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Many methods for complex systems control use a black box approach where the internal states and mechanisms of the controlled process are not needed to be known. Usually, such systems are tested on simulations before their validation on the real world process they were made for. These simulations are based on sharp analytical models of the target process that can be very difficult to obtain. But is it useful in the case of black box methods? Since the control system only sees inputs and outputs and is able to learn, we only need to mimic the typical features of the process (such as non-linearity, interdependencies, etc) in an abstract way. This paper aims to show how a simple and versatile simulator can help the design of systems that have to deal with complexity. We present a generator of models used in the simulator and discuss the results obtained in the case of the design of a control system for heat engines.

INTRODUCTION

More and more artificial systems have to deal with real-world complex processes, like heat engines, bioprocesses or energy management. The design of such systems usually requires the use of the relevant corresponding models so they can be tested on simulations. Unfortunately, models for simulators are very time consuming to design by the domain experts. This is due to the great amount of parameters, their interdependencies, the dynamics and the non linearities between their parts.

Relating our experience in the case of the design of a heat engine controller, this paper aims to show that the use of an accurate model is not always required to ensure the efficiency of a system before its deployment in the real world. Indeed when the system is able to learn during its lifetime and to adapt itself to the process, the tests concern the learning skills and the adaptiveness, for which the simulation fidelity to the domain is not crucial. Following this idea, we designed simple and versatile abstract black-boxes to test our system during its development phase. They do not represent a specific real-world process, but only replicate the important features from the adaptiveness point of view (such as non-linearity, interdependencies, oscillations or latency). A generator has been developped to easily build these black-boxes in order to be able to perform every needed test.

Section 2 gives a short state of the art and explain why such black-boxes can be adequate, then section 3 details the method to generate them. Section 4 relates how we use the generated black-boxes and evaluates their efficiency. Finally, we conclude in section 5 with an analysis of our approach and future improvements.

CONTEXT

Our work on complex systems modeling was driven by our needs in a research project on complex systems control. This section gives a succinct state of the art of this field before speaking about complex system modeling and simulation.

Complex Systems Control

Controlling systems is a generic problem that can be expressed as finding which modifications must be applied on the inputs in order to obtain the desired effects on the ouputs. The next paragraphs describe the main approaches and challenges.

PID -Proportional-Integral-Derivative (PID) are widely used in the industry. They base the control on three terms related to the error between the current state and the desired state of the process [START_REF] Astrom | PID Controllers: Theory, Design, and Tuning[END_REF]. PID controllers need a heavy parametrization work to fit the controlled system. Moreover they are not efficient with non-linear systems and are difficult to deploy to handle more than one input, which is a severe drawback for complex systems control.

Adaptive Control -To deal with several inputs and non-linearity, model-based approaches like Model Predictive Control (MPC) [START_REF] Nikolaou | Model predictive controllers: A critical synthesis of theory and industrial needs[END_REF] use models to forecast the behavior of the process in order to find the optimal control scheme. These approaches are limited by the models they use. Building the models and finding the parameters that fit the actual controlled system is an open problem. This will be detailed in 2.2.

Intelligent Control -Intelligent control regroups approaches that use Artificial Intelligence methods to enhance existing controllers and possibly avoid the use of models. Among these methods we find fuzzy logic [START_REF] Lee | Fuzzy logic in control systems: Fuzzy logic controller[END_REF], expert systems [START_REF] Stengel | Intelligent failure-tolerant control[END_REF], neural networks [START_REF] Hagan | An introduction to the use of neural networks in control systems[END_REF], bayesian controllers (Colosimo and Del Castillo, 2007) and multiagent systems [START_REF] Wang | Multi-agent co-ordination for the secondary voltage control in power-system contingencies. Generation, Transmission and Distribution[END_REF] or [START_REF] Videau | Controlling Bioprocesses using Cooperative Self-organizing Agents[END_REF]. These methods often use a black-box approach where only inputs and outputs values (but not internal variables and mechanisms) of the process are known by the controller. Hence intelligent controllers mostly rely on their learning skills to find the optimal control.

The main challenges in complex systems control are to deal with interdependencies, non-linearity and high dynamics. But they also include latency and noise on the data.

Complex Systems Modeling

In the context of complex systems control, models can be used in two ways. Either they are incorporated in the controller to forecast the process behavior, or they are used in simulators to test the controller before its use on the real system.

