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A B S T R A C T

Alzheimer’s disease and Frontotemporal dementia are common forms of neurodegenerative
dementia. Behavioral alterations and cognitive impairments are found in the clinical courses
of both diseases, and their differential diagnosis can sometimes pose challenges for physicians.
Therefore, an accurate tool dedicated to this diagnostic challenge can be valuable in clinical
practice. However, current structural imaging methods mainly focus on the detection of each
disease but rarely on their differential diagnosis. In this paper, we propose a deep learning-based
approach for both disease detection and differential diagnosis. We suggest utilizing two types
of biomarkers for this application: structure grading and structure atrophy. First, we propose to
train a large ensemble of 3D U-Nets to locally determine the anatomical patterns of healthy
people, patients with Alzheimer’s disease and patients with Frontotemporal dementia using
structural MRI as input. The output of the ensemble is a 2-channel disease’s coordinate map,
which can be transformed into a 3D grading map that is easily interpretable for clinicians.
This 2-channel disease’s coordinate map is coupled with a multi-layer perceptron classifier for
different classification tasks. Second, we propose to combine our deep learning framework with
a traditional machine learning strategy based on volume to improve the model discriminative
capacity and robustness. After both cross-validation and external validation, our experiments,
based on 3319 MRIs, demonstrated that our method produces competitive results compared to
state-of-the-art methods for both disease detection and differential diagnosis.

1. Introduction
Alzheimer’s disease (AD) and Frontotemporal dementia (FTD) are the two most common neurodegenerative causes

leading to cognitive impairment and dementia [1]. AD is more common than FTD for people over 65, but in the 45 to
65 age range, FTD is almost as common as AD. There are some differences between the two diseases. AD patients have
more problems with visuospatial abilities, while FTD patients have more frequent and severe behavioral changes 1.
However, there are also a lot of overlapping symptoms, such as episodic memory loss, dysexecutive syndrome and/or
language impairment [2]. Accurate differential diagnosis is essential for the management of a patient’s daily life and for
the implementation of dedicated clinical trials. However, the similar symptoms mentioned above make the diagnosis
challenging, although the two diseases have different clinical diagnostic criteria [3, 4]. Moreover, the prevalence of FTD
is lower compared to AD (about 300-fold smaller) [5], limiting our knowledge about FTD. Indeed, many studies have
demonstrated that isolated cognitive tests cannot reliably distinguish FTD from AD populations [6, 7]. Consequently,
an accurate differential diagnosis method would be beneficial for patients, families, and caregivers. In particular, a
multi-class differential diagnostic tool that could distinguish between AD, FTD, and cognitively normal (CN) people
would be extremely helpful in clinical practice. Indeed, such a tool can help clinicians review their hypotheses, thus
making more informed decisions.

Several studies have demonstrated that AD and FTD can be individually detected using structural magnetic
resonance imaging (sMRI) [8, 9]. The areas of atrophy caused by the two diseases may differ [10]. For instance,
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AD seems to mainly affect the medial temporal area [11] while FTD affects different regions depending on its sub-
types [12]. The behavioral variant frontotemporal dementia (bvFTD) is often associated with atrophy in the frontal and
anterior temporal region. Patients with Progressive non-fluent aphasia (PNFA) have motor speech impairments, mainly
controlled by the left inferior frontal lobe. The semantic variant (SV) mainly affects the left anterior temporal area [13].
Hence, using sMRI for disease classification and differential diagnosis should be beneficial. Indeed, some approaches
have previously been proposed to address these problems using volumetric and shape measurements extracted from
sMRI [8, 14]. However, most existing methods focus only on binary classification tasks (i.e., AD vs. CN, FTD vs. CN
and AD vs. FTD). While the multi-class diagnosis provides potential value in clinical practice, only a few studies
consider this problem [15, 16, 17, 18]. Additionally, current approaches mainly use traditional machine learning
techniques with handcrafted features that might not fully include all disease patterns. As a result, deep learning
techniques have lately been explored. However, the outcomes of these methods are usually difficult to understand.
This limitation hinders our understanding of these neurodegenerative diseases.

Recently, we proposed an interpretable framework called Deep Grading [19] for differential diagnosis between CN,
AD, and FTD [20]. In this approach, we employed a large number of U-Nets (125 models) to analyze different brain
locations and generate a 3D grading map that estimates the brain abnormality level at the voxel level. This grading
map was then used to compute averaged grading scores for 133 brain structures, which were subsequently fed into a
Graph Convolutional Network [21] for classification. The advantage of the method is that the 3D interpretable grading
map can help to visualize the disease-related regions. However, this framework can only determine whether a brain
region exhibits abnormality without specifying the specific disease associated with that abnormality. Furthermore,
we solely consider one syndromic presentation of FTD (i.e., behavioral variant) in that approach. Consequently, our
understanding of the differences between AD and FTD still presents some limitations.

