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ABSTRACT

This paper presents a real time software to tune musical
instruments. The visual rendering emulates a tuner com-
monly used by the music industry, namely, the strobe-tuner.
In the classic case, a tuned note is characterised by the im-
mobility of a dial: through a stroboscopic effect, the rota-
tion speed of the dial is made proportional to the deviation
in Hertz between the target pitch and the played note. Here,
we propose to use spectral estimates of the Snail-Analyser
to have a similar rendering with respect to the deviation in
cents, with an adjustable sensitivity. These estimates are
derived from the demodulated phase calculated by Fourier
analysis. The software allows the choice of the targeted
frequencies for each note, according to musical consider-
ations such as temperaments, musical modes, but also oc-
tave stretching, etc. It has been prototyped using the MAX
software and developed with the Juce framework to target
both desktop and mobile environments.

Keywords: Fourier analysis, demodulated phase, timbre,
harmonic representation

1. INTRODUCTION

The ATRIM project 1 aims to design reliable tools with
reactive visual renderings adapted to high precision pitch
and timbre analysis of musical wind instruments. The ob-
jective is to provide musicians with accurate and informa-
tive feedback in real time (during performance) that is rel-
evant in several contexts. Some of them are: expert test-
ing and improvement of manufactured instruments, tuning
or comparison of instruments, musical practice by helping
musicians adjust their motor control to reach their own or

1 ATRIM is the French acronym for ”Analyseur Temps-Réel haute
précision de justesse et de timbre pour Instruments Musicaux” (High pre-
cision real-time pitch and timbre analyser for musical instruments). This
project is supported by the plan ”France Relance” (see acknowledgements
at the end of the paper).
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a teacher’s target (intonation, timbre, vibrato, glissando,
playing effects, etc). To this end, the project relies on the
patented technology [1] used in the ”Snail-Analyser” [2]
and on new designs of estimates and visual renderings in
collaboration with expert musicians.

In [3], a first result of this project allowed to mimic electro-
mechanical strobe-tuners [4, 5] with the same rendering
and accuracy (see [3, § 3 in sec.1] for some brief descrip-
tive and historical elements, and [6–8] for more recent non-
mechanical versions). Such a tuner is composed of 12 dials
(one per chroma) made of tuned rotating wheels with con-
centric cyclic patterns (one per octave), all enlightened ac-
cording to the sound wave signal. This stroboscopic effect
makes the pattern related to a sound spectral component
appear motionless if their respective frequencies are equal:
the pattern rotation speed is the frequency deviation. The
visual rendering in [3] exploits some analysis signals de-
rived in [1], including the spectrum demodulated phase,
as an accurate robust estimate of the pattern angle. Com-
pared to the original strobe-tuners, this technology is better
suited to handling temperaments, modes, octave stretching,
etc. But, it suffers from the same discomfort for high pitch
tuning tasks, as the rotation speed sensitivity follows the
frequency scale and not the note scale.

This paper addresses a similar issue (reactive visual ren-
derings for high precision pitch tuning) with respect to the
deviation in cents rather than in Hertz. To this end, we
derive signals from the process [1], based on the spectrum
demodulated phase, and use them in two visual renderings:
the Snail viewer (spiral representation of the spectrum) and
the strobe-like viewer.

The paper is organised as follows. Section 2 introduces
the method. It includes a brief reminder and sequentially
presents cent-sensitive estimates adapted to the Snail viewer
and for the strobe-like viewer. Section 3 presents the soft-
ware. It includes considerations on its architecture, ele-
ments on design issues and prototyping in Max. It also de-
scribes the anatomy of the Strobe-Tuner application. Sec-
tion 4 ends with conclusive remarks and perspectives.
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Figure 1. Block diagram of the analysis process of the Snail-Analyser.

2. METHOD

This section first presents in § 2.1 a brief reminder on the
principle used in the Snail-Analyser [1] and the basic spec-
tral estimates providing a frequency-scaled precision. Sec-
ond, section 2.2 adapts one of the estimates to render the
Snail representation precise to a cent scale. To transpose
such a cent-scaled sensitivity to a strobe-like tuner, sec-
tion 2.3 proposes and exploits an additional spectral esti-
mate.

2.1 Reminder on the Snail-Analyser

The analysis process (see figure 1) sequentially applies to
the sampled audio input signal (see [2] for more details):
a gain (A0), a short time Fourier transform for successive
frames (A1), the spectrum complex values of which are in-
terpolated in block (A3) according to a vector Freq v of
tuned frequencies (A2), and converted into polar coordi-
nates (spectrum modulus Amp v and phase) in block (A4),
followed by a process on the phase (A5-A6).

