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A B S T R A C T 

Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward 

evolution of the universe have provided a way to infer initial conditions consistent with present-day observ ations. Ho we ver, due 
to the high complexity of the inference problem, these methods either fail to sample a distribution of possible initial density fields 
or require significant approximations in the simulation model to be tractable, potentially leading to biased results. In this work, 
we propose the use of score-based generative models to sample realizations of the early uni verse gi ven present-day observations. 
We infer the initial density field of full high-resolution dark matter N -body simulations from the present-day density field and 

verify the quality of produced samples compared to the ground truth based on summary statistics. The proposed method is 
capable of providing plausible realizations of the early universe density field from the initial conditions posterior distribution 

marginalized o v er cosmological parameters and can sample orders of magnitude faster than current state-of-the-art methods. 

Key words: methods: statistical – early Universe – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

n the standard model of cosmology, structure originates from 

uantum fluctuations of a primordial density field, which are scaled 
o macroscopic distances by a physical process called inflation (Guth 
981 ; Albrecht & Steinhardt 1982 ; Linde 1982 , 1983 ). This initial
ensity field represents the seed to all structure seen in the Universe
oday. Furthermore, different models of inflation predict various 
evels of non-Gaussianity in the primordial density field (Acquavi v a 
t al. 2002 ; Maldacena 2003 ; Bartolo et al. 2004 ). Therefore, accurate
ethods to reconstruct this primordial field could shed light on the 

nknown mechanism behind inflation and guide our search for new 

hysics. 
Beyond the study of early universe physics, knowledge of the 

nitial conditions of the Universe can be combined with a forward 
odel to compute predictions for any observable on our past light 

one. Such predictions can – act as disco v ery templates for new
hysical effects in cross-correlation with external data, e.g. for the 
isco v ery of secondary anisotropies in the microwave sky; be used
o perform posterior predictive tests of the underlying cosmological 
hysics model; or provide insight into quantities that were hitherto 
 E-mail: ronan.legin@umontreal.ca 
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nly accessible in simulations, such as the dynamical assembly 
istory of elements of the cosmic web, such as clusters, filaments,
r voids (Lavaux & Wandelt 2010 ; Leclercq, Jasche & Wandelt
015 ; Jasche & Lavaux 2019 ; Feldbrugge & van de Weygaert 2022 ).
or these reasons, substantial effort has been put in the inference of

nitial conditions as one of the key problems in cosmology . Currently ,
he primary constraints on the initial conditions come from linear 
econstruction (Komatsu, Spergel & Wandelt 2005 ; Yadav & Wandelt 
005 ) applied to observations of the Cosmic Microwave Background 
CMB; Planck Collaboration 2020a , b ). 

Upcoming galaxy surv e ys will pro vide vast amounts of informa-
ion on small scales, begging the question: can we infer the small-
cale initial conditions from non-linearly evolved structure? This 
nverse problem compounds the challenges of high dimensionality 
representing the initial density field on a 3D grid of 10 7 voxels
orresponds to a 10 7 -dimensional inference problem) and the com- 
lexity of computing the non-linear forward mapping between the 
rimordial initial conditions and the present-day density field, requir- 
ng, at the very least, high-resolution N -body simulations (Springel 
005 ; Villaescusa-Navarro et al. 2020 ) and further modelling of
he distribution of observable tracers of the underlying dark matter 
eld (Somerville & Dav ́e 2015 ). Although traditional methods have
een used to this end (Hoffman & Ribak 1991 ; Nusser & Dekel
992 ; Bistolas & Hoffman 1998 ), they typically rely on simplifying
is is an Open Access article distributed under the terms of the Creative 
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pproximations leading to less stringent constraints and possibly
iased predictions of the initial conditions. 
Current state-of-the-art methods such as Bayesian Origin Recon-

truction of Galaxies (BORG; Jasche & Wandelt 2013 ; Jasche &
avaux 2019 ) use Hamiltonian Monte Carlo (HMC), a Markov Chain
onte Carlo (MCMC) algorithm for Bayesian parameter inference

