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We prove that all the criteria proposed in the literature to identify a Chern band hosting exact fractional Chern
insulating ground states, in fact, describe an equivalence with a lowest Landau level defined in curved space
under a nonuniform magnetic field. In addition, we design an operational test for the most general instance of
such lowest Landau-level mapping, which only relies on the computationally inexpensive evaluation of Bloch
wavefunctions’ derivatives. Our work clarifies the common origin of various Chern-idealness criteria, proves
that these criteria exhaust all possible lowest Landau levels, and hints at classes of Chern bands that may possess

interesting phases beyond Landaulevel physics.
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Introduction. The remarkable promise of fractional Chern
insulators (FCIs) [1-4], is to realize the universal anyonic
physics existing in fractional quantum Hall (FQH) systems
[5-19] using less stringent experimental conditions, and in
particular, without any external magnetic field. At the same
time, FCIs remain fragile strongly correlated phases of matter,
and abundant theoretical research efforts aimed at identifying
propitious conditions for their emergence. Arguably, some of
the most promising insights towards that goal originated from
the realization that |C| = 1 Chern bands with constant quan-
tum geometric tensor (QGT) reproduce the interaction form
factors of the standard lowest Landau-level (LLL) wavefunc-
tions on the torus [20]. As a result, the interacting physics of
both systems are identical, allowing one to transpose most of
our analytical understanding of FQH systems to such bands.
This LLL-mapping argument identifies certain bands in which
analytical arguments can ensure the emergence of FCIs, and
can serve as a guide in our long-standing search for zero-field
analogs of FQH states.

Motivated by recent progress in moiré systems [21-28],
more general conditions have been obtained to capture a
larger set of bands in which FCIs appear as the ground
state of a specific interacting Hamiltonian at fractional filling.
These various criteria for idealness have introduced a zool-
ogy of special Chern bands, those of constant QGT carrying
the name “flat Kéhler bands” [29-31], which were joined
by “ideal bands” featuring a nonuniform QGT that never-
theless possesses a constant null vector [32], which were
themselves extended to so-called “vortexable bands” allowing
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for nonlinear embedding in real space [33]. Each of these
classes is defined by the ability to obtain a model interacting
Hamiltonian for FCIs, akin to the pseudopotentials in FQH
systems [34].

This raises the question whether these apparently different
classes of Chern bands have a common physical origin, and
whether the number of classes will keep growing as new
model Hamiltonians are found or will instead converge to a
complete definition. In this work, we convey concrete answers
about these two questions.

First, we prove that all currently existing criteria for special
bands with unit Chern number are generalized versions of
LLL mapping, accounting for a nonuniform magnetic field
and cyclotron metric. The former enables one to describe the
fluctuation of the QGT of ideal bands, while the latter captures
how the density profile of Bloch states changes near their
zeros at different points in space and encompasses the nonlin-
ear embedding of “vortexable” bands. Second, we conversely
demonstrate that the most general class of periodic LLL can
be reproduced by at least one of the special Chern bands so
far introduced, bolstering the generality of Ref. [33]. An ideal
Chern band, in the most liberal sense, is therefore in one-to-
one mapping with a LLL, proving that there cannot exist more
general criteria describing Chern idealness by analogy with
LLLs. Third, we extend the demonstration to higher Chern
numbers using their color decomposition [35]. Finally, we
design an operational criterion to test which Chern bands can
be mapped a LLL with nonuniform magnetic field and metric.
Our criterion only involves derivatives of the Bloch eigenfunc-
tions, and therefore remains computationally inexpensive.

Most general periodic lowest Landau level. The Landau
problem describes the quantization of cyclotron orbits of free
massive charged particles in a magnetic field B = ¢%°9,A,, on
a two-dimensional plane. In the simplest scenario where the
mass tensor and magnetic field are uniform, the spectrum is
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composed of Landau levels (LLs), which are equally spaced
energy levels with extensive degeneracy due to the uncon-
strained guiding center degree of freedom. On allowing for
a nonuniform mass tensor or a curved plane, a metric g,
is introduced, but the spacing and degeneracy of LLs are
not compromised as long as the magnetic flux density B/,/g
remains constant, where ,/g = +/det g4, [36-39]. In all other
cases, LLs generically exhibit a finite dispersion. However, the
LLL can still be flattened and locked at zero energy by adding
an electric potential V = B/(2,/g) [40]. Therefore, the most
generic flat LLL on a plane can be obtained by considering
the ground-state manifold £(g, B) of the Hamiltonian

1
H(g, B) = 5—Im.g"/gm» — Bl, (1)
2@ \/_
with 7, = —id, — A, the canonical momentum (we use units

in which the Planck’s constant, the electric charge, and mass
areequalto 1, i=e=m=1).