The process (A4-A5) is applied in the time domain and
composed of the two following steps:

(A5) build signal PhiDem v as the demodulated phase

ϕd(t, f) = ϕFourier(t, f)− 2πft,

where ϕFourier(t, f) denotes the spectrum phase of
the frame starting at time t computed for frequency
f with value in Freq v,

(A6) build signal PhiCstcy v as the modulus of the out-
put signal of a low-pass filter with cutoff frequency
fc, excited by the input complex signal

uf : t 7→ exp
(
i ϕd(t, f)

)
.

In (A6), the unit signal uf is time invariant if the audio
component locally analysed at frequency f exactly oscil-
lates at frequency f . Otherwise, it is rotating according
to the frequency deviation between f and the frequency of
this audio component. As a consequence, the process (A6)
returns a unit value if the frequency deviation is lower than
fc and a smaller positive value otherwise. This value is
used in the Snail viewer to enhance the frequency preci-
sion, which is crucial for musical applications.

The Snail viewer is composed of a spiral skeleton (+1
round from the center is +1 octave, so that one angle corre-
sponds to one chroma): the polar coordinates (ρ, θ) of the

spiral are defined with respect to frequency f ∈ [fmin, fmax]
as

ρ(f) = 1+log2(f/fmin), θ(f) = θref+2π log2(f/fref ),

where fmin and fmax denote the lowest and highest fre-
quencies to be displayed and fref is the tuning reference
displayed at angle θref . A typical cutoff frequency range
is from 1Hz (high resolution tuning) to 10Hz (musical play
with notes, possibly with a soft vibrato).

On the Snail viewer, the analysed spectrum is represented
on the spiral skeleton as follows: for each frequency, the
thickness and the brightness are both mapped to the loud-
ness of the spectrum modulus Amp vmultiplied by the sig-
nal PhiCstcy v, and the color is mapped to PhiCstcy v.
The left column of figure 2 illustrates the accuracy im-
provement resulting from the selection signal PhiCstcy v
for fc = 2Hz (Tuner mode in the lower figure) and for
fc = 6Hz (Music Mode in the upper figure).

2.2 Cent-sensitive estimate for snail viewer

As expected on the spiral skeleton, a constant frequency
accuracy (±fc) makes the spectral components appear larger
in the low frequency range. An accuracy enhancer adapted
to the cent scale (κ) can be straightforwardly processed,
by making the cutoff frequency fc in (A6) depend on each
analysed frequency f as

fc(f) = 2
κ

1200 f.

The right column of figure 2 illustrates the resulting vi-
sual rendering for κ = 2 cents (Tuner mode in the lower
figure) and for κ = 5 cents (Music Mode in the upper fig-
ure).

2.3 Cent-sensitive estimate for strobe-like rendering

The strobe-like viewer proposed in [3] displays the 12 dials
(one per chroma) composed of rotating concentric cyclic
patterns (one per octave). Each pattern is associated with
its target note frequency. For the equal temperament, these
pitches are

fm = fref2
(m−mref )/12

where m denotes the integer midi code and fref is the
reference frequency of the midi code mref , e.g. fref =
440Hz and mref = 69 for the standard note A4.
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Figure 2. Visual renderings of the Snail-Analyser for several accuracy modes.

The color and the brightness of each pattern are mapped
as in the Snail viewer. The angle Θ of each pattern is cho-
sen as the demodulated phase PhiDem v in (A5) com-
puted for its own frequency fm. The overall visual ren-
dering (see figure 3 below for illustrative examples) is ac-
curate and the rotation speeds are consistent with electro-
mechanical strobe tuners.

However, the sensivity of these rotation speeds becomes
uncomfortable for high pitches as, in this case, even a slight
detuning causes rapid spinning. To restore a cent-sensitivity,
we propose to update the angle Θ of each pattern according
to the cent deviation, computed from the frequency devi-
ation, itself estimated from the demodulated phase as de-
tailed below.

Indeed, for each Fourier frequency f , the demodulated
phase PhiDem v in (A5) is constant in time if the fre-
quency of the corresponding audio component is exactly
f : the signal PhiCstcy v in (A6) estimates such a con-
stancy in a tolerance range parameterized by fc. A more
reactive (local-in-time) descriptor proposed in [1] (but not

represented in figure 1) is the difference (modulo 2π) be-
tween two successive PhiDem v. This descriptor is lo-
cally zero for a locally constant demodulated phase and
allows the estimation of the average frequency deviation
as

δF (tn+1, f) =
M [ϕd(tn+1, f)− ϕd(tn, f)]

2πT
,

below the aliasing frequency 1/(2T ) with T = tn+1 − tn,
and where M denotes the 2π-modulo centered on (−π, π).
The cent deviation is then given by

δκ(tn+1, f) = 1200
[
log2

(
f+ δF (tn+1, f)

)
− log2 f

]
= 1200 log2

(
1+

δF (tn+1, f)

f

)
,

a good approximation of which is given by

δκ(tn+1, f) ≈
1200

ln 2

δF (tn+1, f)

f
.



