
HAL Id: hal-04083921
https://hal.science/hal-04083921

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ChiCMaxima: a robust and simple pipeline for detection
and visualization of chromatin looping in Capture Hi-C
Yousra Ben Zouari, Anne M Molitor, Natalia Sikorska, Vera Pancaldi, Tom

Sexton

To cite this version:
Yousra Ben Zouari, Anne M Molitor, Natalia Sikorska, Vera Pancaldi, Tom Sexton. ChiCMaxima:
a robust and simple pipeline for detection and visualization of chromatin looping in Capture Hi-C.
Genome Biology, 2019, 20 (1), pp.102. �10.1186/s13059-019-1706-3�. �hal-04083921�

https://hal.science/hal-04083921
https://hal.archives-ouvertes.fr


METHOD Open Access

ChiCMaxima: a robust and simple pipeline
for detection and visualization of chromatin
looping in Capture Hi-C
Yousra Ben Zouari1,2,3,4, Anne M. Molitor1,2,3,4, Natalia Sikorska1,2,3,4, Vera Pancaldi5,6,7 and Tom Sexton1,2,3,4*

Abstract

Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation
capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection
is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases
presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with
limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima
shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for
flexible visualization of CHi-C profiles alongside epigenomic tracks.

Keywords: Promoter-enhancer interactions, Chromatin loops, Capture Hi-C, Biological replicates, Gene regulation,
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Background
The advent of the chromosome conformation capture
(3C) technology [1] allowed higher-order chromosome
folding to be inferred by identifying spatial proximity be-
tween distal genomic sequences, leading to a compre-
hensive insight of genome topology. As sequencing
throughput has increased, it has become feasible to glo-
bally assess all chromatin interactions within a popula-
tion (4C: “one-to-all”; 5C: “many-to-many”; Hi-C:
“all-to-all” methods) simply by sequencing all 3C ligation
products or a selected subset of them [2–5]. In fact,
Hi-C interaction maps can give insight into chromosome
folding at different scales, depending on the sequencing
depth (and hence resolution) of the study [6, 7]. How-
ever, the strength of Hi-C in assessing all possible chro-
matin interactions is also one of its major disadvantages:
the numbers of possible ligation products that can be
detected is much greater than the current sequencing
output. Recently, several groups have coupled Hi-C (or
another 3C derivative) to sequence capture with pools of

oligonucleotides complementary to thousands of restric-
tion fragment ends [8–12]. Such “CHi-C” (Capture
Hi-C) methods allow the simultaneous and higher reso-
lution mapping of chromatin interactions for large sub-
sets of the genome, such as all promoters or DNase
hypersensitive sites. For example, promoter-centered
interactomes have already been used to assign epige-
nomic status and follow enhancer looping dynamics
throughout development, as well as to characterize
disease-linked intergenic sequence polymorphisms [13–
17]. Despite being highly informative, CHi-C datasets
have specific properties that set them apart from other
3C-like techniques, which require specialized analytical
tools to take these aspects into account. The majority of
CHi-C strategies involve large numbers (thousands) of
genomically dispersed baits for which interacting regions
are detected. The asymmetry between the number of
baits and the number of detected interacting regions
leads to an asymmetry of CHi-C contact matrices, con-
founding standard Hi-C normalization approaches. In
addition, individual baits have variable capture efficien-
cies which introduce additional technical biases. De-
pending on the bait design, CHi-C datasets will be more
or less populated with ligation products between two
bait fragments (“double-captured” interactions), as well
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as between bait and non-bait (“single-captured”), which
may complicate bias assessment even further.
As for all genome-wide datasets, the challenges for

CHi-C analysis are in the appropriate definition of an
expected background level, from which “significant” sig-
nal can be resolved, and in the development of correct
normalization strategies to reduce the impact of
non-biological biases. Up to now, three major methods
have been described for CHi-C analysis: GOTHiC [18],
HiCapTools [19], and CHiCAGO [20]. GOTHiC, actu-
ally developed for interaction calling in Hi-C, employs a
very simplistic binomial test coupled with multiple test-
ing correction to search for overrepresented interactions,
but does not explicitly take into account known features
of Hi-C data, such as the heavy dependence of “back-
ground” interactions on genomic distance, let alone as-
pects of CHi-C such as capture bias. HiCapTools uses a
substantial portion of negative control probes within the
design to better estimate “background” chromosome
folding behavior, over which specific looping events can
be calculated. However, sufficient numbers of controls
are rarely included in many CHi-C applications, limiting
the widespread use of this method. CHiCAGO uses a
statistical background model to account for different
biases in promoter-CHi-C data, combining three factors
to define the expected background interaction level: gen-
omic distance, bait capture efficiency, and technical
biases present in Hi-C and sequencing approaches [20].
These parameters are fitted to the data to define an ex-
pected interaction strength for each individual restric-
tion fragment, based on a combined negative binomial
and Poisson variable. However, the treatment of each
single fragment as an independent variable creates prob-
lems when accounting for biological replicates, since
despite its improved coverage compared to Hi-C,
current depths of CHi-C datasets still vastly sub-sample
the possible space of ligation products. As a result, many
reproducible chromatin loops observed at the resolution
of larger bins of pooled restriction fragments are lost
when scoring individual restriction fragments (Add-
itional file 1: Figure S1). Related to this, it also follows
that chromatin interactions comprising contiguous frag-
ments of increased signal, centered on an interaction
peak, are less likely to result from technical artifacts
than isolated “spikes” of CHi-C signal. CHiCAGO uti-
lizes the same geometric mean approach as DESeq2 [21]
to allow weighting for different read depths of different
replicates, but this may not completely counter the
problem, especially if there is a large discrepancy in
numbers of sequence reads between replicates. We tried
to overcome these existing limitations of CHi-C analysis
methods and developed ChiCMaxima, which we applied
to multiple published promoter CHi-C datasets, includ-
ing mouse embryonic stem (mES) cells with different

restriction enzyme and probe design strategies [10, 11],
and nine different human primary hematopoietic cell
types [13]. Benchmarking against GOTHiC and CHi-
CAGO consistently showed that ChiCMaxima was a
more stringent method for interaction calling, but more
robust to handling undersampling when comparing bio-
logical replicates. Further, ChiCMaxima gave a higher
enrichment for interactions containing hallmarks of
regulatory chromatin, such as histone modifications in-
dicative of enhancers or CTCF binding sites, suggesting
that its false positive detection rate for functional chro-
matin loops may be lower than for the other methods.
Analysis of the chromatin contact network resulting
from ChiCMaxima-called interactions in mES cells iden-
tified potential key roles of Polycomb proteins and
elongating RNA polymerase II, in line with previous
findings [22], further demonstrating the utility of ChiC-
Maxima. In addition to the pipeline for calling CHi-C
interactions, we also present ChiCBrowser, a
user-friendly and flexible browser for inputting whole
CHi-C datasets and then normalizing and visualizing
bait-specific interaction profiles. Tracks of annotated
genes and linear epigenomic profiles can also be added
to the browser, and called interactions (whether by
ChiCMaxima or other methods) can also be highlighted.
This tool, whether used standalone or in parallel with
ChiCMaxima interaction calling, will aid the community
to analyze CHi-C datasets and inform new hypotheses.