To capture the physics of periodic two-dimensional sys-
tems, we convert these LLLs into a band problem. For this
to happen, the metric and the magnetic field must be periodic
with respect to a Bravais lattice Za; + Za,, with an integer
number of flux quanta Ny per unit cell. This last requirement
ensures that the magnetic translations T; by a; for j =1, 2
commute and can be simultaneously diagonalized. The num-
ber of bands obtained via this construction is equal to N.
Since we are interested in describing a single band, we fix
Ny = 1 from now on.

To find the LLL of #(g, B), it is convenient to use
isothermal coordinates (X,Y) in which the metric is ds* =
2 X1)(dX? + dY?) with o areal function [41]. The complex
coordinate Z = X + iY can be chosen such that Z(r + a;) =
Z(r)+1 and Z(r 4+ a) = Z(r) + 7, where t is a complex
number, and r = (x,y) denotes the original coordinate sys-
tem [42]. The Hamiltonian becomes (g, B) = 5-¢ T TI
where Il = mx + imy, and LLL wavefunctions are those
annhilated by [1. This property is conformally invariant, it
is not sensitive to the conformal factor ¢*°, and LLL wave-
functions are invariant, up to normalization, under Weyl
transformation (local rescaling of the metric).

To be more explicit, we split the total magnetic field
as B = By + B where By = 27 /Imt is uniform in isother-
mal coordinates and B carries no flux on the unit cell. The
LLL wavefunction |y) € L(g, B) diagonalizing the mag-
netic translations 7;|yy) = e'*ily) takes the first-quantized
form [42]

Vi, y) = e PX (X, YN, 2)

where (i) |¢r) € L(8ap, By) denotes the wavefunction of the
LLL defined on the torus C/(Z + tZ) with uniform and
isotropic metric, and displaying the same magnetic translation
eigenvalues as |iy), (ii) p stands for the periodic Poisson
(or Kéhler) potential representing the fluctuating part of the
magnetic field, i.e., Ap = B/ /& in the original metric, and
(iii) N2 = [dX dY|e° P¢|* is the normalization constant
carrying information about the local space curvature. For
completeness, we also provide the explicit form of flat and
uniform LLL functions [42]

(X, Y) = B/VZZ=DHikA20, (7 _ 7,:1), (3)

whose zero is fully determined by the quasimomentum that
fixes 2w Z; = (kp + w) — (k1 + ), where we have used the
symmetric gauge and denoted as 6, the first Jacobi theta
function.

To conclude, the most generic LLL £L(g, B) can be written
as that of the conformally equivalent flat surface using isother-
mal coordinates, with the addition of a periodic Poisson field
and a scalar product that correctly includes the Jacobian of the
transformation to the new coordinates.

Equivalence with ideal bands. In this Letter, our first goal is
to show that any ideal Chern band (for all flavors of idealness
introduced in the literature) maps to a LLL L(g, B) for some
choice of nonuniform field and metric. Here, mapping means
that the scalar product and form factors computed within the
Chern band can be reproduced using LLL wavefunctions from
Eq. (2), ensuring that both systems share the same interacting
phase diagram. This definition allows the single-particle wave
functions of both systems to solely differ by an overall spa-
tially dependent phase factor, i.e., for all ¢ in the ideal Chern
band there exists Y in £(g, B) such that yc = e*yy with s a
real function independent of /c. This phase factor is needed
to reconcile the respective periodic and the quasiperiodic mag-
netic boundary conditions of {¥¢ and . Equivalence up to
this boundary condition sewing phase factor shall be written
Yc = Y in the rest of this work.

We split the discussion into two parts, considering first
the momentum-space condition for idealness involving the
QGT [20,32], before turning to the real-space “vortexability”
criterion [33]. We focus on the case C = 1, relegating the
discussion of greater Chern number to the end of the Letter.

Momentum-space condition. Consider a C = 1 Chern band
spanned by Bloch wavefunctions |y;) of unit-cell peri-
odic parts |u;) = e 7|y, the quasimomentum k fixing
the eigenvalues under the two elementary translations of
the lattice Y (r + a;) = €™ (r). Then, define the quantum
geometric tensor as Q¢ = (DZuHDZuk) using the covariant
derivative Dy = 97 — (u|9{|ur). The band is said to be ¢
ideal if Q possesses a constant null vector w throughout the
Brillouin zone: Q¢ w;, = 0 for all .