f the initial conditions, in which one can exploit the gradient of the
ikelihood to efficiently generate posterior samples. However, due to
he high computational cost of full N -body simulations, BORG relies
n approximate simulation methods such as second-order Lagrange
erturbation Theory and Particle-Mesh (PM) simulations, which are

naccurate at small scales. Moreo v er, the y require fully differentiable
imulators, which has so far precluded including non-differentiable
perations – such as halo finding – that are part of standard modelling
ipelines that map dark-matter density fields to galaxy surv e ys. 
In the hopes of improving upon these limitations, machine learning

as been used to reconstruct the initial conditions from simulations
Modi et al. 2021 ; Shallue & Eisenstein 2023 ). Unfortunately, due
o the high-dimensional parameter space, these works have been
imited to predicting a single point-estimate, as modelling the full

ultimillion-dimensional posterior distribution is intractable. Since
hese models do not produce samples of the early univ erse, the y do
ot provide any measures of uncertainty on the reconstructions. 
In this work, we propose the use of score-based generative

iffusion models (Song & Ermon 2019 ; Ho, Jain & Abbeel 2020 ;
ong et al. 2020 ) to learn the distribution of early universe density
elds conditioned on the present-day matter density field and to
roduce samples from it. We train a neural network to predict the
core of the posterior distribution using simulations from the Quijote
atin-hypercube set (Villaescusa-Navarro et al. 2020 ). We then use the
stimate of the score network to solve a re verse-dif fusion stochastic
ifferential equation (SDE) to sample the posterior distribution of
he initial conditions. 

 M E T H O D S  

.1 Problem o v er view 

ur goal is to infer the 3D density field of the early uni verse x gi ven
bservations y of the dark matter distribution at low redshift. We
an define this problem within a Bayesian framework, where we are
nterested in sampling from the posterior distribution p( x | y ). Using
ayes’s theorem, the posterior distribution p( x | y ) can be written as, 

 ( x | y ) = 

p ( y | x ) p ( x ) 
p ( y ) 

, (1) 

here p ( y | x ), p ( x ), and p ( y ) represent the likelihood, prior and
 vidence, respecti vely. The prior distribution p( x ) reflects our
nowledge on the possible realizations of the early universe, while the
vidence p( y ) gives the probability for a realization of the data. The
ikelihood distribution p( y | x ) represents the distribution of possible
bserv ations y gi v en a fix ed realization of the early univ erse x . It
ncludes our cosmological forward simulator and additional effects
hat resemble true observations (e.g. selection functions, galaxy shot
oise). For our problem, we let y be the simulated present-day
omoving dark matter overdensity field. We also add low amplitude
oise drawn from a normal distribution with standard deviation at a
evel of 1/10 the standard deviation of the o v erdensity field y . The
eason for the added noise is to make the score network (described
n Section 2.4 ) more robust to small perturbations with respect to
he input condition y . As such, it is not intended to mimic real
bservational noise. As detailed in Section 2.5 , the early and late
NRASL 527, L173–L178 (2024) 
ensity fields, x and y , are represented on 3D mesh grids with
28 3 voxels. Therefore, the sampling space of x is multimillion
n dimension. Because of the high dimensionality of the inference
roblem, modelling the posterior using density estimation techniques
uch as normalizing flows is not feasible. 

Instead of directly modelling the posterior p( x | y ), we can model
he gradient of the log posterior distribution ∇ x log p( x | y ). In
omparison, ∇ x log p( x | y ) is computationally tractable, as it does
ot depend on the normalization of the posterior distribution. This
eans that it can be approximated by a simple neural network that

earns a function s( x , y ) mapping a set of inputs ( x , y ) to an output
rediction of the score ∇ x log p( x | y ). In the following section, we
escribe how we can train a conditional neural network to estimate
he score ∇ x log p( x | y ) and use it in the context of score-based
enerative models (Song & Ermon 2019 ; Song et al. 2020 ) to produce
amples from the posterior distribution p( x | y ). 