In this paper, we propose a method for both disease detection (i.e., AD + FTD vs. CN, AD vs. CN, FTD vs. CN)
and differential diagnosis (i.e., AD vs. FTD and CN vs. AD vs. FTD). Our purpose is to expand our knowledge about
different dementia types and provide an accurate tool for a real clinical scenario. To this end, our contributions are
two-fold. Firstly, we extend the Deep Grading (DG) framework [19] by introducing multi-channel Disease’s Coordinate
(DC) maps. These maps enable the detection of specific disease-related patterns (e.g., AD-like or FTD-like patterns)
in different brain regions. Unlike considering AD and FTD as a single class as in [20], our DC maps allow for
differentiation between AD and FTD patterns. Furthermore, these maps can be transformed into 3D interpretable
grading maps, with distinct colors representing CN, AD, and FTD, facilitating clinicians in gaining deeper insights
into AD and FTD pathologies. Additionally, the DC map can be coupled with a multi-layer perceptron (MLP) for
classification. Secondly, we propose an ensemble approach that combines the decision of our MLP with a support vector
machine (SVM) using brain structure volumes. This combination improves the model’s classification performance and
enhances its generalization capacity. By leveraging both the structure grading and structure atrophy information, our
proposed framework demonstrates state-of-the-art performance in disease detection and differential diagnosis tasks.

This paper is an extension of the conference paper [20], with (i) a multi-channel extension of the DG framework
capable of separating AD-like patterns and FTD-like patterns, (ii) a comparison with state-of-the-art methods using
the same data for training and testing and (iii) an interpretation of the grading map for different sub-types of FTD.

2. Materials
2.1. Datasets

The data used in this study includes 3319 MRIs selected at the baseline from multiple open access databases: the
Alzheimer’s Disease Neuroimaging Initiative (ADNI2) [22], the Frontotemporal lobar Degeneration Neuroimaging
Initiative (NIFD) 2 and the National Alzheimer’s Coordinating Center (NACC) [23]. As the majority of MRIs with
FTD are acquired with 3 Tesla machines, only 3T MRIs are selected for each class. The purpose of this is to avoid
possible bias due to the acquisition protocol of different databases [24]. We use ADNI2 (i.e., 180 CN and 149 AD) and
NIFD (i.e., 136 CN and 150 FTD) to perform a 10-fold cross-validation. We apply the stratified split strategy to alleviate
the bias due to the imbalanced nature of different available classes. The cross-validation result is denoted as in-domain
performance. We additionally evaluate our framework on an external dataset (i.e., NACC with visits conducted between
September 2005 and November 2021) to assess the generalization capacity of the compared methods or out-of-domain
performance. Table 1 summarizes the demographic of the subjects used in this study. We only use the three sub-types

2Available at https://ida.loni.usc.edu/
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Table 1
Summary of participants used in our study. Data used for training are in bold, therefore MRIs from ADNI2 and NIFD are
in-domain data while MRIs from NACC dataset are out-of-domain data.

Dataset Statistic CN Dementia

AD FTD

In-domain
ADNI2 No. subjects 180 149

Age (Mean ± Std) 73.4 ± 6.3 74.7 ± 8.1

NIFD No. subjects 136 150
Age (Mean ± Std) 63.5 ± 7.4 63.9 ± 7.1

Out-of-domain NACC No. subjects 2182 485 37
Age (Mean ± Std) 68.2 ± 10.9 72.3 ± 9.6 64.1 ± 6.9

of FTD in NIFD dataset: bvFTD, PNFA and SV. The reason for this is that the other variant of FTD (i.e., logopenic
variant) is typically associated with AD neuropathological changes [25, 26]. Finally, only subjects with consistent
diagnosis thorough their follow-up sessions are included in this study.

Figure 1: An overview of the proposed multi-channel grading method. The T1w image, its segmentation and the deep
grading map are taken from an AD patient.

2.2. Preprocessing
The preprocessing schema is composed of multiple steps: (1) denoising [27], (2) inhomogeneity correction [28],

(3) affine registration into the MNI152 space (181 × 217 × 181 voxels at 1𝑚𝑚 × 1𝑚𝑚 × 1𝑚𝑚) [29], (4) intensity
standardization [30] and (5) intracranial cavity (ICC) extraction [31]. After preprocessing, we use AssemblyNet 3 [32]
to segment 𝑠 = 133 brain structures (see Figure 1). In this study, brain structure segmentation is used for two purposes.
The first one is to aggregate structure grading for visualization and for the fully-connected classifier. And the second
one is to compute the structure volumes (i.e., normalized volume in % of ICC) for classification using an SVM classifier
(see Section 3).