Results
Methodological foundation of ChiCMaxima
Calling interactions as signal local maxima
In 3C approaches, genomic distance has an important
impact on the expected frequency of interactions. Gen-
erally, the frequency of interactions decays with a power
law as the genomic distance between fragments in-
creases, consistent with many polymer physics models
[4]. DNA loops correspond to a peak of higher inter-
action signal compared to the expected level of neighbor
fragments on either side; this principle was used to de-
tect loops in some of the first 3C studies [23]. To detect
peaks in the signal, we use a naïve, non-parametric ap-
proach to call local maxima, making limited prior as-
sumptions about the data (Fig. 1). The theoretical basis
and proof of principle of ChiCMaxima is presented
below; an operational guide and breakdown of the pipe-
line’s different tools is detailed in Additional file 2.
First, treating each bait independently and removing

bait-to-bait and inter-chromosomal interactions, we ob-
tain a “virtual 4C” profile of read counts relative to the
genomic position of the non-bait fragment and perform
loess smoothing on this profile. The fragments with the
maximum signal are identified within sliding windows of
a fixed fragment number, and local maxima are defined
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as regions where the smoothed signal equals this value.
With this approach, only three parameters need to be
controlled: the span of the loess smoothing (s), the win-
dow size (w) for the local maximum computation, and
the total genomic span (c, for cis-distance from bait)
over which local maxima are assessed. Over-smoothing
or using too large window size may cause some maxima
to be missed, and under-smoothing or small window
sizes may call many local spikes as spurious interactions.
We performed a parameter sweep for local maxima call-
ing on a subset of mES promoter CHi-C data (all cov-
ered pairwise contacts (~ 1.5 million) for 2000 randomly
sampled baits within a single biological replicate). We
found that the numbers of interactions called most
heavily depended on the w parameter (Additional file 1:
Figure S2a, b; see Additional file 3 for the full
exploration of ChiCMaxima parameters). As expected, lar-
ger w provided the greatest stringency, calling fewer max-
ima which were supported by greater numbers of
sequencing reads. However, large w also placed a heavy
bias on calling the shortest-range interactions, potentially

precluding detection of the functional chromatin loops
that are known to take place over megabase scales [24–
26]. Changes to the s or c parameters made relatively little
difference to interaction calling (see Additional file 3). Re-
gardless of the choice of ChiCMaxima parameters, we ob-
served that local maxima with very low signal, often very
distant from the bait (and thus with a negligible back-
ground signal from neighboring fragments), are still called
as “interactions” (Fig. 1a). We thus opted to remove these
spurious calls with additional filtering.

Bait-specific filtering
According to previous work on CHi-C data [20], the
background interaction level at short genomic distances
(up to ~ 1.5Mb) is largely dominated by genomic separ-
ation (proposed to be caused by Brownian collisions of
the chromosome fiber). In CHiCAGO, a cubic-fitted
log-distance function was derived from the geometric
means of read counts for binned genomic separations
and was then scaled with capture bias estimates in the
final derived background distribution [20]. Inspired by

A

B

Fig. 1 Interaction calling by ChiCMaxima. a Virtual 4C profile derived from one mES CHi-C replicate centered on the bait Adamts10 promoter. The
numbers of raw CHi-C sequence reads are plotted as gray circles against their genomic location, and the black line shows the loess-smoothed
profile (span = 0.05). Red dotted lines and filled circles denote the positions of called interactions, defined as local maxima of smoothed signal
within a fixed number of covered restriction fragments (window = 20). b The same virtual 4C profile as a, plotted with a bar chart of the
geometric means for sequence reads from the profile, stratified by genomic distance between the bait and interacting region (bins of 30 kb). Red
dotted lines and filled circles denote the same local maxima as a, which have smoothed signal greater than the geometric mean for the
corresponding interaction distance, and so are kept as ChiCMaxima-called interactions
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this, we searched for similar but bait-specific approaches
to apply to each virtual 4C profile. The advantage of this
approach is that the data from different baits, which may
reside in very different chromatin environments, do not
need to be pooled together. The major limitation is that
the relative paucity of bait-specific data could lead to
overfitting in the model, particularly if a strong inter-
action causes overestimation of “background” signal
around it. Indeed, we found that cubic or linear fits of
bait-specific log-distance functions performed poorly—
very few called maxima were filtered out as having fewer
supporting reads than the background estimate (Add-
itional file 1: Figure S2c, d). Instead, we noted better re-
moval of spurious weak interactions by simply filtering
out called maxima with fewer supporting reads than the
geometric mean for bait-specific contacts within the cor-
responding genomic separation bin (Fig. 1b). Import-
antly, this filter allowed us to improve the confidence of
called interactions using smaller maximum-calling win-
dows (w parameter), maintaining stringency while redu-
cing the bias for shorter-range interactions. This
approach was robust to different widths of the genomic
separation bins, b, used for computing geometric means
(see Additional file 3 for full details). The major limita-
tion of this approach is that it only serves to remove
spuriously called local maxima and does not provide a
meaningful background model of “expected” contacts.
As a result, ChiCMaxima calls interactions without giv-
ing a measure of interaction strength. Based on our par-
ameter sweep, we opted for the following parameters for
the majority of subsequent analyses: w 50 fragments; s
0.05; c 1.5Mb; b 30 kb.

Accounting for biological replicates
Although CHi-C improves on the resolution afforded by
conventional Hi-C, it remains an under-sampled
method. Although taking the intersection of called inter-
actions from all replicates will give the highest-confi-
dence chromatin loops, the false negative rate appears to
be very high from this approach, due to poor reproduci-
bility at the single restriction fragment level, both for
CHiCAGO and for the better-performing ChiCMaxima
(Additional file 1: Figure S1). We noted that many inter-
action peaks from one biological replicate also had adja-
cent or very close peaks in the second replicate, even
though they were not at exactly the same restriction
fragment (Additional file 1: Figure S3a). To see if these
are likely to represent the same biological interactions,
we assessed more systematically the distributions of gen-
omic distance between interacting regions called in one
biological replicate and the closest interaction called in
the second replicate of the mES CHi-C data (Add-
itional file 1: Figure S3b). Indeed, around one fifth of
ChiCMaxima-called interactions had no genomic

separation across replicates, meaning that they were on
the same or directly contiguous restriction fragment,
and more than a third of all interactions were found
within 20 kb (~ 5 HindIII restriction fragments), suggest-
ing that genomic interactions called by CHi-C can in-
deed be reproducibly called across replicates, albeit at a
lower resolution than single restriction fragments. To
add more flexibility for analyzing biological replicates,
ChiCMaxima allows a threshold distance between re-
ported peaks in biological replicates to be defined by the
user (d: default in the tool is 0). After local maximum
computation and filtering on each biological replicate,
these interactions are further filtered to retain only those
where an interaction is also called within distance d in
all other biological replicates. Unless stated otherwise,
CHi-C analysis in this manuscript is performed with the
parameter d = 20 kb. ChiCMaxima also provides a tool
for assessing the distributions of closest distances be-
tween interactions called in pairs of biological replicates,
better informing the user on their choice of the d par-
ameter (see Additional file 2 for details).