.2 Score-based generati v e models 

core-based generative modelling is a framework designed to learn
he distribution of variables from a data set, by approximating the
core ∇ x log p( x ), which is typically modelled by a neural network
Song et al. 2020 ). The procedure also provides the possibility to
enerate new samples from the learned distrib utions. They ha ve been
sed to great success across a wide variety of domains (e.g. Popov
t al. 2021 ; Song et al. 2021 ; Adam et al. 2022 ; Anand & Achim
022 ; Gnaneshwar et al. 2022 ; Mudur & Finkbeiner 2022 ; Legin
t al. 2023 ), and have surpassed previous state-of-the-art methods
uch as generative adversarial netw orks (GANs, e.g. Dhariw al &
ichol 2021 ; M ̈uller-Franzes et al. 2022 ). These achievements have
een made possible due to a number of technical impro v ements in
egard to the sampling strategy used to generate samples. In part, one
mportant breakthrough consisted of framing the sampling method as
 re verse-dif fusion process, where the data x is perturbed at various
oise levels, and sampling new data points x consists of iteratively
eversing this process starting from pure noise. In Song et al. ( 2020 ),
his process is defined as the SDE: 

 x = f ( x , t )d t + g( t )d w , (2) 

here f ( x , t) is called the drift term, d w is a Wiener process
haracterizing the random noise, and g ( t ) is a scalar function that
etermines the level of added noise. The key to generating samples

x from p( x ) lies in reversing the diffusion process by solving the
everse-SDE: 

 x = 

(
f ( x , t) − g( t) 2 ∇ x log p t ( x ) 

)
d t + g( t) d w , (3) 

here p t ( x ) is the probability distribution of x at time t . Alternatively,
e can extend the previous equation to reverse a conditional diffusion
rocess by solving backward in time 

 x = 

(
f ( x , t) − g( t) 2 ∇ x log p t ( x | y ) 

)
d t + g( t) d w , (4) 

hich requires the conditional score ∇ x log p t ( x | y ) at time t . 
In this work, we train a neural network conditioned on the

bservation y and time t , denoted s( x , y , t) to learn the score of the
osterior, ∇ x log p t ( x | y ), via denoising score matching (Hyv ̈arinen
005 ; Vincent 2011 ; Song et al. 2020 ). We then solve equation ( 4 )
o sample from the posterior distribution of initial conditions p( x | y )
y replacing the score ∇ x log p t ( x | y ) by its approximation from the
core network, s( x , y , t). 
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.3 Solving the reverse-SDE 

here exist many numerical methods to solve the reverse-SDE from 

quation ( 4 ). The ordinary differential equation corresponding to 
he reverse-SDE can also be solved, as highlighted by Song et al.
 2020 ). Although more efficient, the absence of a noise term makes
he solution more sensitive to small errors in the learned score 
unction, which could lead to biased samples. In this work, we solve
quation ( 4 ) using the Euler-Maruyama method in which discretizes 
he reverse-SDE as 

x t+ �t = x t + 

(
f ( x t , t) − g( t) 2 ∇ x t log p t ( x t | y) 

)
�t 

+ g( t) z t 
√ −�t , (5) 

here � t = −1/ N is the step size, N is the number of steps and
z t is sampled from a standard normal distribution with the same 
imensions as x t . We perturb the initial conditions x with noise 
ollowing the Variance Exploding SDE (VESDE) proposed in Song 

t al. ( 2020 ). In VESDE, f ( x t , t) = 0 and g( t) = 

√ 

d[ σ 2 ( t)] 
d t , where

2 ( t ) is the variance of the noise as a function of time. We then
olve the discretized reverse-SDE from equation ( 5 ) to sample from

he posterior distribution p( x | y ). We let σ ( t) = σmin 

(
σmax 
σmin 

)t 

and

ased on the geometric interpretation from Song & Ermon ( 2020 ),
e choose a maximum and minimum diffusion noise level of σ max = 

00 and σ min = 0.01, respectively, and discretize the SDE uniformly 
cross time with N = 1000 steps. 