3https://github.com/volBrain/AssemblyNet
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3. Method
3.1. Method overview

Figure 1 provides an overview of our method. After the preprocessing pipeline, a T1w MRI is downscaled with a
factor of 2 to the size of 91 × 109 × 91 voxels. The resulting image is then used to extract 𝑘3 (i.e., 𝑘 = 5) overlapping
sub-volumes of the same size 32×48×32 voxels and evenly distributed along the 3 image dimensions. We use 𝑚 = 𝑘3
(i.e., 𝑚 = 125) U-Nets to grade these 𝑚 sub-volumes. The output of one U-Net has a size of 2×32×48×32 voxels (as
the disease status is presented by a 2D point, see Section 3.2). The 𝑚 outputs are then used to reconstruct a DC map of
size 2×91×109×91 voxels. This 2-channels map is upscaled to the same spatial size as the original input. After that,
we compute the averaged DC for each brain structure with the help of an AssemblyNet-based brain segmentation [32]
(see Section 3.2). The structure DC can be either used as input of a MLP classifier for classification or transformed
into a 3D grading map for visualization (see Figure 1). Moreover, the structure volumes are used as input for an SVM
classifier. Finally, we ensemble the results of two classifiers to get the diagnosis prediction.

3.2. Deep Grading-based classification
In medical imaging applications, it is more beneficial to provide the regions affected by diseases rather than

just a classification result. For AD detection, several grading frameworks have been proposed to capture anatomical
alterations caused by the disease [33, 34, 35, 36, 19]. The objective is to compute a 3D grading map reflecting the disease
severity at the voxel level. In [33], the authors assigned a score to each voxel by estimating how similar the surrounding
region is to the corresponding region in healthy individuals and AD patients. Similarly, Tong et al. proposed to grade
a small set of discriminative voxels across the whole brain using a sparse coding approach [34]. They demonstrated
that the grading feature was efficient for the early detection of AD. More recently, Nguyen et al. extended the grading
process to deep learning and proposed Deep Grading (DG) as an accurate and interpretable tool for AD detection [19].
Here, we propose to extend the DG framework to the problem of multi-class diagnosis.

As current grading systems only consider one pathology, its severity may be described by a single score. When
many diseases are taken into account, we need to jointly determine which disease is present and also its severity. In this
case, using a single scalar is impossible. To this end, we propose to assign each available class to a point in a 2D plan.
Concretely, on a circle with a radius of 1, we assign (−1, 0) to CN, (−

√

3
2 , 0.5) to AD and (

√

3
2 , 0.5) to FTD (see the

color indicator circle in Figure 1). All voxels outside of ICC are set to (0, 0) as they are not related to any pathology.
With this definition, a predicted point depicting the disease status can be every point on that circle. Thus, the grading
map is not only able to show the severity of each disease but also the common patterns of AD and FTD. We denote
this approach as DGMD meaning deep grading for multi-dementia.

Based on the new definition of ground truth, each of our 𝑚 = 125 U-Nets takes a 3D sub-volume and outputs a DC
map with 2 values for each voxel. For instance, when AD-like anatomical patterns are detected in a part of the brain,
the produced values in this area should be close to (

√

3
2 , 0.5).

After that, we compute the averaged DC point for each brain structure. The obtained features are denoted as structure
DC. By doing this, the grading map is encoded into a 2D matrix of size 2× 𝑠 where s is the number of brain structures.
Finally, we use a fully connected classifier to perform classification.

3.3. Atrophy-based classification
Besides the structure DC features, brain atrophy patterns are also important to identify AD and FTD patients. To

exploit the atrophy features, we train a support vector machine (SVM) to perform the same classification task using
normalized brain structure volumes. The output of the SVM model is combined with the MLP model to make the final
decision. The detail of training the SVM and the ensembling process is provided in Section 3.4.

3.4. Implementation details
In each iteration of 10-fold cross-validation (see also Figure 5 about the data split in annexes), we used 10 data

folds 𝑑𝑖 where 𝑖 ∈ {1, ..., 10} as follows. First, 𝑑1, ..., 𝑑7 were used for training/validation of the 125 U-Nets. Then,
𝑑1, ..., 𝑑7 were re-used for training the MLP (and SVM) classifier and 𝑑8 for its validation. After that, we used 𝑑9 for
ensembling the MLP and the SVM model. Finally, the ensemble model was evaluated on 𝑑10.