Benchmarking of ChiCMaxima
We performed ChiCMaxima on a published mES pro-
moter CHi-C dataset [11] and compared our results with
published ones from GOTHiC and CHiCAGO applied to
the same dataset [11, 20] (Table 1; Additional file 4: Table
S1). On visual inspection, ChiCMaxima successfully iden-
tified clear promoter interactions, some of which we also
validated by 4C, and seemed to call fewer spurious ones
than the other two methods (Fig. 2). Indeed, ChiCMaxima
identified fewer promoter-centered interactions (23,583)
than CHiCAGO (94,148) or GOTHiC (548,551). Pairwise
comparisons revealed a striking dissimilarity of called in-
teractions across all three methods—with the exception of
ChiCMaxima interactions within the GOTHiC set, the
majority of called interactions from one method is not
shared with those of another (Fig. 3a). This is likely due to
the very different assumptions made in the models for
each method. We next sought to compare the perform-
ance of each method in calling chromatin interactions that
are most likely to be functionally relevant, and minimizing
likely false positives. First, we tested the hypothesis that
ChiCMaxima, in calling fewer interactions than the other
two methods, was the most stringent tool, calling only
higher-confidence interactions. We split the interaction
sets called by CHiCAGO or GOTHiC into those that were
recapitulated, or not, by ChiCMaxima. In both cases, the
interactions maintained in ChiCMaxima had significantly
higher metrics of interaction score (weighted probability
score in CHiCAGO [20]; observed/expected ratio in
GOTHiC [18]) than for interactions called by the other
method alone (Fig. 3b; P < 2 × 10−16, Wilcoxon rank sum
test). Interactions conserved by CHiCAGO and GOTHiC
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Table 1 Overview of CHi-C interactions called by CHiCAGO, GOTHiC, and CHiCMaxima

CHiCAGO [20] GOTHiC [11] ChiCMaxima (this manuscript) ChiCMaxima and CHiCAGO

Number of called interactions 94,148 548,551 23,583 5611

Mean number of called interactions per bait 4.2 29.4 1.4 0.34

A

B

Fig. 2 ChiCMaxima precisely calls chromatin interactions. a mES CHi-C (upper panel) and 4C (lower panel) profiles centered on the bait Dek
promoter are shown. The interactions called by ChiCMaxima and CHiCAGO are denoted as stripes (gray and pink, respectively); points denote
interactions called by GOTHiC. GOTHiC seemingly calls many spurious interactions. b mES CHi-C (upper panel) and 4C (lower panel) profiles
centered on the bait Hoxc5 promoter are shown. The interactions called by ChiCMaxima are denoted as gray stripes, and a large number of
seemingly spurious interactions called by CHiCAGO are denoted as red points. Called interactions conserved between ChiCMaxima and CHiCAGO
are centered on CTCF sites. For both profiles, gene position (blue) and CTCF ChIP-seq profiles (dark green) are shown below the CHi-C and
4C profiles
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calling also had significantly higher observed/expected ra-
tios than interactions called in GOTHiC alone, but with a
much more modest effect size. We thus conclude that
ChiCMaxima is indeed the most stringent of the CHi-C
interaction calling methods, calling the higher-confidence
interactions of the other methods.

Epigenomic analysis of ChiCMaxima-called interactions
One of the major perceived applications of CHi-C is to as-
sign target genes to candidate cis-regulatory elements, par-
ticularly enhancers, by virtue of the specific interactions

they make with promoters. Genomic studies revealed that
enhancers share hallmark chromatin features: monomethy-
lation of histone H3 lysine-4 (H3K4me1), DNase-hypersen-
sitivity, acetylation of histone H3 lysine-27 (H3K27ac), and/
or p300 co-activator occupancy [27]. However, despite epi-
genomic predictions of enhancers in numerous cell types,
unambiguous identification of their target genes has proved
more elusive, since they can control multiple genes and
may skip one or several promoters to act over large dis-
tances [28]. Promoter CHi-C studies have indeed shown a
general enrichment in interacting regions bearing enhancer

A

B

C

Fig. 3 Comparison of ChiCMaxima, CHiCAGO, and GOTHiC on mES CHi-C data. a Venn diagrams showing numbers of interactions called by the
three different methods which are conserved with the other methods. b Box plots comparing the CHiCAGO (left) or GOTHiC (center and right)
metric scores of interaction strength for the sets of interactions called by CHiCAGO (left) or GOTHiC (center and right) which are conserved with
those called by ChiCMaxima (left and center) or CHiCAGO (right), versus those which are not. ***P < 2 × 10−16; Wilcoxon rank sum test. c Bar
charts showing fold enrichment over genomic background for different ChIP-seq peaks within the promoter-interacting sequences determined
by the different CHi-C analysis methods
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chromatin signatures [8, 10, 11], as well as for regions
bound by CTCF, a known factor implicated in chromatin
loops [29]. We reasoned that an interaction calling method
that found the greatest proportion of putative enhancers
and/or CTCF sites within a promoter CHi-C dataset was
most likely to have the best true positive detection rate.
Based on this, ChiCMaxima compares favorably to the
other two methods. It has a higher enrichment for interact-
ing regions containing CTCF, H3K27ac, and H3K4me1
(Fig. 3c), with a ~ 2-fold improvement over CHiCAGO and
~ 5-fold improvement over GOTHiC. The enrichment in
these functional hallmarks is decreased when the d param-
eter of ChiCMaxima is reduced to zero, but is still slightly
better than CHiCAGO. Chromatin interaction networks
mediated by Polycomb group proteins have also been well
described in embryonic stem cells [17, 22, 30, 31]. Reflect-
ing this, promoter-interacting regions called by ChiCMax-
ima and CHiCAGO are also comparably and highly
enriched in binding for core components of the two major
Polycomb repressive complexes, Ring1B and Suz12 (Fig. 3c).
Importantly, ChiCMaxima has a consistently higher enrich-
ment for interacting regions containing CTCF and enhan-
cer marks when different ChiCMaxima caller parameters
are used (increasing or decreasing w; increasing c), further
demonstrating the robustness of the tool (Additional file 1:
Figure S4a and Table S2). Since more than half of
ChiCMaxima-called interactions are not conserved with
CHiCAGO, we also asked whether combining both
methods would improve predictive power further. Indeed,
the enrichment in functional hallmarks is even higher
within the 5611 interactions that are conserved in both
tools (Additional file 1: Figure S4b), indicating that combin-
ing the two methods gives the most stringent,
highest-confidence interactions that are the most likely to
be functionally relevant. However, the high enrichment for
functional marks within ChiCMaxima-alone (and to a
lesser extent for enhancer marks, CHiCAGO-alone) inter-
actions implies that many functional interactions are also
likely to be missed by intersecting the two methods. This is
also apparent on visual inspection of called interactions
within CHi-C profiles (Additional file 1: Figure S4c).
Additionally, we assessed which of the 19,200 candi-

date mES enhancers (based on chromatin signatures
[32]) could be assigned to target promoters by the differ-
ent methods (Table 2; Additional file 1: Table S3). As ex-
pected, the proportion of assigned enhancers scaled with

the numbers of total called interactions (71.4% for
GOTHiC, 19.2% for CHiCAGO, 16.8% for ChiCMax-
ima). However, candidate enhancers comprised a much
higher proportion of the ChiCMaxima-called interaction
set than for the other two methods (~ 3-fold higher than
CHiCAGO; ~ 5-fold higher than GOTHiC), in line with
the relative enrichments for individual regulatory marks.
The interactions called by both ChiCMaxima and CHi-
CAGO only assign target genes to 4.8% of putative en-
hancers, with a modest increase in proportions of
putative enhancers within the interaction set. Interaction
sets called by ChiCMaxima with different parameters
contained very similar proportions of candidate en-
hancers (Additional file 1: Table S3).