Then, given the cent sensitivity G in cents by turn, updat-
ing each pattern angle Θ as

Θ(tn+1, f) = Θ(tn, f) + 2π
δκ(tn+1, f)

G

≈ Θ(tn, f) +
1200

f GT ln 2
M [ϕd(tn+1, f)− ϕd(tn, f)],

provides a reactive spinning for strobe-like rendering, which
is cent-sensitive. This solution is the one implemented in
the work presented below.

3. SOFTWARE

The StrobeTuner software is the first prototype developed
for the first stage of the ATRIM project. As more proto-
types will come in the future, and in order to reuse and
isolate properly the different components, we relied on a
specific architecture for the development and the commu-
nication model between the DSP kernel of the Snail Anal-
yser and the diverse hosting applications. We will first de-
scribe the chosen underlying architecture, then the design
process and finally explain more precisely the anatomy of
the StrobeTuner application.

3.1 Architectural considerations for the ATRIM
project

Data visualisation and User Interface design involve a lot
of iterations during the design stage. As the User Experi-
ence remains at the center of the development process, it is
important to have a way to separate both the development
of the Snail Analyser DSP kernel, subject to slow changes,
and the development of the visual components, subject to
faster iterations during the design of the prototypes.
In order to meet these criteria, the Snail Analyser kernel
was encapsulated in the form of a C language library, with-
out any dependencies to any graphical libraries or visual
considerations. A prior work has been made in that sense
for deploying the Snail Analyser in web and embedded
environments [9]. This new C library was built on top
of these prior works, with an extended separation of the
components and a broader access to the kernel parameters
through its API.
Although it is still a work in progress, the decoupling al-
lows to integrate the DSP kernel in different hosts indepen-
dently. More precisely, the communication model used to
pass each analysis frame from the library to possible hosts
has been standardized for most solutions (real-time or non
real-time) and reduced to the use of a single producer-
consumer lock-free FIFO (see figure 4). This last solution
(although optional) ensures that the kernel can be used in
a multi-threaded environment and communicates safely its
output frames from a real-time thread to an event thread,
which is usually the case for real-time audio applications.

3.2 Design issues and Prototyping in Max

For a rapid prototyping of the visualization, we used Max,
a patching environment for music and multimedia devel-
oped by Cycling74 [10]. Two reasons made us converge
towards this choice. First, the possibility to easily create

a Max object using a static version of the Snail kernel li-
brary. Second, Max’s Javascript user interface (JSUI) al-
lows for faster development iterations for prototyping and
visual design than a compiled language environment such
as C or C++.

As we aim for a continuous development process, the ap-
proach also encourages the exploration of visual possibil-
ities, for example by using different shapes or color cards
(see figure 5) before its final implementation in the stan-
dalone software.

Once the design stage reached a minimal advancement,
the next stage is to implement the results using the JUCE
framework, a C++ framework for audio application and
plug-in development [11], and deploy the prototypes in the
form of Desktop and Mobile applications. The graphical
display routines are adapted to the JUCE graphics API,
and the necessary analysis parameters to control the Snail
kernel used in the MAX prototype are integrated as User
Interface controls.
Additionally, a VAMP plugin prototype was developed to
evaluate the relevance of using the Snail analysis engine in
a non-real time context.
In the future, we look for a possible integration in another
cross-platform application development framework called
Flutter [12], which allows to design and modify on-the-fly
the code of an application thanks to its Virtual Machine
hot-reload feature [13]. This option should help us to iter-
ate faster for the visual prototyping and development stage.

3.3 Anatomy of the StrobeTuner

3.3.1 Application Flow Diagram

As depicted in figure 6, the StrobeTuner application con-
troller uses five parameters to drive the kernel analysis.
The output features are then pulled from the engine analy-
sis queue and post-processed to update the visual strobe-
like display view. The Window Size in milliseconds
drives the underlying Fourier analysis window size. The
window step used internally for the analysis is fixed inter-
nally to a 5 millisecond value in the kernel. The Frequency
Tracking parameter controls the phase filtering process,
either with a global cutoff frequency in Hertz for all fil-
ters, or with a value in cents that sets the cutoff frequency
of each filter individually if we use the Cents Filter
Mode.
The Cents Sensitivity parameter, exposed earlier
in this paper, directly correlates with the Demodulated
Phase Difference and allows visually to control the
amount of rotation per cents deviation (by default set to 20
cents) for each ring in a dial. That value means that, for
a frequency whose deviation is exactly 20 cents, the ring
will spin at one round per second.
The Tuning Ref parameter allows to change the refer-
ence frequency (by default A4=440Hz) used internally by
in the kernel. Finally, a Visual Emphasis acts as a vi-
sual gain input in decibels to enhance the overall brightness
of the dials. Each output analysis frame of the Snail kernel
is then processed such as, for each frequency target (ring)
in a dial, an interpolation of the required features (1. De-
modulation Phase Difference, 2. Amplitude, and 3. Phase
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Figure 3. (a) Sawtooth waveshape (note A3, 220 Hz), (b) Clarinet (note C#4, ≈277Hz).