To train each 3D U-Net, the data (𝑑1, ..., 𝑑7) is split into 80%/20% for training/validation. The data was common
for all of 𝑚 = 125 U-Nets. However, each time we train a new U-Net, this data was combined and re-shuffled before
splitting into training/validation to exploit the maximum information possible from our limited data. The loss used

HD Nguyen: Preprint submitted to Elsevier Page 4 of 14
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during training was voxel-wise mean square error (MSE) with Adam optimizer, batch size of 16 and a learning rate of
3e-4. The first U-Net was trained from scratch and was stopped after 400 epochs without improvement in validation
loss. The following U-Nets took advantage of transfer learning from a neighborhood U-Net (see [32] for details) and
thus, converted more quickly, their number of epochs for early stopping was set to 100.

To alleviate the overfitting phenomenon while training, we applied the following data augmentation schema: First,
we randomly translated a sub-volume by 𝑡 ∈ {−1, 0, 1} voxel in its 3 axes. Second, we adapted Mixup [37] for DGMD.
Concretely, given 2 pairs {input voxel intensity, target DC point}: {𝐼1, (𝑥1, 𝑦1)}, {𝐼2, (𝑥2, 𝑦2)} taken from 2 subjects
with class DC target (𝑋1, 𝑌1) and (𝑋2, 𝑌2) 4, the mixup with a coefficient 𝛼 ∈ (0, 1) is calculated as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐼𝑚𝑖𝑥𝑢𝑝 = 𝛼𝐼1 + (1 − 𝛼)𝐼2
𝜙1 = 𝑎𝑡𝑎𝑛2(𝑌1, 𝑋1)
𝜙2 = 𝑎𝑡𝑎𝑛2(𝑌2, 𝑋2)
𝜙𝑚𝑖𝑥𝑢𝑝 = 𝛼𝜙1 + (1 − 𝛼)𝜙2
𝑥𝑚𝑖𝑥𝑢𝑝 = cos𝜙𝑚𝑖𝑥𝑢𝑝 ∗ [𝛼(𝑥21 + 𝑦21) + (1 − 𝛼)(𝑥22 + 𝑦22)]
𝑦𝑚𝑖𝑥𝑢𝑝 = sin𝜙𝑚𝑖𝑥𝑢𝑝 ∗ [𝛼(𝑥21 + 𝑦21) + (1 − 𝛼)(𝑥22 + 𝑦22)]

When training the MLP classifier, we used cross-entropy loss with Adam optimizer, batch size of 8 and learning
rate of 0.0003.

For the SVM classifier, we applied a grid search of three kernels (linear, polynomial, and radial basis function)
and 500 values of C in [10−5, 105] on the validation set for tuning hyper-parameters. During training, due to the class
imbalance nature of the dataset, we used balanced weights (available in scikit-learn library [38]) to compensate for the
problem.

To ensemble the MLP and SVM classifier, we made their prediction on the 𝑑9. After that, we found a coefficient
in [0, 1] that maximizes the balanced accuracy of the linear combination of MLP and SVM probabilities. Finally, the
ensemble model was evaluated on 𝑑10.

4. Experimental results
In this section, the 125 U-Nets were used as a feature extractor for every classification task. After the 10-fold

cross-validation, we obtained in total 10 models.
To estimate the model performance on in-domain data, we evaluated 10 ensemble models on their corresponding

in-domain test fold. By doing this, each testing sample was evaluated by one model and has one final prediction. We
then concatenated all the prediction of 10 folds and compute different metrics based on that prediction.

To estimate the model performance on out-of-domain data, we evaluated 10 ensemble models on the out-of-domain
data and averaged the output of these 10 models to boost the model generalization. By doing this, each testing sample
was evaluated by ten models and had one final prediction. We then computed different metrics based on that prediction.

4.1. Ablation study for binary classification tasks
Table 2 describes our ablation study for different binary classification tasks. This is done by evaluating 4 tasks:

dementia diagnosis (i.e., AD and FTD vs. CN), AD diagnosis (i.e., AD vs CN), FTD diagnosis (i.e., FTD vs CN) and
2-class differential diagnosis (i.e., AD vs FTD). When training our classifiers, the 10 folds are remaining the same but
all subjects with irrelevant classes are removed for each classification task. The balanced accuracy is used to assess the
model performance, other metrics are also provided in annexes.

Based on the results, we observe higher balanced accuracy of grade features than volume features for in-domain
evaluation (exp. 1 vs. 2; ADNI+NIFD datasets) in every binary classification task. However, when evaluating on out-
of-domain data (NACC dataset), the volume features are better than grade features (exp. 4 vs. 5) in all tasks except
FTD diagnosis. Since the ensembling of two models can improve the performance in most of the cases compared to a
single model, both grade and volume features are crucial for our classifications. However, they might focus on different
characteristics of data (e.g., grade features are more sensitive with FTD and volume features are more sensitive with
CN, see Section 4.2), making different rankings for in-domain and out-of-domain datasets.