ChiCMaxima performance in other CHi-C datasets
To test whether the tuned ChiCMaxima parameters are
more globally applicable, and to more comprehensively
benchmark the method, we applied ChiCMaxima with
the standard parameters (w = 20, s = 0.05, b = 30 kb, c =
1.5Mb, geometric mean filter) to other published CHi-C
datasets. Notably, whereas ChiCMaxima and CHiCAGO
were readily applied to these data, we were unable to im-
plement GOTHiC due to the very high memory require-
ment of the method. First, we called interactions from a
complementary mES promoter CHi-C dataset (two bio-
logical replicates), which used a different probe design
and a more frequently cutting restriction enzyme, MboI,
in the HiCap strategy [10]. These present an analytical
challenge, since they have been relatively less deeply se-
quenced, and are derived from a much more complex
mixture of Hi-C ligation products (~ 200-fold more pos-
sible pairwise restriction fragment combinations). Des-
pite this greater complexity, the same proportion of
HiCap interactions were reproduced across biological
replicates within d = 20 kb as for CHi-C (~ 40%). Perhaps
due to its reliance on calling interactions at the level of
single restriction fragments within a more complex pool
of products, CHiCAGO called ~ 5-fold more interac-
tions from the HiCap data than from CHi-C; ChiCMax-
ima actually called 1.5-fold fewer interactions
(Additional file 5: Table S4). However, visual inspection
of the different calls on HiCap profiles, assessment of
CTCF, enhancer and Polycomb mark enrichments, and
the proportions of candidate enhancers contained within
the interaction sets strongly indicate that ChiCMaxima

Table 2 Overview of putative mES enhancers found within CHi-C interactions called by different methods

Putative mES enhancers in called interaction set Total called interactions/interactions with putative enhancers

ChiCMaxima 16.8% (3235) 7.3

CHiCAGO 19.2% (3680) 25.6

GOTHiC 71.4% (13711) 40.0

ChiCMaxima + CHiCAGO 4.8% (930) 6.0
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is the more stringent, robust interaction calling method
(Fig. 4).
We then compared ChiCMaxima and CHiCAGO

interaction calling within deeply sequenced CHi-C data-
sets derived from nine different primary human
hematopoietic cell types (erythroblasts; M0, M1, and M2
macrophages; megakaryocytes; monocytes; naïve CD4
and CD8 T cells; neutrophils) [13]. An additional test of
the analytical methods came from the presence of
greater numbers of biological replicates (3–4). For all
pairwise combinations of biological replicates, at least
50% of interactions were maintained within d = 20 kb.

We found that extending the ChiCMaxima method for
handling two replicates (keeping only interactions that
are present in both replicates, within a threshold dis-
tance, d (usually 20 kb), of each other) to three or four
performed well (see Additional file 2 for operational de-
tails). Strictly requiring that interactions are present
within a fixed window of d for all of the replicates called
similar numbers of interactions as for the two replicates
of mES CHi-C; furthermore, applying this method to the
datasets with four biological replicates (megakaryocytes
and naïve CD4 T cells) did not drastically reduce the
numbers of called interactions as compared to those

A

B

C

Fig. 4 ChiCMaxima performance on mES HiCap data. a mES HiCap profile centered on the Sox2 promoter. The interaction with the Sox2 enhancer
called by ChiCMaxima is denoted as a gray stripe, and CHiCAGO-called interactions, including a large number of seemingly spurious ones, are denoted
as red points. Gene position (blue) and selected mES ChIP-seq profiles (dark green) are shown below the HiCap profile. b Bar charts showing fold
enrichment over genomic background for different ChIP-seq peaks within the promoter-interacting sequences determined by ChiCMaxima and
CHiCAGO. c Overview of putative mES enhancers found within HiCap interactions called by ChiCMaxima and CHiCAGO
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with three replicates (Fig. 5a; Additional file 6: Table S5,
Additional file 7: Table S6, Additional file 8: Table S7,
Additional file 9: Table S8, Additional file 10: Table S9,
Additional file 11: Table S10, Additional file 12: Table
S11, Additional file 13: Table S12, Additional file 14:
Table S13). As previously, ChiCMaxima more stringently
calls fewer, higher-confidence interactions, which are ap-
parent on visual inspection of CHi-C profiles (Fig. 5b
and Additional file 1: Figure S5), and consistently gave
higher enrichment for putative enhancers, marked by
H3K27ac and H3K4me1 (Fig. 5c, d). Stricter filtering
among replicates, setting d to 0, gave similar epigenomic
enrichments to CHiCAGO, with ChiCMaxima nearly al-
ways performing slightly better.
Although there is not a large overlap between interac-

tions called by the two methods (Fig. 3a; Additional file 1:
Figure S4c), the possibility remains that ChiCMaxima
does not call interactions fundamentally differently to
CHiCAGO and just sets a higher threshold than the de-
fault CHiCAGO score. To formally test this, we also
compared epigenomic enrichments between interacting
regions called by ChiCMaxima, and the matched num-
ber of interactions with the highest scores in CHiCAGO
(Additional file 1: Figure S6). The CHiCAGO threshold
scores were not identical in the different cell types, but
were much higher than the standard threshold of 5. Im-
portantly, ChiCMaxima gave consistently higher enrich-
ments for H3K27ac and, to a lesser extent, H3K4me1,
suggesting that the method does more than simply
modulate the threshold of existing interaction calling
tools. Overall, these results suggest that ChiCMaxima
provides a good compromise of stringency and coverage
when assigning target genes to putative cis-regulatory el-
ements, with a robust set of parameters that can be glo-
bally applied to different CHi-C datasets.

