall and f1-score calculations (Figure 6B-H, Figure 7B-H). Taken together, these
results show that Logistic Regression and SVM outperform other models with 879 gene
features, as well as 80 gene features.
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Discussion:

Neurotoxicity cell culture models

The nervous system is protected by the blood-brain-barrier form many infectious agents
and harmful chemicals. However, this protection weakens making the nervous system
susceptible to chemicals such as neurotoxic heavy metals, when the blood-brain-barrier
shows dysfunction in adults with aging and disease [29; 30]. Thus, it is important to
study neurotoxicity to enable detection of neurotoxicity, understand its molecular
mechanisms and discover therapeutic targets for intervention. However, this has been
challenging as there are no standard neural cell culture protocols, so gene expression
data originating from different 2D or 3D neural culture conditions is highly variable. In
iPSC derived organoids developed to study Alzheimer’s disease, large variability was
found in morphology and electrophysiological activity of neurons inside organoids even
when they were prepared from the same cell line [31]. This variability could result from
inherent stochastic nature of in vitro self-organization which makes neural differentiation
process and neuronal cell type characteristics inside organoids variable. In the present
study, a pipeline was developed to reduce variability in gene expression with
normalization to make it usable for detection of heavy metal neurotoxicity with ML using
heavy metal molecular biomarkers as features.

Meta-analysis and normalization of RNA-seq

Most gene expression RNA-seq raw reads from published studies are stored in National
Centre for Biotechnology Information Sequence Read Archive (NCBI SRA) or National
Centre for Biotechnology Information Gene Expression Omnibus (NCBI GEO) public
repository that can be used for meta-analysis. Meta-analysis involves integration of
samples from different studies related to a research topic, to increase sample size which
improves robustness of results. Different studies have processing variability as they use
different methods to convert raw RNA-seq reads to annotated gene expression [32].
Thus, for uniformity in meta-analysis combining gene expression data from different
studies requires extensive pre-processing where all the raw reads from different studies
are processed with same pipeline to annotated gene expression. To overcome this
caveat of having to re-run RNA-seq data from different studies available in the public
NCBI GEO repository, NCBI GEO made annotated gene expression available for RNA-
seq studies in their repository. Annotated gene expression has variability due to different
source of tissue origin that can be normalized using several methods such as TPM,
FPKM and quantile normalization. Comparison of these normalization methods in a
study of human tumour xenograft showed normalization of counts had lower median
coefficient of variation than FPKM and TPM normalization [33]. Thus, to reduce variation
in annotated gene expression downloaded from NCBI GEO, quantile normalization
method was applied. Quantile normalization of annotated gene expression for meta-
analysis of combined GSE166297, GSE128431, GSE63935 and GSE126786 batches,
significantly reduced batch variability (Figure 1).

Feature or biomarker gene selection for ML

Feature selection is process of selecting most informative features, here genes, which
are most likely to be relevant distinguishing characteristics of the sample labels, here
heavy metal toxicity and non-heavy metal toxicity. More features a ML model has, more
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time it takes to run and more challenging it becomes to understand effects of features
on classification prediction made by ML model. Feature selection algorithms can be
broadly classified into filter methods, wrapper methods, embedded methods and hybrid
methods [34]. However, these feature selection methods are based on ‘trial and error’
where features or genes are put through several rounds of iteration, features are pruned
after each iteration and model is re-build with only those features that are most relevant
to ML model’s prediction accuracy. In the present study to make feature selection for
more explainable, instead of prevalent computational feature selection methods,
bioinformatics DEG selection methods were used. It was hypothesized that DEG genes
that are significantly upregulated in heavy metals toxicity, designated heavy metal
toxicity biomarkers, by virtue of their biological relevance will help create better ML
models. Heavy metal DEGs or biomarkers that were upregulated significantly by atleast
5 fold, were identified with three commonly used DEG methods, limma, edgeR and
simple comparison of means (Figure 2, Figure 3, Figure 4). Overlap of all 3 DEG
methods resulted in 80 genes (strict overlap) and overlap of atleast 2 DEG methods
resulted in 879 (relaxed overlap) genes (Figure 5A, Figure 5B). ML models were built
with both 80 genes and 879 genes, so that robustness of the ML models could be
tested.

Insights into selected biomarker features from GO analysis

GO analysis of 80 genes and 879 genes was done to understand molecular mechanism
of heavy metal neurotoxicity and make the ML model more explainable, by
determination of major biological groups to which the selected features belonged. All the
GOs related to cellular response to metals, contained metallothionein (MT) genes
MT2A, MT1M, MT1F, MT1G, MT1X, MT1H and MT1E (Figure 5C, Figure 5D).
Metallothionein proteins are rich in amino acid cysteine (formula HOOC-CH(-NH
2)-CH 2 -SH) and the sulphur (S) gives them ability to bind with metal ions. MT-1 and
MT2 family of MTs are induced by presence of metals such as zinc (Zn), cadmium (Cd),
copper (Cu) and lead (Pb) [35; 36; 37]. On the DNA, MT genes contain metal response
elements (MREs) on their promoters, that get activated by binding of metal regulatory
transcription factor (MTFs). The binding of MTFs to MREs and consequent activation of
MT genes is regulated by present of heavy metals [36; 38]. MTs are required for zinc
(Zn) and copper (Cu) homeostasis, oxidative stress response and detoxification of
heavy metals from the body [39; 40].