4(𝑥𝑖, 𝑦𝑖) and (𝑋𝑖, 𝑌𝑖) can be different when the voxel is outside of ICC, see Section 3.2
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Table 2
Ablation study of our method for binary classification tasks. We use the balanced accuracy (BACC) to assess the
performance. We perform 10-fold cross validation on ADNI+NIFD dataset to estimate the in-domain performance (exp. 1,
2, 3). Additionally, we evaluate on NACC dataset to estimate the out-of-domain performance (exp. 4, 5, 6) by averaging
the outputs of 10 trained models. The results are presented in %. Red: best result, Blue: second result.

No. Evaluation Features
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
𝑁 = 615 𝑁 = 465 𝑁 = 466 𝑁 = 299

1
In-domain

Volumes 85.3 82.3 86.6 81.3
2 DC 86.3 87.1 91.0 94.3
3 Ensemble 87.5 87.5 90.7 91.0

𝑁 = 1627 𝑁 = 1605 𝑁 = 1353 𝑁 = 296
4

Out-of-domain
Volumes 86.6 86.7 87.0 88.9

5 DC 86.1 83.2 88.6 84.0
6 Ensemble 86.9 86.8 89.1 87.1

Table 3
Performance of different models for the multiple disease classification. We denote ACC for accuracy, BACC for balanced
accuracy, AUC for area under curve and Sen. for sensitivity. We perform 10-fold cross validation on ADNI+NIFD dataset
to estimate the in-domain performance (exp. 1, 2, 3). Additionally, we evaluate on NACC dataset to estimate the out-of-
domain performance (exp. 4, 5, 6) by averaging the outputs of 10 trained models. The results are presented in %. The
best and second performances are respectively in red and blue.

No. Evaluation Features ACC BACC AUC CN Sen. AD Sen. FTD Sen.
1

In-domain
Volumes 81.3 77.2 91.5 92.4 68.5 70.7

2 DC 85.4 84.6 94.3 87.3 84.6 82.0
3 Ensemble 86.0 84.7 93.8 89.6 83.2 81.3
4

Out-of-domain
Volumes 87.9 79.9 91.2 91.6 72.6 75.7

5 DC 82.7 79.2 88.8 85.2 71.3 81.1
6 Ensemble 87.1 81.6 91.6 89.6 76.9 78.4

4.2. Performance for multi-disease classification
Table 3 shows the results obtained for the 3-class differential diagnosis (i.e., AD vs. CN vs. FTD). Different metrics

are used to estimate the model performance: accuracy (ACC), balanced accuracy (BACC), area under curve (AUC)
and sensitivity for each class. We observe that the volume features with the SVM classifier provide high CN sensitivity
compared to grade features with the MLP classifier for both in-domain and out-of-domain evaluation. Besides, the
grade features with MLP classifier provide high FTD sensitivity compared to volume features with SVM classifier
for both in-domain and out-of-domain evaluation. These properties are important for the multi-class classification.
Consequently, the combination of grade and volume consistently shows the best or second results in various metrics
for both in-domain and out-of-domain evaluation. In the following, the results of our ensemble framework is used to
compare with state-of-the-art methods.

4.3. Comparison with state-of-the-art methods
In this section, we compare our method with two other deep learning based methods. In the first method, Hu et

al. used a ResNet-like architecture for classification based on the intensities of a whole MR image [18]. They then used
a guided backpropagation based method to visualize the dominant regions of AD and FTD pathologies. In the second
method, Ma et al. firstly extract structure volume and cortical thickness (Cth) features from an MR image [17]. They
then trained a Generative Adversarial Network (GAN) using these features and added an additional class for the fake
data. At the inference time, the probability of this class is discarded for the final decision.

We retrained the method of Hu et al. with the official publicly available code 5. In the case of the second method,
we re-implement it based on the associated paper. For a fair comparison, we use the same 10 folds to train 10 models
of each method. To train each model, 7 folds were used for training, 2 folds for validation. The remaining data fold

5https://github.com/BigBug-NJU/FTD_AD_transfer

HD Nguyen: Preprint submitted to Elsevier Page 6 of 14

https://github.com/BigBug-NJU/FTD_AD_transfer


Deep grading for MRI-based differential diagnosis of Alzheimer’s disease and Frontotemporal dementia

Table 4
Comparison of our method with current state-of-the-art methods for binary classification tasks. Our reported performances
are the average of 10 repetitions and presented in %. Red: best result, Blue: second best result. The balanced accuracy
(BACC) is used to assess the model performance. We denote Dem. for dementia (AD and FTD), CNN for convolutional
neural network, GAN for generative adversarial network and Cth for cortical thickness.