Chromatin assortativity analysis comparing CHiCAGO and
ChiCMaxima derived contact networks
Despite great progress in the experimental mapping of
chromatin organization inside the nucleus, many ques-
tions regarding the functional impact of its structure re-
main unanswered. It is thus difficult to estimate the
accuracy of any interaction calling algorithm beyond the
performance on the few regions of the genome that are
well characterized. Moreover, alongside the known role
of interactions in bringing enhancer regions close to
their target genes and grouping Polycomb-repressed
genes, there might be other functionally relevant 3D
chromatin structures which we still do not understand,
hence the need for finding complementary analytical
methods to study the panorama of genome-wide interac-
tions. A recent step in this direction was made by look-
ing at chromatin contact maps as networks and applying
methods from network theory to gain a comprehensive

understanding of nuclear organization (e.g., [22, 33–35]).
For example, appreciation of the chromatin interaction
network topology bolstered the link between spatial gene
co-associations and their co-expression patterns [33]. An
important concept that was recently applied to chroma-
tin interaction networks is assortativity—which indicates
the extent to which genomic regions sharing the same
chromatin mark(s) preferentially interact. This property
is not trivially related to the relative abundance of a
mark at interacting regions, and highly assortative chro-
matin features are more likely to be related to chromatin
interactions. A recent study of mES chromatin interac-
tions identified three major chromatin features that were
highly assortative: the abundant H3K4me1 mark, fea-
tures of transcriptional elongation (predominantly RNA
polymerase II phosphorylated on serine-2 of the
C-terminal repeat domain (RNAPII-S2P) and trimethyla-
tion of lysine-36 of histone H3 (H3K36me3)), and the
relatively low abundance Polycomb group proteins and
associated histone marks (e.g., trimethylation of
lysine-27 of histone H3 (H3K27me3) [22]. To further
test the utility of ChiCMaxima, we applied chromatin
assortativity (ChAs) analysis to the network of
ChiCMaxima-called interactions and directly compared
it to the one derived by CHiCAGO for promoter-other
end interactions (Fig. 6; Additional file 1: Figure S7). Al-
though the relative abundances of the different chroma-
tin features were very similar (Pearson correlation
coefficient 0.98), and the three aforementioned categor-
ies of assortative chromatin features were identified by
the two methods (Pearson correlation coefficient 0.87
for ChAs values obtained on the two networks), some
differences were apparent. In particular, transcriptional
elongation hallmarks are very strongly flagged by ChiC-
Maxima. In addition to RNAPII-S2P and H3K36me3,
other features enriched within active gene bodies in ES
cells, such as dimethylation of histone H3 lysine-79
(H3K79me2) and CBX3 (HP1γ; associated with tran-
scriptional elongation and stem cell identity [36, 37]),
were also revealed to be highly assortative by ChiCMax-
ima. These results demonstrate that ChiCMaxima-called
interactions can be used in informative network analyses
and highlight promoter-gene body contacts as a poten-
tially important architectural feature for active genes
(see the “Discussion” section).

ChiCBrowser
To enable visualization of promoter (and other sparse
bait) CHi-C results, alongside linear epigenomic profiles
and the interactions called by ChiCMaxima or other
methods, we also developed ChiCBrowser, an R-based
GUI browser. Unlike the WashU browser [38], which
displays all interactions simultaneously and can be diffi-
cult to interpret visually, ChiCBrowser displays virtual
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Fig. 5 ChiCMaxima performance on CHi-C data from human primary hematopoietic cells. a Numbers of interactions called by ChiCMaxima and
CHiCAGO on the different datasets (three biological replicates for all, except for those denoted by an asterisk, which had four biological replicates).
b Erythroblast CHi-C profile centered on the IGF1R promoter. Interactions called by ChiCMaxima are denoted as gray stripes, and those called by
CHiCAGO are denoted as red points. Gene position (blue) and the erythroblast H3K27ac ChIP-seq profile (dark green) are shown below the CHi-C
profile. c Bar charts showing fold enrichment over genomic background for H3K27ac peaks within the promoter-interacting sequences determined
by ChiCMaxima and CHiCAGO for the nine hematopoietic cell types. d Bar charts showing fold enrichment over genomic background for H3K4me1
peaks within the promoter-interacting sequences determined by ChiCMaxima and CHiCAGO for the nine hematopoietic cell types
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4C profiles, with the bait and display window defined by
the user via a graphical window (Fig. 7). Its major func-
tionalities are described below; a full user guide is given
in Additional file 2.

All CHi-C datasets which may be plotted together or
compared are made into one input file (see Additional file 2
for input format details), which only needs to be loaded
once into the memory for all subsequent plots to be made.

A

B

Fig. 6 Exploration of chromatin assortativity of different features on the ChiCMaxima-generated chromatin contacts derived from the mES CHi-C
data. a Scatter plot of abundance of different chromatin features within the interaction networks called by ChiCMaxima or CHiCAGO. b Scatter
plot of chromatin assortativity of different chromatin features within the interaction networks called by ChiCMaxima or CHiCAGO (restricted to
promoter-other end interactions). The class of the different chromatin features is color coded
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To allow fairer comparisons between datasets, all
CHi-C-derived virtual 4C profiles are quantile normalized
[39] before the running mean values are plotted. Since
CHi-C experimental designs usually include biological

replicates and different conditions to be compared, ChiC-
Browser provides flexibility (via the Conditions menu) to
define the plot levels of each single CHi-C dataset. For ex-
ample (shown in Additional file 1: Figure S8), biological

Fig. 7 Some functionalities of ChiCBrowser. a A screenshot of ChiCBrowser, showing the mES CHi-C profile for 500 kb up- and downstream of
the bait Sox2 promoter. Gene positions (blue) and selected mES ChIP-seq tracks (green) are shown below the profile. The main ChiCBrowser user
interface window is shown underneath (left), where the bait and plot window have been specified. A sub-window, called from the Tracks menu
(right), allows the color and level of the epigenomic profiles to be controlled by the user. Epigenomic tracks that are given the same level (for
instance, the same histone mark in different tissues) are scaled to the same level on the y-axis so that the profiles are visually comparable. b As
for a, a screenshot of the mES CHi-C profile for 1 Mb up- and downstream of the bait Zbtb10 promoter. Open red rectangles show the position
of interactions called by ChiCMaxima. The sub-menu on the bottom right, called from the Interactions menu, allows the user to control which
interaction lists to annotate on the CHi-C plot

Ben Zouari et al. Genome Biology          (2019) 20:102 Page 12 of 19



replicates can be allocated to different levels and plotted
side by side to compare experimental reproducibility, or
given the same plot level, so that the mean profile can be
plotted for comparison with other experimental condi-
tions. The user can assign names to these plot levels and
change their plotting colors.
The Tracks menu allows the user to load gene annota-

tions (as a modified bed file; see Additional file 2), which
are plotted as blue arrows to show transcriptional orien-
tation, and linear epigenomic profiles in bigWig or bed-
Graph formats. Similar to the Conditions, the user can
define plot levels for epigenomic profiles (Fig. 7a). In this
case, this defines which profiles are scaled to the same
level on the y-axis, for instance allowing fairer compari-
son between profiles of the same histone mark mapped
in different tissue types. The epigenomic profile plot
colors can also be modified by the user.
Ostensibly, the Interactions menu allows the user to

load sets of interactions called by ChiCMaxima (or CHi-
CAGO, whose output is in the same format) for them to
be highlighted on the CHi-C profile (Fig. 7b). However,
the input format of these interactions is essentially the
chromosomal coordinates of genomic regions associated
with a specific bait (see Additional file 2 for details), so
this plotting functionality can be adapted to highlight
any subset of the CHi-C dataset that the user designs
(e.g., interactions unique to one condition or tissue type
and not another). This flexibility in particular makes
ChiCBrowser very useful to explore different hypotheses
when browsing interactomes. As for other ChiCBrowser
functions, the user can alter the name and color of these
annotations, as well as select or de-select subsets of
them.