For instance, many models of engines have been proposed, such as [START_REF] Borman | Mathematical simulation of internal combustion engine processes and performance including comparison with experiment[END_REF] or the Turbocharged Diesel Engine (TDE) model [START_REF] Jankovic | Constructive lyapunov control design for turbocharged diesel engines[END_REF]. The TDE model has seven parameters. Using this model in a controller involves to set them so the model fits the controlled engine. This is a very difficult task, therefore control methods like NCGPC (Nonlinear Continuous-time Generalized Predictive Control) use a simplified version with only three parameters [START_REF] Dabo | NCGPC with dynamic extension applied to a Turbocharged Diesel Engine[END_REF]. However, finding the proper values of these parameters remains time consuming and they might become inaccurate when the engine wears out. The same simplified TDE model is implemented and used in a simula- Other simulation tools focus on different goals such as finding optimal values of engine parameters [START_REF] Curto-Risso | Optimizing the operation of a spark ignition engine: Simulation and theoretical tools[END_REF], comparing fuel performances [START_REF] Zhang | Comparison of biodiesel performance based on hcci engine simulation using detailed mechanism with on-the-fly reduction[END_REF] or leading studies on the behavior of a specific type of engine [START_REF] Zhao | Modeling and simulation of a hydraulic free piston diesel engine[END_REF]. These models are highly specific and demands a heavy work of implementation and parametrization.

Simulation Needs

Our needs in term of simulation come from the development of a self-adaptive complex systems controller meant to be applied on heat engines. We want to be sure of the system's adaptation skills before applying it to real-world engines. Thus, we first identified the challenging characteristics of engines complexity in order to simulate them to test our system. In this context, the simulation does not need to be accurate but only to mimic the complexity of real-world engines.

In other words we want to check the behavior of our system under various levels of interdependency, various numbers of inputs and outputs, with linear or nonlinear outputs, with or without latency (or under any combination of the previous features), regardless of the relevance of the data relatively to the real engine. We also need several instances of each case. None of the existing heat engine models matches our required degree of modularity.

Furthermore, existing black-box generation techniques either focus on testing large software with a discrete state-transitions behavior [START_REF] Tahat | Requirement-based automated black-box test generation[END_REF] or are meant to test software components and not the whole system [START_REF] Edwards | A framework for practical, automated black-box testing of component-based soft-ware[END_REF]. We need to run tests on the system level with a continuous process.

Hence we use simple yet versatile black-boxes that mimic the complexity of a real-world process and that can be automatically generated. The models they use and their generator are presented in the next section.

Constraints Associated Behaviors

Bind Constraint: The agent must bind its output port to at least one Function Agent. Critical level: 1.

Search for Function Agent with a free input port and bind to it. 

Constraints

Associated Behaviors Bind Constraint: The agent must bind its input port to one (and only one) Function Agent. Critical level: 2.

Search for Function Agent and bind to it.

Path Constraint: The agent must link to every Input Agents of a specified list, through a chain of Function Agents. Output Agents are initialized with a Path constraint regarding to the user specifications. Critical level: 2*size of the list.

Search for a Function Agent linked to some of the targeted Input Agents (if possible), bind to it, and delegate the Path Constraint. 

ABSTRACT BLACK-BOXES

In this section we present our abstract blackboxes: how they are used, what they are made of, and how they can be easily generated thanks to a multiagent system.

Utilization and Description

Abstract black-boxes are used to simulate a realworld process in order to test the learning abilities of an artificial system during its development. They allow to focus on a specific feature (or on a combination of them) of complexity, and to make available a large collection of different instances of the same feature.

They are composed of inputs, outputs and mathematical functions. Only inputs and outputs are observable from the outside. Each of the inputs are linked to at least one output through a chain of one or more functions, and vice versa. The chains of functions can be intermingled and can presents cycles. The role of inputs and outputs is obvious, they are the link between the functions and the environment of the black-box. At each timestep, inputs get a value from the environment and forward it to their linked functions, functions compute a value and forward it to their linked neighbors (either other functions, itself or outputs), and outputs get the calculated value of their linked function and forward it to the environment. To ease the automated generation presented in 3.2, it has been decided to limit the functions to two arguments and one calculated value. Figure 1 shows an example of a 4 inputs -2 outputs generated blackbox, composed of five functions, containing one cycle and where each of the four inputs impacts both of the outputs.