.4 Score network architecture and training 

he score network architecture is based on the PYTORCH implementa- 
ion by Song et al. ( 2020 ) available on GitHub. 1 The network follows
he RefineNet architecture (Lin et al. 2016 ) with five downsampling 
nd upsampling levels each with two ResNet blocks from the BigGAN 

odel (Brock, Donahue & Simonyan 2018 ) and with outputs of 32
eatures maps for the first, fourth, and fifth level and 64 feature maps
or the second and third level. Each ResNet block contains a Dropout
ayer (Sri v astav a et al. 2014 ) with a dropout rate of 10 per cent during
raining. The main difference with the implementation by Song et al. 
 2020 ) is that y is concatenated to x t along the channel dimension and
ed as input to the network. A proof showing the validity of this input
cheme to learn the score of conditional probability distributions 
an be found in Batzolis et al. ( 2021 ). We train the network for
pproximately 400 epochs with a batch size of eight split across four
VIDIA H100 80GB Graphical Processing Units (GPU). We use the 
dam optimizer with a learning rate of 2 × 10 −4 and clip the gradient
f the weights to a maximum gradient norm of 1. The duration of
raining under these settings is approximately 24 h. 

.5 Simulations 

e use density fields from the 512 3 resolution Quijote latin- 
ypercube set of N -body simulations (Villaescusa-Navarro et al. 
020 ) to train and test the score network. Specifically, we use the
et of 2000 (1 Gpc h −1 ) 3 dark matter N -body simulations without
assive neutrinos and train the score network on the o v erdensity
elds defined as ρ/ ̄ρ − 1, where ρ̄ is the average of the density field
. The simulations initialized with different random seeds run with 
if ferent v alues for the cosmological parameters in the range �m ∈
0.1, 0.5], �b ∈ [0.03, 0.07], h ∈ [0.5, 0.9], n s ∈ [0.8, 1.2], and σ 8 ∈
 https:// github.com/ yang-song/ score sde pytorch 

p  

i  

g

0.6, 1.0]. We use 1900 N -body simulations for training and 100 for
esting with the x and y o v erdensity fields computed on a 128 3 grid
t redshift z = 127 and redshift z = 0, respectively. The training and
esting losses for the score network, plotted as a function of training
pochs, can be found in the supplementary material. 

In this work, the redshift z = 127 density fields we train the score
etwork with are individually normalized by their own variance, 
esulting in generated posterior samples of the early universe density 
eld with variance of one. We found that this impro v es training
onvergence and in practice, the generated samples can be rescaled 
ith the true variance predicted from the redshift z = 0 density field
ower spectrum from e.g. CAMB (Lewis, Challinor & Lasenby 2000 ; 
illaescusa-Navarro et al. 2020 ). Note that the samples predicted at

edshift z = 127 are within the linear regime on the scales we consider
nd, therefore, can be related directly to an earlier density field (e.g.
 ∼ 1000) using linear theory. 

 RESULTS  

e show results using our score network on density fields from
he fiducial Quijote set of simulations using the fiducial Planck 
osmology with �m = 0.3175, �b = 0.049, h = 0.6711, n s =
.9624, and σ 8 = 0.834, and from the Quijote latin-hypercube 
et of simulations from our test set with different cosmological 
arameter values. Note that our score network was neither trained 
n density fields from fiducial cosmology simulations nor with the 
ame cosmological parameter values as the test set simulations. For 
he fiducial cosmology simulation and six simulations from the test 
et, we solve equation ( 4 ) to produce 100 samples from the posterior
istribution p( x | y ) using our trained score network s( x , y , t). We
hen compute the power spectrum, cross-correlation and transfer 
unction of these samples, which are then compared to the ground
ruth in Fig. 3 and in the supplementary material. In Fig. 1 and in
he supplementary material, we show examples of sampled initial 
onditions for the fiducial cosmology simulation. In Fig. 2 , we show
 map of the posterior sample variance for the fiducial cosmology
imulation from Fig. 1 . 

Additionally, we conduct a test to verify the mean and standard
eviation of produced initial condition samples x as a function of 
 v erdensity amplitude y . For each simulation in our test set, we
roduce a single sample of initial conditions x from the posterior 
( x | y ). We then bin the voxel values of x based on the values of y 
t the same corresponding voxel position and compute the mean and
tandard deviation of the binned x values. We do the same for the
rue initial conditions x true for each simulation in the test set. In Fig.
 , the mean μx and standard deviation σx as a function of different
ins in y is shown for both the sampled and true initial conditions.
his test verifies that the score network is capable of reproducing

he mean and standard deviation of the true posterior p( x | y ) o v er a
road range of present-day o v erdensity values y . 