No. Evaluation Method
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
1

In-domain
CNN on intensities [18] 81.8 75.9 83.8 82.3

2 GAN on Cth and volumes [17] 85.1 85.3 85.7 77.9
3 Our method 87.5 87.5 90.7 91.0
4

Out-of-domain
CNN on intensities [18] 81.3 76.1 68.0 61.2

5 GAN on Cth and volumes [17] 77.9 86.6 80.8 80.5
6 Our method 86.9 86.8 89.1 87.1

Table 5
Comparison of our method with current state-of-the-art methods for 3-class differential diagnosis AD vs. FTD vs. CN. Red:
best result, Blue: second best result. We denote ACC for accuracy, BACC for balanced accuracy, AUC for area under curve,
Sen. for sensitivity, CNN for convolutional neural network, GAN for generative adversarial network and Cth for cortical
thickness.

No. Evaluation Method ACC BACC AUC CN Sen. AD Sen. FTD Sen.
1

In-domain
CNN on intensities [18] 76.3 72.5 90.0 58.4 86.4 96.5

2 GAN on Cth and volume [17] 77.1 75.9 86.4 80.4 81.2 66.0
3 Our method 86.0 84.7 93.8 89.6 83.2 81.3
4

Out-of-domain
CNN on intensities [18] 85.2 68.8 86.5 68.0 94.1 48.6

5 GAN on Cth and volume [17] 69.1 74.6 87.5 66.1 82.1 75.7
6 Our method 87.1 81.6 91.6 89.6 76.9 78.4

was used to assess the in-domain performance. Finally, we applied the same data preprocessing pipeline used in our
proposed method for training the state-of-the-art methods mentioned.

Table 4 shows the comparison of our method with state-of-the-art methods for different problems of binary
classification. Balanced accuracy (BACC) is used to assess the model performance. Other metrics, such as accuracy
and area under curve are provided in the annexes. Our method consistently achieves the best results across all tasks,
both in-domain (exp. 1, 2, 3) and out-of-domain diagnosis (exp. 4, 5, 6). This indicates the superior performance and
effectiveness of our approach. Furthermore, our method demonstrates robustness to domain shift, surpassing other
methods. On average, the performance drop between out-of-domain and in-domain evaluations for our method is only
1.7%. In comparison, [17] exhibits an average drop of 2.1%, while [18] shows a substantial average drop of 9.3%.
Overall, our method demonstrated high performance on different tasks and datasets and is more robust to external
validation than other methods, highlighting its generalization capacity on unseen data and, thus, in clinical practice.

Table 5 presents the comparison of our method with the state-of-the-art methods under different metrics: accuracy
(ACC), balanced accuracy (BACC), area under curve (AUC) and the sensitivity for each class (i.e., CN, AD and FTD).
Our method presents higher performance than other methods in global performance metrics (i.e., ACC, BACC and
AUC) for both in-domain and out-of-domain evaluation. Furthermore, our method presents similar performances in
all ACC, BACC, AUC metrics, between in-domain and out-of-domain evaluations. This property is not observed in
other methods [17, 18]. It shows the high generalization capacity of our framework. In terms of sensitivity, our method
achieves most of the time first or second place for all classes (i.e., CN, AD and FTD).

Overall, our framework exhibits high performance and generalization capacity across various tasks, including
binary and multi-disease diagnosis. However, it is important to note that there is a trade-off associated. Our framework,
consisting of 125 U-Nets and an MLP classifier, comprises 393 million parameters, requires 25.9 TFLOPs for
computation, takes 110 hours for training and has an inference time of 1.63 seconds (mainly due to the patch extracting
and image reconstructing times). In comparison, the method of [18] presents 46 million parameters, 1 TFLOPs, 6 hours
for training and an inference time of 1.4 ×10−3 seconds, while the method of [17] presents 0.11 million parameters,
6.8 ×10−6 TFLOPs, 0.4 hours for training and an inference time of 0.4 ×10−3 seconds.
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4.4. Interpretation of deep grading map
To assess the interpretability provided by the grading map, we compute the averaged DC points (133 points for

133 brain structures) over subjects from each class. The considered subjects are taken from in-domain dataset. The
averaged DC maps are transformed into grading maps for visualization. Figure 2 shows sagittal and coronal views of
these grading maps.

Figure 2: Average grading map per group of subjects in the MNI152 space with neurological orientation (with the right of
the patient at the right).

First, we can observe that our framework produces average grading maps well-separated for each class. As expected
for the group of healthy people (i.e., CN), all regions are detected as normal. For AD patients, the regions around the
hippocampus are detected as AD-related patterns (red color). More generally, the temporal lobe is detected as strongly
related to AD-like patterns in this population. The prevalence of AD in this region is widely documented [39]. For the
FTD class, we observe that FTD-like anatomical patterns are detected in similar areas. These results indicated that our
method found diseases-specific anatomical anomalies (dissimilar patterns between AD and FTD) in similar locations
for AD and FTD. This experiment highlights the need of grading map based on the multi-channel disease’s coordinates.
To further analyze our grading map, we compute the averaged map for each of its variants (i.e., bvFTD, PNFA, SV)
(see Figure 3).