Discussion
We present two tools for processing and interpretation
of Chi-C datasets: ChiCMaxima for interaction calling
and ChiCBrowser for bait-specific visualization of inter-
action profiles. Both were developed to overcome the
currently identified unique challenges presented by these
data. Despite a clear improvement over conventional
Hi-C with limited sequencing throughput, the main
issue with CHi-C outputs is that they are greatly
under-sampled, creating problems of reproducibility
across biological replicates at the highest resolutions
(Additional file 1: Figure S1 and S3). The subsequent
paucity of bait-specific data confounds the generation of
powerful statistical models, so previous methods either
appear to have high false positive rates (e.g., GOTHiC;
see Fig. 2), and/or rely on combining data from multiple
baits (e.g., CHiCAGO) to avoid overfitting model param-
eters. ChiCMaxima uses a limited number of model pa-
rameters to be estimated by naively just searching for
local maxima in the virtual 4C profiles (Fig. 1), a logic

for calling chromatin loops that was used in some of the
first 3C studies [23, 40]. Application of an additional filter
was necessary to remove spurious local maxima in distal
regions of low signal, and we found satisfactory results
from a simple threshold based on geometric means of
reads stratified by interaction distance (Additional file 1:
Figure S2; Additional file 3). For single datasets, only four
parameters need to be defined in ChiCMaxima: the win-
dow for local maximum computation, the loess smoothing
span, the total genomic span over which maxima are com-
puted, and the bin width for stratifying the geometric
mean filter. Of these, interaction calling is only very
sensitive to the local maximum computation window
(Additional file 3), and in any case, we found improved
performance over existing methods for a wide range of pa-
rameters (Additional file 1: Figure S4a), indicating that
ChiCMaxima is fairly robust to parameter choice. A major
advantage of ChiCMaxima is thus that interactions can
simply be called without the need to control or estimate
multiple parameters, or choose arbitrary thresholds. How-
ever, this advantage also means that ChiCMaxima does
not return measurements of statistical significance inter-
pretable as the interaction “strength” of the called chro-
matin loops. When comparing chromatin interactions
between different tissues or conditions, we find that quan-
tile normalization allows fair visual comparisons (e.g.,
Additional file 1: Figure S1 and S3), but further work will
be required to better define and quantify interaction
strength differences.
As mentioned previously, another major challenge

resulting from the undersampling of CHi-C data is the
handling of biological replicates. Presumably because it
processes sliding windows rather than treating each
restriction fragment independently, ChiCMaxima has
superior reproducibility to CHiCAGO, but this is still
less than 10% at the single restriction fragment level
(Additional file 1: Figure S1). Since many interactions
are reproduced at slightly lower resolutions
(Additional file 1: Figure S3), ChiCMaxima has a built-in
flexibility whereby interactions can be filtered for those
that are conserved in all replicates, within a user-defined
distance. The optimal distance may be expected to vary
between experiments, particularly with sequencing depth
and complexity of the assessed genome. For this reason,
we provide tools to allow the user to explore the distri-
butions of closest distances between interactions called
in pairs of replicates and thus determine the optimal set-
ting. However, for all 11 CHi-C datasets we tested, these
distributions were very similar, with ~ 40% of interac-
tions within 20 kb of each other in replicate experiments.
We also note that such an approach is robust to inclu-
sion of more than two biological replicates and that
ChiCMaxima performance was still better than other
methods at the most restrictive condition of allowing no
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distance between reproduced interactions within repli-
cates (e.g., Figs. 3 and 5), albeit with reduced sensitivity.
Despite the simplistic approach of ChiCMaxima, it com-

pares favorably to GOTHiC and CHiCAGO in various dif-
ferent benchmarks in different CHi-C experimental
setups, suggesting that it is one of the more stringent call-
ing methods (thus likely reducing false positives) to suc-
cessfully call a high proportion of interactions that are
likely to be functionally relevant (Figs. 3, 4, and 5). This in-
cludes tests of the following: reproducibility between bio-
logical replicates; increased metrics of interaction strength
within ChiCMaxima-called interactions; enrichment for
putative enhancer marks, CTCF binding sites, and
Polycomb-bound regions within promoter-interacting re-
gions; assignment of putative enhancers to target genes;
proportion of putative enhancers within the called inter-
action set; reduced apparent false positive rate on visual
inspection of CHi-C profiles (e.g., Fig. 2). We note
that promoter interactions with non-enhancer/CTCF/
Polycomb-bound elements may certainly be frequent
and functionally significant, albeit poorly characterized so
far. Indeed, all three methods call many interactions of
this category. However, the greater enrichment of
ChiCMaxima-called interactions for promoter-enhancer
loops that have been so well described in the literature,
coupled with their overall higher interaction score metrics
as called by other methods, suggests that ChiCMaxima is
the most stringent interaction calling method, but also re-
liably identifies interactions most likely to be functionally
relevant. However, the apparent inconsistency in inter-
action calls between the three methods (Fig. 3a), coupled
with the good enrichment for regulatory marks in
CHiCAGO-only interactions, suggests that ChiCMaxima
has some false negatives which are correctly detected by
CHiCAGO (the inverse also seems to be the case). Indeed,
the highest-confidence interactions are conserved between
CHiCAGO and ChiCMaxima, but the false negative rate
seems very high when relying on this stringent approach.
Although we present multiple lines of evidence suggesting
that ChiCMaxima has a lower false positive rate (higher
specificity) than previous methods, it is much more diffi-
cult to assess if and to what extent ChiCMaxima may have
an increased false negative rate (reduced sensitivity), fail-
ing to call “true” interactions. Visual inspection of CHi-C
profiles shows many cases where ChiCMaxima failed to
call an apparently real interaction that was found by CHi-
CAGO and vice versa, but in the absence of comprehen-
sive prior knowledge of the promoter interactome, we are
unable to quantify the methods’ sensitivities. Overall, we
recommend using ChiCMaxima when looking for global
features of chromatin interactions, since the false positive
rate seems lower, but combinations of ChiCMaxima and
CHiCAGO may be required to comprehensively explore
the interactomes of specific baits of interest. We also note

that ChiCMaxima, due to its dependence on searching for
local maxima, is not suitable for assessing ultra-long-range
or trans interactions, where the background signal is too
sparse for local maxima to even be called. Bait-to-bait in-
teractions should also not be assessed by ChiCMaxima,
since these double-captured interactions are highly likely
to appear as “artificial” local maxima when flanked by
single-captured, bait-to-non-bait interactions within slid-
ing windows. Finally, CHi-C strategies using tiled oligonu-
cleotides to intensively cover a contiguous domain [9, 41]
are better analyzed with the suite of tools adapted to the
contact matrices generated by 5C or Hi-C (e.g., adapta-
tions of my5C [42] or Juicer [43]).
As a further demonstration of the utility of ChiCMax-