The relation between g-ideal bands and LLs has already
been acknowledged [32,43], and follows from two main
observations. First, the null vector condition is equivalent
to the momentum-space holomorphicity of the cell peri-
odic Bloch vectors Q(k)[w,0;]|ux) = 0, where Q(k) =1 —
lug){ur| and 0 = 9/0k, [44]. Second, this holomorphicity
condition stringently constrains the |Y;) to admit a universal
form descending from a Landau level v (r) = e "¢y (r) /N
[32], with e=?\") a real positive and periodic function [45], and
|px) € L(ga» = Re[w,wj], Bo = 27 /|a; x az|) the element
of a uniform LLL diagonalizing the magnetic translations
by aj_;» with eigenvalues e'*i. These magnetic translations
commute due to the choice of By, which corresponds to having
a single flux quantum threading each unit cell in the Landau
problem. Finally, the scalar product remains the canonical one
on the plane, such that N7 = [ d*r|e™¢y|.

Written in this form, the g-ideal band considered can be
straightforwardly mapped onto the generalized LLL of Eq. (2)
using the linear transformation Z = X + iY = w,x“, which
transforms the metric into gubdx“dxb = dZ dZ [we have per-
formed a global rescaling and rotation to fix Z(a;) = 1] . The

L032048-2



IDEAL CHERN BANDS AS LANDAU LEVELS IN CURVED ...

PHYSICAL REVIEW RESEARCH 5, 1032048 (2023)

TABLE I. Summary of the two types of ideal bands, the type of
L(g, B) they map onto (see text), and the corresponding currently
known test of idealness.. For r-ideal bands, QF denotes the quantum
geometric tensor computed using the |uf ) ensuing from the nonlinear
embedding of the unit cell F.

Type g B Test

[, det O, = 0[32]
mFin J5, det QF = 0[33]

g ideal Uniform Any
r ideal Any Any

parameter T of the torus is determined from the magnetic
boundary conditions T = Z(a) [32]. Finally, we observe that
By and p are defined identically here and in Eq. (2), com-
pleting the mapping of g-ideal Chern bands to LLLs with
isotropic and uniform metric but spatially varying magnetic
fields L£(8., By + B), already hinted at in previous works
[43,46,47].

Real-space condition. The momentum-space condition for
idealness has been generalized to a larger family of Chern
bands [33]. In more detail, a band C is r ideal if there
exists a function j : R? > C, which, for periodic systems,
must satisfy 3(r + a;) = 3(r) + 3(a;), and if C is stable under
multiplication by 3. Due to its transformation under lattice
translations, 3 can be viewed as a nonlinear real-space unit
cell embedding, or equivalently, as a change of coordinates
F : r — t. Here, the term “band” underlies translation sym-
metry on a lattice with generating vectors denoted by a, », and
we may choose 3(a;) = 1 and 3(ay) = t as above.

Reference [33] observed a relation between r-ideal and g-
ideal bands when using the F' nonlinear embedding to modify
the periodic part of the Bloch functions |u;) = e~ "®®|4r),
with (k, t) = k,M%r, defined by the real invertible matrix
M9 solving the two equations Mt,(a;) = a?. Then, the
stability of C under 3 multiplication becomes equivalent to
the requirement of momentum-space holomorphicity for the
lur) [33,42]. In particular, this implies that r idealness is
more general than ¢ idealness due to the allowed nonlinear
embedding of the unit cell. Quoting the result for g-ideal
bands, we infer that the Bloch wavefunctions of C can be ex-
pressed as Y (r) = e P®¢(v)/Ni. The only difference with
g-ideal bands being the normalization factor N> = [ d*t|Jp| -
|e=? ¢y |, which features the Jacobian Jr of F.

This is sufficient to map r-ideal bands to the LLL of
Eq. (2). Isothermal coordinates are obtained as in the g-
ideal case through Z = X +iY = w,v%, where we similarly
have imposed Z(a;) =1 and defined 7 = Z(ay). To re-
produce the normalization of r-ideal bands, we want the
metric of the analog LLL to feature the same Jacobian fac-
tor ds> = |Jp|(dX? +dY?), which is accomplished using
g = |Jr(r)|g(r) with g,, = Re[3,3%0p3]. Once the metric is
known, p and B are obtained as in the g-ideal case. This
concludes the mapping of r-ideal bands to the LLL L(g, B),
where both g and B need to be periodic to capture the nonuni-
formity of the Berry curvature and the normalization of the
more general r-ideal bands (see Table I for a summary).