Robustness of ML models for heavy metal toxicity classification

Al and ML models are being widely investigated, and applied in biomedical field.
Artificial intelligence (Al) used in monitoring cancer disease state by analysis of
radiographic images from patients can provide quantitative assessment, while
physicians can only provide a qualitative assessment [41]. Machine Learning (ML)
analysis revealed cancer biomarkers and therapeutic targets in soft tissue sarcoma
datasets [42]. Research into ML models for classification is focused on development of
new ML models (algorithms), reducing errors in ML models and finding avenues where
ML models can be applied. Thus, here existing ML models were applied and tested in
the context of heavy metal exposure detection. As the dataset was imbalanced, with
more samples for other types of chemicals than heavy metals, to avoid overfitting issue,
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for training and testing of ML models, only heavy metals and controls were used as their
sample size was comparable (Figure 6A, Figure 7A). This comparable number of
samples in each group is conducive to Logistic Regression modelling and makes it well
suited for comparison with other models. Comparison of ML models to determine their
ability to distinguish or classify heavy metal and control non-heavy metal samples,
showed that Logistic Regression and Support Vector Machine (SVM) outperformed
other models (Figure 6, Figure 7). Logistic Regression and SVM performances were
consistent for both 80 feature genes, and 879 feature genes, with 95.4% accuracy,
100% precision, 0.94 AUC, 0.875 recall and 0.933 f1-score (Figure 6B, Figure 6E,
Figure 61, Figure 7B, Figure 7E, Figure 71). Random Forest does not work well with
missing values, while XGB can automatically fill missing values. Now as there were no
missing values of gene expression for features of 80 genes and 879 genes, expectedly
performance of Random Forest and XGB with/without gird were comparable. The
performance of Random Forest and XGB with/without gird, were moderate for both 80
feature genes, and 879 feature genes, with range 72 to 90% accuracy, range 66 to
100% precision, range 0.68 to 0.81 AUC, range 0.5 to 0.75 recall and range 0.57 to 0.85
f1-score (Figure 6F, Figure 6G, Figure 6H, Figure 61, Figure 7F, Figure 7G, Figure 7H,
Figure 71). The performance of K-Means got worse with increase in number of features
(accuracy 27.2% for 80 genes and 68.1% for 879 genes), while the performance of
Naive Bayes got better with increase in number of features (accuracy 63.6% for 80
genes and 45.4% for 879 genes) (Figure 6C, Figure 6D, Figure 6l, Figure 7C, Figure
7D, Figure 71). This could be because Naive Bayes model works better with high
dimension data, so with more features its performance got better.

Summary

This pipeline combines normalization, DEG analysis, GO analysis, and ML modelling
that is a reusable in silico method that can be adapted for assay of various potentially
toxic chemicals. This pipeline can be re-used for other datasets to study effects of
chemical exposure by detection of neurotoxicity, understand molecular mechanism and
discover therapeutic targets for toxic chemicals. Neurodegenerative diseases, bone
diseases and cancers are some of the adverse effects of heavy metal toxicity. Detection
of active and past transient heavy-metal chemical exposure is critical to device a
treatment plan and plan lifestyle changes to safeguard the patient from adverse short-
term and long-term effects of heavy metal toxicity. Robust classification of patients into
putative heavy metal and non-heavy metal exposure classes, based patient’s gene
expression profile, will help detect cases of heavy metal toxicity. These results can then
guide a healthcare provider to take necessary actions to treat the patient for heavy
metal toxicity. The methods developed in this paper can also be applied and extended
to distinguish between any other toxic chemicals or chemical combinations and
untreated controls. Chemicals for which toxicity scientific data is not available but
chemical induced gene expression profile is available in patients, ML methods
developed in this paper can be used to determine if the chemical induced gene
expression profile is more like toxic chemicals or untreated controls. For example, gene
expression profile from a patient could be run through the ML model and scored for
similarity with available toxic chemical and non-toxic chemical gene expression profiles.
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Figure Legend

Figure 1. Effect of quantile normalization on chemical exposure and control RNA-seq
datasets (GSE166297, GSE128431, GSE63935 and GSE126786). A: Density plot
representation of gene expression per study before and after quantile normalization. B:
Box and whisker plot representation of gene expression per study before and after
quantile normalization. C: Pearson correlation plot of studies before and after quantile
normalization. D: Principal Component Analysis (PCA) of datasets before and after
quantile normalization. For this figure the following R packages and built-in R functions
were used: prcomp from stats4 _3.5.0, corrplot_0.84, ggplot2_3.1.1 and limma_3.38.3.