ima, network analysis of called chromatin interactions
also identified the Polycomb-mediated interactome that
has been previously described in ES cells [17, 22, 30, 31]
(Fig. 6). Interestingly, the ChiCMaxima network also in-
dicates frequent contacts between promoters and the
bodies of active genes, a phenomenon which was also
identified by the same analysis of the CHiCAGO net-
work, but to a lesser extent [22], and was also reported
in a recent study assessing multiplex chromatin interac-
tions [44]. It is currently unclear whether this may be an
indirect effect of transcriptional elongation on topology
of the chromosome fiber [45], or reflects more specific
mechanisms of gene expression control. For example,
enhancers have been described to initially contact pro-
moters, but to additionally track along the gene during
transcriptional elongation [46], and promoter and en-
hancer interactions with specific exons have been impli-
cated in splicing control [47, 48]. Further studies will be
required to determine the functional significance, if any,
of such intragenic chromatin looping events, but ChiC-
Maxima seems to be a very useful tool for studying them
via CHi-C studies.
The ChiCBrowser tool is a flexible, user-friendly GUI

to generate virtual 4C profiles, necessary for visual in-
spection of most CHi-C datasets. It has a built-in
flexibility to allow biological replicates or different com-
binations of biological conditions to be assessed in paral-
lel, and a similar flexibility is also built into the
management of gene annotations and epigenomic pro-
files that are plotted alongside the CHi-C data (Fig. 7).
Called interactions, whether by ChiCMaxima or other
methods, can be easily highlighted on the display, based
on a simple input format that can be adapted to high-
light any subset of the CHi-C subset that may be of
interest to the user. Overall, this browser will be of use
to anyone wishing to explore CHi-C data.

Conclusions
Capture Hi-C, particularly strategies with sparse baits
such as promoters, is a rapidly growing technique
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hampered by the limited tools available to meet the
unique challenges of analyzing the datasets produced.
ChiCMaxima adopts a simplistic approach, with minimal
prior assumptions on the data, and successfully calls
CHi-C interactions, performing favorably with existing
methods in various benchmarks. Most notably, ChiC-
Maxima provides the flexibility to deal with problems of
reproducibility across biological replicates at high resolu-
tions, a persistent but often overlooked challenge of
CHi-C. Combined with the user-friendly, flexible ChiC-
Browser, we provide a suite of tools for CHi-C analysis
and visualization which will be of use to many in the nu-
clear organization community.

Methods
Datasets used in this study
Mouse ES CHi-C [11] and HiCap [10] data were down-
loaded from ArrayExpress (E-MTAB-2414) [49] and GEO
(GSE60495) [50], respectively; human hematopoietic cell
CHi-C data [13] were downloaded as CHiCAGO data ob-
jects from the Open Science Framework (https://osf.io/
u8tzp/) [51]. Interactions previously called by CHiCAGO
and GOTHiC from the mES CHi-C data were down-
loaded from GEO (GSE81503) [52] and ArrayExpress
(E-MTAB-2414) [49] respectively. Mouse ES ChIP-seq
data [53–55] were all downloaded from GEO: CTCF and
H3K27ac (GSE29218) [56]; H3K4me1 (GSE47082) [57];
Ring1B and Suz12 (GSE42466) [58]. All human
hematopoietic cell ChIP-seq data were obtained from the
BLUEPRINT consortium (ftp://ftp.ebi.ac.uk/pub/data-
bases/blueprint/data/homo_sapiens/GRCh37/) [59]. The
list of putative mES enhancers was taken from Table S1 of
Chen et al. [32].

Sample pre-processing
For all mES (CHi-C and HiCap) datasets, raw sequencing
reads were processed by custom perl and R scripts, origin-
ally derived from the Hi-C analysis pipeline developed in
[60], which entails mapping the paired reads with Bowtie
[61], pairing, removing common Hi-C artifacts (PCR du-
plicates, circularized fragments, non-digested fragments),
and then converting from genomic coordinates to restric-
tion fragment space. Operationally, this generates only
tiny differences from outputs of HiCUP [62]. Custom perl
scripts, explained in Additional file 2 and available on
Github [63], were used to convert paired bed files to the
input format for ChiCMaxima. These scripts can also be
applied to outputs of other Hi-C analysis tools, such as
HiCUP [62], HiC-Pro [64], or Juicer pre-inputs [43]. For
the human hematopoietic cell CHi-C datasets, total CHi-
CAGO output files were downloaded as R objects [51].
These comprise the downstream results of HiCUP pro-
cessing of the data and CHiCAGO analysis (on merged
biological replicates), resulting in a table containing all the

fields required for ChiCMaxima analysis (see Add-
itional file 2 for details), for all bait-linked interactions
covered by sequencing reads. These tables were manipu-
lated in R to make separate tables for each replicate in a
format compatible with the ChiCMaxima scripts and to
remove interchromosomal and bait-to-bait interactions.

ChiCMaxima
The suite of scripts, made for R version ≥ 3.2, and its full
documentation (including package dependencies, found
on Bioconductor or CRAN), is available on Github
(https://github.com/yousra291987/ChiCMaxima) [63]. A
full description of its usage, and how it is run on supplied
test data, is also provided in Additional file 2. In brief,
ChiCMaxima_Caller identifies interactions as local max-
ima of loess smoothed bait-specific interaction profiles
within single CHi-C datasets. ChiCMaxima_RepAnalysis
determines the distributions of the closest distance be-
tween interactions called in pairs of datasets, allowing the
user to select an optimal threshold for filtering “main-
tained” interactions within biological replicates. ChiCMax-
ima_MergeRep2 or ChiCMaxima_MergeRepMany then
applies this set distance threshold to identify interactions
that are conserved in two or more biological replicates, re-
spectively. Finally, ChiCMaxima_Collate is a utility script
that generates one large table from multiple CHi-C data-
sets, convenient for input into ChiCBrowser. Except
where stated specifically in the text, ChiCMaxima_Caller
was run on each single CHi-C replicate with the parame-
ters window_size = 20, loess_span = 0.05, cis_window =
1,500,000, and binwidth = 30,000. ChiCMaxima_Mer-
geRep2 or ChiCMaxima_MergeRepMany was run on their
outputs with the parameter repdist = 20,000.

ChiCBrowser
The browser is run from an R environment (version ≥
3.2), and its full documentation (including package de-
pendencies, found on Bioconductor or CRAN) is also
available on Github (https://github.com/yousra291987/
ChiCMaxima) [63]. A full user guide is also presented in
Additional file 2, along with examples of its use on sup-
plied test data. This browser or small variants in the
code (e.g., to show raw data instead of after smoothing
by running means in Additional file 1: Figure S1b) were
used to generate all the screenshot images presented in
the article.