Generation

A Multi-Agent System, based on the Adaptive Multi-Agent System theory [START_REF] Georgé | Cooperation[END_REF] and called BACH (Builder of Abstract maCHines), has been developped to easily and rapidly generate abstract black-boxes given user-defined constraints. The user gives the number of inputs, outputs and functions, defines the variation range of each input and output, and which input impacts which output. He also sets a loop factor which determines the percentage of functions that have to be in a cycle in the generated black box. Then agents are created for each component of the abstract black-box (Input Agents, Output Agents and Function Agents). There are two main steps to the generation. First, the self-composition is in charge of the respect of the structural constraints (interdependencies and cycles). Then the self-tuning of the functions ensures that the outputs stay in their specified range. The self-composition and self-tuning phases are explained in the next two paragraphs.

Self-Composition

BACH is initialized regarding to the user specifications: Inputs, Outputs and Functions Agents are created and each of them is given a set of individual constraints. They have to cooperate and form links between them to solve these constraints. The resulting organization is forwarded to the second step of the generation. The next paragraphs describe the agents, their constraints and how they solve them. Architecture and Skills -Agents have inputs and/or output ports. They can bind their output port to other agents input ports (and the other way around) but input ports can only be bound once while output ports Constraints Associated Behaviors Bind Constraint: The agent must bind its output port to at least one agent and bind each of its input ports to one agent. Critical level: 5.

First search a partner to bind the output port, then find a partner for each of the input ports. Partners can be Input Agents, Output Agents, Function Agents or itself. Path Constraint: The agent must link to every Input Agents of a specified list, either by direct binding or through a chain of other Function Agents. Function Agents are not initialized with Path Constraints, but they eventually receive it from the binding partners on the output port. Critical level: 4*size of the list.

If the agent's input ports are both free and if the size of the list is less than or equal to 2, then bind the input ports to the specified Input Agents. The constraint is then solved. Else, if the size of the list is greater than two, bind one of the input port to another Function Agent, split the list in half and send one of the half to the new partner, keep the other. If both of the input ports are already bound, split the list and send a half to each of the partners. Cycle Constraint: The agent must be in a cycle. Critical level: 7

Bind the output port to an agent of its input path, or bind one of its input ports to an agent in its output path, or bind one of the input port to its own output port. can be bound as many times as needed. Input Agents do not have any input port and can bind their output port to Function Agents only. Output Agents do not have any output port and can bind their input port to Function Agents only. Finally, Functions Agents have two input ports, one output port and can bind them to Input Agents, Output Agents or Function Agents (including itself). Constraints -There are three types of constraints with which agents can be initialized: Bind Constraints represent the need for an agent to have all of its input and output ports bound to another agent, Path Constraints force agents to link to a specific list of Input Agents (if needed through a chain of Function Agents), and Cycle Constraints express the need for a Function Agent to be part of a cycle. Behavior -Each constraint has a critical level representing its relative significance. Agents try to solve their most critical constraint first. They have a specific behavior for each type of constraint, described in tables 1, 2 and 3.

The choice of a binding partner is based on two main criteria: its usefulness and its critical level. First, the agents are sorted between potential and nonpotential partners, whether they can fill the needs of the selecting agent or not. Then the potential partner for which the gain in terms of critical level will be the best is selected. During the self-composition, an agent may not find any potential partner. This happens when the user did not specified enough functions regarding to the number of inputs and outputs and their interdependencies. In other words the user specified an overconstrained problem. In this case, the system must release a constraint: the number of functions. Hence the lonely agent creates a new Function Agent and they bind immediately.

Self-Tuning

Once the structure of the black-box is set by the selfcomposition phase, interdependencies and cycles answer a part of the user requirements. Now the selftuning of the functions ensures that outputs stay in the user-specified variation ranges.

Function Agents embed a matrix that is a discrete representation of their function. The first row and the first column are the axis (for the arguments) while other cells contain the value of the function, thus are called function cells. Table 4 shows an example of a function f(x,y) where x varies from 1 to 10, y varies from 0 to 70 and f from 0 to 100. A linear interpolation is perfomed when needed for the computation of a value. For instance in table 4, f(3.5,60)=4.5. The self-tuning of the functions is merely the correct filling of the matrices.

To do so, each Output Agent sends to its bound Function Agent a message containing its variation range. The Function Agent randomly puts each bound in one of the function cells of its matrix and calculates the other function cells value v using the formula

v = a * d + m (1)
where m is the value of the closest bound, d is the Manhattan distance to this bound and a is a positive coefficient if m is the minimum, negative otherwise.