 DI SCUSSI ON  

n this work, sampling possible initial conditions from the 
ultimillion-dimensional posterior distribution is done by solving 
 diffusion process backwards in time. This requires the score 
 x log p t ( x | y ), which guides the diffusion towards the posterior
istribution while random noise diffuses the samples in order to 
xplore the sampling space. Compared to the posterior probability 
( x | y ), modelling ∇ x log p t ( x | y ) is computationally tractable as it

s independent of the normalization of p( x | y ), which is intractable
iven the high dimensionality of the inference problem. Therefore, 
MNRASL 527, L173–L178 (2024) 
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M

Figure 1. Left: The density field at redshift z = 0 for the fiducial Planck cosmology. Centre: Residuals x sample − x true of the initial conditions between a 
sample x sample generated from the posterior p( x | y ) and the ground truth x true . Right: The true initial conditions. All three fields span a 1000 × 1000 × 15.625 
(Mpc h −1 ) 3 re gion av eraged o v er the third axis. This example demonstrates the capability of score-based generative models to sample highly detailed initial 
conditions consistent with the ground truth. See Fig. 2 for quantification of uncertainty. 

Figure 2. Variance of initial condition samples from the fiducial Planck 
cosmology simulation per voxel av eraged o v er the depth of a volume of 
1000 × 1000 × 15.625(Mpc h −1 ) 3 . Reconstruction variance is high in patches 
that will collapse into large haloes at the present day (see Fig. 1 ). Moreo v er, the 
variance also increases near the boundaries of the data volume. An example 
of this is the high variance region at the top left corner of the field, which 
only occurs near the boundary of the data cube. 
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Figure 3. Test statistics to verify the accuracy of samples from the posterior 
distribution of initial conditions against the ground truth for the fiducial Planck 
cosmology simulation. Note that this cosmology was not used for training the 
score network. Top: The power spectrum of the redshift z = 127 density field 
versus the true density field. Middle: The cross-correlation C ( k ) between every 
posterior sample and the true field. For comparison we show same for the data 
and the true field, corresponding to the best achie v able C ( k ) for an optimal 
linear filter (Wiener filter, green dashed). The posterior samples contain 
significantly more information. Bottom: The transfer function between the 
posterior samples and the true field with the Nyquist frequency shown as 
the vertical black line. The shaded regions represent 1 σ and 2 σ errors. The 
results illustrate the high level of accuracy of the inferred initial conditions. 
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ethods that directly learn the posterior density using models such
s masked autore gressiv e flows (P apamakarios, P avlakou & Murray
017 ) are not suitable for this task. 
Efficient MCMC sampling methods in high dimensions such as

MC, as implemented in BORG (Jasche & Wandelt 2013 ; Jasche &
avaux 2019 ), also do not need a normalized posterior distribution,
ut they do require a differentiable forward model that must be
un for each step in the integration of the Hamiltonian trajectory.
or our problem, each forward step amounts to running an N -
ody simulation from initial conditions until the present day. Each
uch run must be combined with an adjoint run to compute the
radient. Therefore, the generation of each new sample from the
osterior requires 10s of simulations. As in all MCMC techniques,
ccepted samples are correlated leading to a burn-in stage that
imits the parallelism of the approach since each running chain must
rst converge to the posterior distribution before generating useful
amples. Moreo v er, the ef fecti ve number of samples in the chain is
maller than the number of accepted samples by a factor proportional
o the correlation length of the chain. As a result BORG must run
NRASL 527, L173–L178 (2024) 
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Figure 4. The mean μx and standard deviation σx of sampled and true 
initial conditions x binned as a function of different ranges in present-day 
o v erdensity values y . The error bars on μx and σx were computed using the 
standard error of the mean and bootstrapping, respectively. Note that the test 
set consists entirely of simulations with cosmological parameter values not 
seen during training. 
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n the order of 100 N -body simulations for each approximately 
ndependent sample drawn from the posterior distribution, although 
his could be impro v ed by fitting a variational approximation for the

CMC proposal distribution (Modi, Li & Blei 2023 ). Because of
his, BORG uses approximate N -body simulators such as PM, which 
acrifice accuracy for speed, as they are typically orders of magnitude 
aster than full N -body simulations. Even so, it can require upwards
f 1000 CPU hours to generate a single independent posterior sample 
f initial conditions. Given this, using a full N -body simulator as the
orward model for BORG is not computationally feasible. 