Exhaustion of all periodic LLLs. We have just proved that
any ideal bands can be mapped to the most general form of a
Landau level L(g, B) with periodic metric and magnetic field

[Eq. (2)]. Conversely, any LLL L(g, B) is trivially an r-ideal
band. Indeed, the L£(g, B) are stable under multiplication by
Z =X +iY, the complex isothermal coordinate, a property
inherited from the flat and uniform LLLs spanned by the ¢ of
Eq. (3). Hence, ideal bands are in one-to-one correspondence
with LLL in curved space with nonuniform magnetic fields.
Ideal bands do not exist beyond those already identified in the
literature.

Indiscriminate LLL mapping criterion. We now turn to
the practical problem of probing LLL mapping in its most
general form. In Table I, we summarize the existing tests for
checking whether a band is g or r ideal. The probe for the
more restrictive g idealness is computationally inexpensive.
It only necessitates the calculation of the quantum geometric
tensor over the full Brillouin zone, that is, the evaluation of
the momentum derivatives of the [1). On the other hand, no
efficient test of r idealness exists at the moment. One could
check the g-idealness condition with the quantum metric QF
defined with [uf ) = e~ *F)|yy) for all possible changes of
coordinates F'. This should be understood as a consequence of
the connection between r-ideal and g-ideal bands more than
an actual probe because of the unpractical minimization over
all nonlinear embeddings F'.

By explicit construction, we show that an operational test
discriminating bands that map to the most general periodic
LLL, and only involves derivatives of the Bloch wavefunc-
tions, is possible. We first rationalize our criterion using some
general properties of L£(g, B), and then check that it indeed
provides a criterion for LLL equivalence when applied to
Chern bands.

Starting from Eq. (2), and remembering that ¢ (X,Y) is
a product of an analytical function in Z = X + iY with a k-
independent nonholomorphic form factor, we observe that

Az = Y (r)/Yo(r) “

is meromorphic in Z; the origin of the Brillouin zone k = 0
can be arbitrarily chosen. The complex structure correspond-
ing to this meromorphicity can be obtained as

81Re )Lk 82RC )\.ki| (5)

J— 71 =
Je = (@A) Jdr,  diy = [EhlmM 9,Im Ay

of the complex plane’s canonical J;; = ¢;;. Note that the Ji
and invariant under the gauge transformation ¥y — e .
Because Z is momentum independent, so should the complex
structure J; be. This statement forms the operational probe of
LLL mapping that we propose:

i = 0. (6)

A straightforward calculation [42] shows that Eq. (6) indeed
holds for the ideal bands of Ref. [33].

Let us now prove that bands fulfilling Eq. (6) map onto a
LLL L(g, B). In that case, each of the differentiable function
M defined by Eq. (4) is holomorphic with respect to the
complex structure J; defined by Eq. (5), except where its poles
lie. For generic physical systems, ¥ only features isolated
zeros that do not produce essential singularities. The A; are
thus meromorphic with respect to the complex structure J;.
In addition, if this complex structure does not depend on &,
as described by Eq. (6), all A; are meromorphic functions of
the same complex variable Z = X + iY, which is only unique
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up to global conformal transformation. In particular, rotation
and rescaling allows one to set the image of Z(a;) = 1 and
Z(a,) = t for a certain complex parameter t. The existence of
a common complex variable Z for all A; allows for analytical
progress since pseudoperiodic meromorphic functions on the
torus are entirely determined by their boundary conditions and
by the position of their zeros and poles.

To study these zeros and poles, we fix k and introduce the
auxiliary function p; = 9z InAp = (9zAr)/Ax. It has simple
poles with residue equal to 1 and —1 for each of the N, zeros
and NV, poles of A, respectively. The contour integral of i
over the unit cell is thus equal to the difference N, — N,
On the other hand, the periodicity of w; requires this integral
to vanish. Therefore, A; has as many poles as it has zeros,
N, =N, =N. We respectively denote them as Zj and Z]
with j =1...-A. These poles and zeros fully specify the
functional form of the meromorphic functions

X 0(z - 7):7)

. 0

up to a constant C. The boundary conditions Ax(r + a;) =
e®ipe(r) specify the real parameter o through [48]

Y4 ®
N

Assuming the Bloch eigenvectors to have no singularities
for physical groundedness, the Z;’s are a subset of the ¥’s
zeros for each k. We dub them “moving” zeros as they change
when k is varied. Equation (8) describes the motion of the
center of mass of these moving zeros as k moves in the
Brillouin zone. This motion is precisely that of the zero of
LLL wavefunction on a torus [42]. We now consider different
cases depending on the value of \V.