Constancy) is performed. Those values are then converted
in both a rotation and a color to fill the corresponding vi-
sual attributes of each rings for the twelve dials.

3.3.2 User Interface Description

The main view of Strobe-Tuner is inspired by the interface
and layout of the conventional mechanical stroboscopic
tuner (see figure 7).

Twelve dials corresponding to the twelve pitches of the
chromatic scale are displayed from left to right and bottom
to top. The natural pitches dials (C, D, E, F, G, A, B) are
displayed on the bottom line and the altered pitch dials (C#,
D#, F#, G#, A#) are arranged on the top line with a half-
dial translation to the right. A zoom mode also allows to
zoom and view only a specific dial (see figure 8)

Inside each of these 12 dials is a digital version of the vi-
sual pattern commonly used in mechanical strobe tuners,
that is, 7 concentric rings composed of binary cyclic pat-
terns, with a 2k-periodicity from octave k = 0 at center to
k = 6 at the periphery (using the midi convention where
A4=440Hz). In a standard strobe tuner, these rings are at-
tached on a wheel that rotates at the frequency f of the
targeted note (at octave 1). When enlightened according to
a sound wave signal that includes an active spectral com-
ponent of frequency 2k f , the stroboscopic effect makes
the cyclic pattern of the ring k appear like motionless.
In the present visualization, the digital version emulates a
rendering similar to the legacy strobe-tuner, with one addi-
tion: the rings on the dials are no longer interlocked. Each
ring inside a dial have its own target frequency rotation re-
trieved from the analysis results transmitted by the snail
processing library.

This extra information, although it may feel quite surpris-
ing the first time, displays an additional visual information
on the sound characteristics. The user should be able to
identify the fundamental note of the sound and its harmon-
ics (or partials) as long as their frequency deviation is close
enough to the target frequency of the nearest ring (and does
not exceed the detection range, in cents, of the Snail ker-
nel).
In a default mode, the rings on the dials are tuned using the
twelve-tone (12-TET) equal temperament. This means that
the additional tuning (and timbral) information conveyed
by the display will be dependent on the actual timbre of
the input sound (harmonic/inharmonic) and the used tem-
perament.
In the example at the top of the figure 3, we can see the
display of digital Sawtooth wave playing a A3 (220Hz)
and its visible harmonics 2 (440Hz, A4), 3 (660Hz, ∼E5),
4 (880Hz, A5), 5 (1100Hz, ∼C#6), 6 (1320Hz, ∼E6), 8
(1760Hz, ∼A6), 9 (1980Hz, ∼B6), 12 (2640Hz, ∼E7), 16
(3520Hz, ∼A7), 18 (3960Hz, ∼B7). The other harmonics
of the sound do not lie close enough to the targeted fre-
quencies to be visible in the display.
The second example, at the bottom of the figure 3, shows a
clarinet playing a C#4 (∼277.2Hz) and the visible harmon-
ics 3 (∼831Hz, ∼G#5), 4 (∼1109Hz, C#6) and 5 (∼1386Hz,
∼F6).

3.4 Future developments

The StrobeTuner software is mostly suited for the tuning
of harmonic sounds. In that sense, the possibility to set an
external target frequency map based on a different temper-
ament, for example using the Just Intonation (see video 1)

http://s3am.ircam.fr/wp-content/uploads/2023/04/JustIntonationSawC100Hz.mp4


Figure 4. Architecture of the StrobeTuner.

or the Indian Svara scale (see video 12), or even to build a
completely specific frequency map for exotic instruments,
is already possible and should be accessible from the user
interface soon.

Future development includes an architectural change of
the output features of the kernel in order to refine the visual
feedback according to the demodulated phase difference.

4. CONCLUSION

The Snail analysis process appear to be relevant for strobe-
tuner viewers. The design of cent-sensitive spinner pro-
vides a comfortable visual rendering for musical use.

Further work will focus on real-time visual renderings of
timbre and new features such as recording/playback modes
to allow accurate and easy-to-read comparison between two
instruments or musicians.
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