Figure 3: Average grading map per variant of FTD in the MNI152 space with neurological orientation (with the right of
the patient at the right).

We observe that the three sub-types present different FTD-related patterns. In the bvFTD group, the grading map
highlights the frontal and temporal areas which are shown to be related to this pathology [40]. In the PNFA group,
the left frontal region [2] and especially the left inferior frontal gyrus [41] are highlighted which is typical of this
syndrome. For the SV group, the left temporal pole is the most affected brain region. Indeed, this area presents typical
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atrophy in SV patients [41]. We remark with the 3 variants of FTD that the disease severity is asymmetric, which is in
line with the finding of Boeve et al. [2].

Finally, we select typical deep grading maps of each class (i.e., CN, AD and FTD) at different ages (see Figure 4).
We observe that in older healthy people, some areas have similar deep grading patterns with FTD [42] and AD [43].
In AD and FTD patients, both diseases start at a specific region (around the hippocampus for AD and frontotemporal
lobes for FTD) and tend to expand to the whole brain over time.

Figure 4: Individual grading maps of each group of subjects with respect to age.

5. Discussion
In this paper, we proposed a novel deep grading framework dedicated to binary and multi-disease classification

problems. Moreover, we aimed at expanding our knowledge on AD and FTD disease-related patterns. So, beyond the
predicted class for each individual, we provided also the color map indicating regions with specific disease patterns.
The regions highlighted in each group of people (i.e., CN, AD, bvFTD, PNFA, SV) as well as the asymmetric
characterization provided by our framework are coherent with current knowledge of these diseases in the literature.
Finally, we further investigate the three variants of FTD to describe the variability of this disease as suggested by Hu
et al. [18]. This is expected to help clinicians to deeper understand FTD and to make more accurate diagnoses.

In this study, we take advantage of two types of biomarkers: structure grading and structure atrophy. While structure
grading features provided by several U-Nets might offer information about anatomical patterns similarity with each
class (i.e., CN, AD, FTD), structure atrophy offers information about the abnormality of each brain structure in terms
of size. Table 3 demonstrates that the first biomarker can help to better detect FTD patients and the second one can
accurately identify healthy people (i.e., CN). As a result, our ensemble model improves the model performance not
only in multi-disease tasks but also in many binary classification tasks (see Table 2).

This study is one among a few studies addressing the problem of multi-disease classification using sMRI
data [15, 16, 17, 18]. We tried our best effort to make a fair comparison with state-of-the-art methods. Compared to
these approaches, our method shows promising performance on different classification tasks (i.e., dementia vs. CN, AD
vs. CN, FTD vs. CN, AD vs. FTD and CN vs. AD vs. FTD). Experimental results demonstrate that our method is not only
good with in-domain dataset but the learned patterns are generalizable, expressed by the lower drop of performance
when evaluating on an out-of-domain dataset compared to other state-of-the-art methods. This characterization is
shown in both binary classification and multi-disease classification tasks. This is very important in clinical practice
where data are heterogeneous.

It is noteworthy that that we utilized the same (preprocessed) data to train our method and the state-of-the-art
methods we compared to in this study. This choice was made based on the observation that the performance achieved by
these methods using these preprocessed data was better than that achieved using raw data. Therefore, our preprocessing
pipeline played a crucial role in enhancing the in-domain performance of both our method and the state-of-the-art
methods while also contributing to improved generalization capacity on out-of-domain data.

HD Nguyen: Preprint submitted to Elsevier Page 9 of 14



Deep grading for MRI-based differential diagnosis of Alzheimer’s disease and Frontotemporal dementia

Besides, the training data is an important factor leading to a good classification model. For instance, we used data
coming from two different datasets with different classes: ADNI contains CN and AD patients while NIFD contains
CN and FTD patients. These two datasets are chosen for their popularity and a lack of datasets with sufficient subjects
for each class: CN, AD and FTD. However, it may exist some dataset-side biases. To alleviate the problem, only 3 Tesla
images are selected as in [18]. It is possible that some people are misdiagnosed in these databases, where biological
biomarkers are not always available, making a noisy ground-truth. Future works should consider the outlier removal
to further improve model reliability. Finally, this study relies only on the sMRI at the baseline with the goal to detect
brain diseases as early as possible. However, the patient’s condition changes over time, it could be beneficial to use
longitudinal data to make more accurate predictions and further track the progression of the disease.