CHiCAGO and GOTHiC interaction lists
The previously called lists of interactions from both
mES CHi-C replicates using CHiCAGO (GSE81503_-
mESC_PCHiC_merge_final_washU_text.txt; CHiCAGO
score ≥ 5) or GOTHiC (ESC_promoter_other_significan-
t_interactions.txt; log (observed/expected) ≥ 10) were
downloaded directly from their repositories [49, 52].
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CHiCAGO-called interactions from human primary
hematopoietic cell CHi-C datasets were downloaded dir-
ectly from their repository [51], and then filtered to re-
move interchromosomal and bait-to-bait interactions. For
each cell type, the interactions were called as those with
a score ≥ 5. For interaction calling within individual
biological replicates by CHiCAGO, interactions with a
score ≥ 5 were used after running CHiCAGO with de-
fault parameters (maxLBrownEst = 1,500,000; minFra-
gLen = 150; maxFragLen = 40,000; minNPerBait = 250;
binsize = 20,000; removeAdjacent = TRUE; adjBait2bait
= TRUE; tlb.filterTopPercent = 0.01; tlb.minProxOE-
PerBin = 50,000; tlb.minProxB2BPerBin = 2500; tech-
Noise.minBaitsPerBin = 1000; brownianNoise.samples =
5; brownianNoise.subset = 1000; brownianNoise.seed =
NA; weightAlpha = 34.11573; weightBeta = − 2.586881;
weightGamma = − 17.13478; weightDelta = − 7.076092).
The same parameters were used for CHiCAGO inter-
action calls on the HiCap data (both replicates treated
simultaneously). Intersections of called interactions
across biological replicates (Additional file 1: Figure
S1a) were found by searches for called interactions with
identical Bait_name and ID_OE columns.

Tuning ChiCMaxima parameters and filter choices
See Additional file 3 for details.

Assessing distances between potentially conserved
interactions across biological replicates
This is performed by ChiCMaxima_RepAnalysis. Pairs of
interaction files (the output of ChiCMaxima_Caller) are
split according to their bait, and one set is defined as the
query and the other set as the subject. For each non-bait
fragment within the query, the genomic distance to the
closest non-bait fragment within the subject set is found
by the utilities within the R GenomicRanges package [65].

4C interaction validation
J1 mouse ES cells were grown on gamma-irradiated
mouse embryonic fibroblast cells under standard condi-
tions (4.5 g/L glucose-DMEN, 15% FCS, 0.1 mM
non-essential amino acids, 0.1 mM beta-mercaptoethanol,
1 mM glutamine, 500 U/mL LIF, gentamicin), then pas-
saged onto feeder-free 0.2% gelatin-coated plates for at
least two passages to remove feeder cells. Cells were de-
tached with trypsin, washed by centrifugation in PBS, and
then fixed with 2% formaldehyde in mES culture medium
for 10min at 23 °C. The fixation was quenched with cold
glycine at a final concentration of 125mM, then cells were
washed with PBS and permeabilized on ice for 1 h with
10mM Tris-HCl, pH 8, 100mM NaCl, 0.1% NP-40, and
protease inhibitors. Nuclei were resuspended in DpnII re-
striction buffer at 10 million nuclei/mL concentration,
and 5 million nuclei aliquots were further permeabilized

by treatment for 1 h with 0.4% SDS at 37 °C, then a further
1 h with 2.6% Triton-X100 at 37 °C. Nuclei were digested
overnight with 1000U DpnII at 37 °C, then washed twice
by centrifuging and resuspending in T4 DNA ligase buffer.
In situ ligation was performed in 400 μLT4 DNA ligase
buffer with 20,000U T4 DNA ligase overnight at 16 °C.
DNA was purified by reverse cross-linking with an over-
night incubation at 65 °C with proteinase K, followed by
RNase A digestion, phenol/chloroform extraction, and iso-
propanol precipitation. The DNA was digested with 5 U/
μg Csp6I at 37 °C overnight (for Dek) or 5 U/μg TaiI at 65
°C for 2 h (for Hoxc5), then re-purified by phenol/chloro-
form extraction and isopropanol precipitation. The DNA
was then circularized by ligation with 200 U/μg T4 DNA
ligase under dilute conditions (5 ng/μL DNA) and purified
by phenol/chloroform extraction and isopropanol precipi-
tation. Fifty-nanogram aliquots of this DNA were used as
template for PCR with bait-specific primers containing
Illumina adapter termini (primer sequences and optimal
PCR conditions available on request). PCR reactions were
pooled, primers removed by washing with 1.8x AMPure
XP beads, then quantified on a Bioanalyzer (Agilent) be-
fore sequencing with a HiSeq 4000 (Illumina). Sequence
reads were filtered and mapped to DpnII restriction frag-
ments, essentially as previously described [5, 66]. Raw and
processed 4C data are available on GEO (GSE129884)
[67]. For visualization of the 4C profiles, running means
of read counts across windows of 25 restriction fragments
are plotted against the genomic coordinate of the frag-
ment interacting with the bait (Fig. 2).

Comparing CHi-C calling methods
The intersections in interaction calling methods (Fig. 3a)
were computed using the R GenomicRanges package
[65] to find overlapping coordinates within the non-bait
regions from interaction sets with the same bait. Com-
parisons of the interaction scores from CHiCAGO or
GOTHiC-called interactions which were or were not
conserved with another method were computed by Wil-
coxon rank sum tests.

Assessing enrichment for epigenomic marks
For mES, ChIP-seq fastq files were aligned to the mm9
genome with bowtie2 [61], then peaks were called with
the Erange 4.0 ChIP-seq peak finder tools [68, 69], with
the settings --nodirectionality, --notrim and an FDR
threshold of 0.05. ChIP-seq peaks for human primary
hematopoietic cells were downloaded directly from their
repository [59]. Enrichment of each epigenetic feature
within an interaction set was computed by dividing the
proportion of interactions (non-bait component) over-
lapping with a feature peak within the interaction set by
the proportion of all mappable, non-bait restriction frag-
ments which overlap with a feature peak. These overlaps
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were found using bedtools [70] on the bed files of
non-bait interacting regions versus the bed files of called
ChIP-seq peaks. Overlaps of the set of putative mES en-
hancers [32] with non-bait regions within called interac-
tions were performed with GenomicRanges.

Chromatin assortativity
Interaction network analysis was performed exactly as
described in [22]. Briefly, 78 chromatin features were
taken from [71] and peak-calling/binarization was per-
formed as described there in 200-bp windows. For each
fragment, the overlapping windows of chromatin peaks
were identified and their values averaged to give a frac-
tion of presence of any feature in each fragment. The
abundance of a feature is defined as the average of that
feature value across all fragments in the network consid-
ered. ChAs of a specific chromatin feature is defined as
the Pearson correlation coefficient of the value of that
feature across all pairs of nodes that are connected with
each other. They are computed from the “assortativity”
function of the R package igraph. We created a network
of ChiCMaxima detected interactions (39,584 nodes,
23,583 edges). Interactions captured by ChiCMaxima
were assumed to be all involving a bait and a non-bait
(other end) region, but we observed that some of the
non-bait fragments captured were overlapping baits
(4754 fragments), effectively suggesting that some of the
interactions captured are promoter-promoter interac-
tions (6457 interactions involving 3895 promoters). The
method is not supposed to capture this type of interac-
tions as shown by the low percentage of contacts that
fall in this category and we therefore removed these in-
teractions in the following analysis, which was per-
formed with a network of promoter-other (PO) end
interactions (35,207 nodes and 20,100 interactions).
ChAs were computed from the total interaction network
derived by ChiCMaxima, which omits bait-to-bait inter-
actions. To avoid confounding effects of bait-to-bait in-
teractions present within the full CHiCAGO-called
network, ChAs computation was restricted to only the
promoter-to-other end (P-O) portion of the network.
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