Figure 2. Heavy metal biomarkers or DEGs identified with limma. A: Volcano plot of
differentially expressed genes showing logFC (log fold change) and its p-value in -
log10(adjusted.p-value). Red dots have significant p-value <0.05 and black boxed
genes have fold-change > 5. B: Box and whisker plot representation of gene expression
per group, here heavy metal and non-heavy metal group. C: Density plot representation
of gene expression per group, here heavy metal and non-heavy metal group. D: Bar
plot of logFC (log fold change) of top 100 genes (here 85 genes) upregulated in heavy
metal relative to non-heavy metal group. For this figure the following R packages and
built-in R functions were used: ggplot2_3.1.1 and limma_3.38.3.

Figure 3. Heavy metal biomarkers or DEGs identified with edgeR. A: Volcano plot of
differentially expressed genes showing logFC (log fold change) and its p-value in -
log10(adjusted.p-value). Red dots have significant p-value <0.05 and black boxed
genes have fold-change > 5. B: Box and whisker plot representation of gene expression
per group, here heavy metal and non-heavy metal group. C: Density plot representation
of gene expression per group, here heavy metal and non-heavy metal group. D: Bar
plot of logFC (log fold change) of top 100 genes upregulated in heavy metal relative to
non-heavy metal group. For this figure the following R packages and built-in R functions
were used: ggplot2_3.1.1 and edgeR_3.24.3.
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Figure 4. Heavy metal biomarkers or DEGs identified with simple comparison of means.
A: Volcano plot of differentially expressed genes showing logFC (log fold change) and
its p-value in -log10(adjusted.p-value). Red dots have significant p-value <0.05 and
black boxed genes have fold-change > 5. B: Box and whisker plot representation of
gene expression per group, here heavy metal and non-heavy metal group. C: Density
plot representation of gene expression per group, here heavy metal and non-heavy
metal group. D: Bar plot of logFC (log fold change) of top 100 genes upregulated in
heavy metal relative to non-heavy metal group. For this figure the following R packages
and built-in R functions were used: ggplot2_3.1.1.

Figure 5. Heavy metal biomarker 80 genes from overlap of all 3 DEG methods and 879
biomarker genes from overlap of atleast 2 methods, and their GO analysis. A: Venn
Diagram for overlapping DEGs significantly upregulated by > 5 FC (fold change). B:
Heat-map for overlap of significance for genes significantly upregulated by > 5 FC (fold
change) in limma, edgeR and simple comparison of means. C: GO Analysis (Gene
Ontology Analysis) Biological Process of heavy metal biomarker 80 genes from overlap
of all 3 DEG methods. D: GO Analysis (Gene Ontology Analysis) Biological Process of
heavy metal biomarker 879 genes from overlap of atleast 2 methods. For this figure the
following R packages and built-in R functions were used: GeneOverlap_1.18.0,
VennDiagram_1.6.20, EnrichR_1.0 and ggplot2_3.1.1.

Figure 6. Evaluation of machine learning (ML) models built with heavy metal biomarker
80 genes (strict overlap of DEG methods) as features. A: Number of datasets from
heavy metal and non-heavy metal groups used to train and test ML models. Confusion
matrix and ROC curve for B: Logistic Regression AUC=0.94 C: K-Means AUC=0.38 D:
Naive Bayes AUC=0.58 E: Support Vector Machine (SVM) AUC=0.94 F: Random
Forest AUC=0.88 G: XGB Grid AUC=0.68 H: XGB No Grid AUC=0.75 I: Summary of
accuracy, precision, recall and f1-score for all models. For this figure the scikit-
learn_1.2.1 python package was used.

Figure 7. Evaluation of machine learning (ML) models built with heavy metal biomarker
879 genes (relaxed overlap of DEG methods) as features. A: Number of datasets from
heavy metal and non-heavy metal groups used to train and test ML models. Confusion
matrix and ROC curve for B: Logistic Regression AUC=0.94 C: K-Means AUC=0.56 D:
Naive Bayes AUC=0.57 E: Support Vector Machine (SVM) AUC=0.94 F: Random
Forest AUC=0.81 G: XGB Grid AUC=0.68 H: XGB No Grid AUC=0.88 I: Summary of
accuracy, precision, recall and f1-score for all models. For this figure the scikit-
learn_1.2.1 python package was used.

Access to Codes:
https://icedrive.net/s/h3P65RbNvf5Dh8yT1DabXxyNgWg6 and
https://qgitlab.com/smukher2/pbothers rnaseq ml feb2023.
Please cite this paper if you use these codes. Thank you.
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