A direct consequence of our criterion, Eq. (6), is that there
must be at least one moving zero A’ > 1. Indeed, N =0
produces a constant o = 0 that cannot satisfy the condition
imposed by Eq. (8). We then focus on the important case
of a single moving zero A = 1. There, Z; = o, matches the
position of the zero in a LLL on the torus. We realize that the
ratio ¢ (X, Y)/¢o(X, Y) possesses the same boundary condi-
tion, the same zeros, and the same poles as ;. Both functions
being meromorphic in Z = X + iY, they must be equal up to
a constant. In other words, states of the bands can be written
as

ezkl — ewzk7 ezkz — ezrak-&-Zan(Sk—So)’ Sk

—p(r)

¢ n(X,Y), e P — M
N $o(X,Y)

where the phase of the ratio ¥y (r)/¢o(X, Y) does not change

the overlaps nor the phase factors in the analog LLL, and can

thus be absorbed into the boundary condition sewing function

s. This brings us back to the case treated above for r-ideal

bands, and hence completes the proof.

We have shown that our criterion, Eq. (6), applied in a band
with a single moving zero and where y(r) only vanishes
polynomially, implies LLL. mapping in its most general form.
We note that the two additional assumptions on the number
of moving zeros and the absence of essential singularity are
satisfied for |C| = 1 bands obtained at all magic angles of the
chiral model for twisted bilayer graphene [49].

Yi(r) =

)

More than one zero . Turning to a situation with more
than one zero reveals a novel phenomenology of holomorphic
bands. To see this, consider a single band satisfying Eq. (6)
and featuring A/ > 1 moving zeros. This band can only be
identified as a strict subset of a £(g, B) with Ny = N flux per
unit cell, the exact mapping between the two systems being
proscribed by the larger Ng-fold degeneracy of LLL at each
k point [42]. While it is not clear whether this situation is
compatible with a spectral gap isolating the band in energy,
we were not able to rule it out. The properties of such a band
would be determined by the specific cut it defines within the
larger L£(g, B) manifold, and cannot be solely inferred from
the properties of the LLL. That is, holomorphic bands with
N > 1 should go beyond the physics of a LLL.

From a different perspective, we see that such bands are in-
compatible with the r-idealness condition—they are not stable
under multiplication by Z. Should they be, the system would
necessarily exhibit an A/-fold degeneracy at each point of the
Brillouin zone, and precisely map onto an LLL featuring the
same number of moving zeros [42]. This again highlights that
r-idealness is equivalent to LLLs, even in the case of multiple
bands.

Greater Chern numbers. Let us finally comment on the case
of a band with Chern number |C| > 1. Early in the study of
Chern bands, it was shown that such bands could be described
as |C| bands distinguished by a “color” index upon extending
the unit cell |C| times, where all the colored bands carry
a Chern number sign(C) and are intertwined through real-
space translations by a,, the original Bravais lattice vectors
[50,51]. When these colored bands took the form of “flat
ideal bands” with Chern number C, = 1, i.e., of Landau levels
with uniform magnetic field and metric, this construction pro-
vided flat ideal bands with larger Chern |C| > 1 dubbed color
entangled [35]. More recently, g-ideal bands with |C| > 1
were also written as color-entangled bands where each of the
colored bands with unit Chern number was itself a g-ideal
band [52,53], i.e., they mapped to Landau levels with spatially
varying magnetic field but uniform metric.

One of the main ideas of the present work is that the most
generic ideal Chern band should ensue from the most generic
Landau level, which possess both a nonuniform magnetic
field and a nonuniform metric. Similarly, the most generic
color-entangled ideal bands should be built from the Landau
levels of Eq. (2) including the nonlinear embedding of the
unit cell provided by the isothermal coordinates (X,Y). In
the Supplemental Material [42], we prove that applying the
criterion, Eq. (6), to the colored bands of a generic band with
a Chern number C > 1 yields precisely to this generalization.
Thus, the framework presented here still applies provided we
first disentangle the different “colors” of the band.

Conclusion. In this work, we have shown that all ideal
Chern bands introduced in the literature map onto LLLs in
curved space. Conversely, equivalence to the most general
LLL does not lead to novel ideal bands beyond r-ideal bands.
This proves that we have exhausted all possible criteria ex-
pressing Chern idealness as some flavor of LLL mapping. We
have also designed an operational criterion to identify which
bands can be mapped onto the most general periodic LLLs.
This criterion solely relies on the inexpensive evaluation of
Bloch wavefunctions’ derivatives.
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