6. Conclusion
In this paper, we propose a new framework for both disease detection (i.e., AD + FTD vs. CN, AD vs. CN, FTD

vs. CN) and differential diagnosis (i.e., AD vs. FTD and CN vs. AD vs. FTD). First, we generate grading maps offering
a meaningful visualization of the disease-related patterns. The grading scores can also be classified using a simple
fully-connected classifier. Second, we propose to combine the obtained results with a support vector machine model
using brain structure volumes to improve the model performance. By combining two types of features (i.e., structure
grading and structure atrophy), our method shows state-of-the-art performance in both disease detection and differential
diagnosis.
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Annexes
Our data splitting procedure

For each cross-validation iteration, we used seven folds as training/validation data for our 125 U-Nets in the first
stage. In the second stage, we reused this data as training data for our MLP and SVM classifiers. We took one more
data fold as validation data for these classifiers. Once the MLP and the SVM were trained, one more data fold was used
to find the coefficient to ensemble the two classifiers. Finally, we obtained an ensemble model of MLP and SVM and
one remaining unused test fold.

Figure 5: Our data split procedure

Ablation study using different metrics

Ablation study of our method for binary classification tasks. We use the accuracy (ACC) to assess the performance.
We perform 10-fold cross validation on ADNI+NIFD dataset to estimate the in-domain performance (exp. 1, 2, 3).
Additionally, we evaluate on NACC dataset to estimate the out-of-domain performance (exp. 4, 5, 6) by averaging the
outputs of 10 trained models. The results are presented in %. Red: best result, Blue: second best result.

No. Evaluation Features
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
𝑁 = 615 𝑁 = 465 𝑁 = 466 𝑁 = 299

1
In-domain

Volumes 85.4 84.7 90.1 80.6
2 Grades 86.3 87.5 93.1 94.6
3 Ensemble 87.6 89.9 93.7 93.3

𝑁 = 1627 𝑁 = 1605 𝑁 = 1353 𝑁 = 296
4

Out-of-domain
Volumes 89.7 92.2 96.6 86.1

5 Grades 87.4 88.0 96.5 80.7
6 Ensemble 89.5 91.2 98.2 85.1

Ablation study of our method for binary classification tasks. We use the area under curve (AUC) to assess the
performance. We perform 10-fold cross validation on ADNI+NIFD dataset to estimate the in-domain performance
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(exp. 1, 2, 3). Additionally, we evaluate on NACC dataset to estimate the out-of-domain performance (exp. 4, 5, 6) by
averaging the outputs of 10 trained models. The results are presented in %. Red: best result, Blue: second best result.

No. Evaluation Features
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
𝑁 = 615 𝑁 = 465 𝑁 = 466 𝑁 = 299

1
In-domain

Volumes 92.3 91.3 93.7 87.6
2 Grades 92.1 93.1 96.2 99.2
3 Ensemble 93.5 93.9 95.3 96.6

𝑁 = 1627 𝑁 = 1605 𝑁 = 1353 𝑁 = 296
4

Out-of-domain
Volumes 95.6 95.5 98.6 94.1

5 Grades 94.2 93.4 92.3 87.3
6 Ensemble 96.0 95.9 99.2 92.7

Comparison with current state-of-the-art methods using different metrics

Comparison of our method with current state-of-the-art methods for binary classification tasks. Our reported
performances are the average of 10 repetitions and presented in %. Red: best result, Blue: second best result. The
accuracy (ACC) is used to assess the model performance.

No. Evaluation Method
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
1

In-domain
CNN on intensities [18] 82.0 81.7 87.3 82.3

2 GAN on Cth and volume [17] 85.0 87.3 88.6 77.9
3 Our method 87.5 89.0 93.3 91.0
4

Out-of-domain
CNN on intensities [18] 86.8 86.8 97.3 85.8

5 GAN on Cth and volume [17] 67.3 85.8 75.3 75.3
6 Our method 87.5 90.0 96.8 80.7

Comparison of our method with current state-of-the-art methods for binary classification tasks. Our reported
performances are the average of 10 repetitions and presented in %. Red: best result, Blue: second best result. The
area under curve (AUC) is used to assess the model performance.

No. Evaluation Method
Dementia
diagnosis

Dem. vs. CN

AD
diagnosis

AD vs. CN

FTD
diagnosis

FTD vs. CN

Differential
diagnosis

AD vs. FTD
1

In-domain
CNN on intensities [18] 88.5 86.1 89.3 90.2

2 GAN on Cth and volume [17] 91.1 89.9 91.2 82.6
3 Our method 93.5 93.7 95.0 95.0
4

Out-of-domain
CNN on intensities [18] 88.4 88.9 86.2 75.3

5 GAN on Cth and volume [17] 92.4 93.3 87.8 93.5
6 Our method 93.8 94.4 90.3 95.7

HD Nguyen: Preprint submitted to Elsevier Page 14 of 14