In contrast, the method used in this work performs inference 
sing full N -body simulations and can generate independent samples 
f initial conditions from the posterior distribution within minutes 
n a single GPU. The sampling procedure can also be trivially 
arallelized by independently solving equation ( 4 ) across multiple 
evices. Furthermore, our approach samples from the posterior 
istribution of initial conditions marginalized o v er cosmological 
arameters. There are straightforward generalizations to score-based 
ampling that will allow sampling from the joint posterior distribution 
f initial conditions and cosmological parameters. This will be 
xplored in future work once we mo v e to more realistic models
f the observables. 
We now make a qualitative assessment of whether our posterior 

amples exploit all the available information. As our work is the 
rst to sample from the posterior distribution of initial conditions 
sing full N -body simulations, it opens the door to using the full
nformation content of future sky surveys for inference. Fig. 3 
emonstrates that the posterior samples reproduce the true power 
pectrum to an accuracy of better than 1 per cent for all k except
ithin < 10 per cent of the Nyquist frequency of the grid. The average
f the Pearson correlation coefficient between the sampled and true 
nitial conditions is equal to 0.92, signifying that the reconstructed 
elds account for 92 per cent of the variance of the true initial
eld. This level is expected given that gravitational collapse destroys 

nformation within Lagrangian patches that fall into haloes. Using 
he Press–Schechter formalism and cutting off the power spectrum at 
he grid frequency gives an estimated collapse fraction of 12 per cent
n resolved haloes. This is close to the measured fraction in the
imulation of 16 per cent. These calculations suggest that our samples 
early saturate the information that is physically available given non- 
inear gravitational collapse and coarse-graining on the grid scale. 

It bears mentioning that our analysis of DM density fields repre-
ents a more stringent test of the network capability than what will
e required for the analysis of realistic observations, since these are
ar more sparsely sampled and hence noisier than the DM density
eld. Ho we ver, the systematic errors inherent in realistic observations 
ay complicate the shape of the posterior, making it more difficult to

earn. Investigating the score-based approach in the context of these 
ealistic observations is a topic for future research. 

A possible application of our methodology would be to run N -
ody simulations from the samples of the inferred initial conditions; 
or existing samplers, such as BORG, this is a natural by-product
Leclercq et al. 2017 ). These constrained realisations would open 
he possibility towards unlocking important cosmological questions; 
e would obtain samples from the posterior distribution of possible 
 -body simulations that result in the final conditions. This would
llow us to sample the posterior o v er properties of galaxy clusters,
uch as the positions, masses, and velocities of all dark matter haloes
n surv e ys. Furthermore, the possibility to sample constrained high-
esolution N -body simulations would provide us with the means to
nco v er the set of possible halo assembly histories. For example,
his could be used to sample possible histories of the Local Group
nd the Milky Way, as in McAlpine et al. ( 2022 ). Initial condition
nference with full N -body simulations would help ensure accuracy 
ince galaxy assembly histories are sensitive to scales that are deeply
n the non-linear regime today. 

 C O N C L U S I O N S  

his work proposes score-based generative models for efficient 
ampling of the posterior distribution of initial conditions, a problem 

hat has up until now been intractable using high-resolution N -
ody simulations. The key is to sample by solving a reverse-
iffusion process requiring only the gradient of the noise-perturbed 
og posterior ∇ x log p t ( x | y ), which can be learned using neural
etworks. The results show that we can perform accurate inference of
he initial conditions marginalized o v er cosmological parameters at 
 fraction of the cost of state-of-the-art methods, generating samples 
rom the posterior within minutes on a single GPU. Our tests indicate
hat the samples have the correct statistics at a level of better than
 per cent across the rele v ant range of scales. In future work, we
im to expand the proposed approach to infer initial conditions from
imulated halo and galaxy catalogues and ultimately apply it to real
ata. 
MNRASL 527, L173–L178 (2024) 
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