If the computed v is out of bounds, the value of the closest bound is affected to the cell instead of v. Once the function cells are filled, the variation range of the Output Agent is respected. Then, the Function Agent sends a message containing this range to every Function Agent (possibly itself) bound to its output. Every agent receiving this message will consequently adjust the corresponding axis in its matrix. Finally, Input Agents send their variation range to their bound Function Agents, who adjust their corresponding axis.

Generated Black-Boxes

Figure 1 shows the result of the self-composition of four Input Agents, two Output Agents and five Function Agents while table 4 shows the result of the selftuning process for a Function Agent. In addition to the required characteristics of interdependency and non-linearity, generated black-boxes exhibit oscillations (periodic or aperiodic), latency and progressive stabilization, as shown in figure 2 where inputs are manually controlled. We can see that the black-box first takes some time to stabilize itself, then a modification is applied on input In4. This causes perturbations on outputs Out1 and Out2, then they eventually stabilize until another modification applied on input In3 causes them to move again.

The next section explains how we used the abstract black-boxes during the development of a heat engine controller, and compares the results of the tests on generated black-boxes with those obtained on a real engine.

CASE STUDY: THE DESIGN OF A CONTROL SYSTEM FOR HEAT ENGINES

Involved in a national project about heat engine control named Orianne 1 , our role was to develop a self-calibration algorithm for the engine control unit. This section explains how abstract black-boxes were used and describes the results obtained both on simulators and on real engines. In the following paragraphs ESCHER is the name of the self-adaptive controller being developed and tested, and stands for Emergent Self-adaptive Control for Heat Engine cali-bRation.

Method

We defined a two phases process for the development of ESCHER. During the first phase, ESCHER was de-1 French acronym for Digital Tool for the Design of Engine Control Functions. signed and implemented, and all tests were conducted on abstract black-boxes. Then the second phase consisted in replacing the black-boxes by a real 125cc gasoline engine. The goal of this second phase is to validate the use of abstract black-boxes. Indeed, our software is able to learn the behavior of the generated black-boxes to find the best actions to apply to their inputs, hence being able to do the same with a real engine would mean that the use of abstract black-boxes is relevant.

Results

In this section, more information about ESCHER is given before results on abstract black-boxes and on a real engine are shown.

ESCHER

ESCHER is a Multi-Agent System based on the Self-Organizing Controller pattern [START_REF] Boes | Self-Organizing Agents for an Adaptive Control of Heat Engine[END_REF]. Its function is to find the adequate values of a process inputs in order to make the outputs fulfilling user-defined objectives. These objectives are various (thresholds, optimizations or setpoints), can change over time and are expressed as criticality functions that the system tries to lower. ESCHER has no previous knowledge about the process other than its inputs and outputs and their variation ranges. It learns in real-time from the effects of its actions to adjust itself to the process and finds the most adequate actions to apply. In our case, the process is an engine equipped with its control unit (ECU): the inputs are some of the parameters of the ECU and the outputs are values measured on the engine.

In the next paragraphs, we show an example of test we ran using abstract black-boxes.

Results on abstract black-boxes

For this example, we use a black-box with two inputs (Var0 and Var1) and two outputs (Var2 and Var3). The objective is to set Var2 and Var3 to the middle of their range of variation, thus each of the outputs is associated with a criticality function. ESCHER must find the value of the inputs for which both of the criticality functions are at their minimum.

Figure 3 shows the critical levels of the outputs and the values of the inputs over time. At first ES-CHER increases only Var1. This causes the critical levels to drop, so ESCHER keeps on this action until the critical levels begin to increase. Then ESCHER changes its behavior, modifying its actions (it starts to increase Var0, lowers and stabilizes Var1, etc) to maintain the lowering of the critical levels. Finally both critical levels reach zero, which means the objectives have been reached. ESCHER now maintains the black-box in this state.

We have seen that ESCHER is able to find the most adequate values for the inputs of abstract blackboxes (i.e. for which the critical levels are the lowest). Now we see in the next paragraph how it behaves with the real engine.

Results on the real engine

The following paragraphs describe an example of the tests conducted on an engine and validated by domain experts. The engine is put in a steady operating point (defined by its rotational speed and its load). Then ESCHER has to optimize the engine behavior by modifying specific parameters of the ECU. ESCHER controls the injected fuel mass along with the ignition advance. Its goal is to maximize the torque. Figure 4 shows the torque critical level and both of the controlled parameters. At first, ESCHER decreases both of the controlled parameters, causing the critical level to rise. It corrects this initial mistake, increasing the injected fuel mass first, then the ignition advance. It eventually finds the optimum value for which the critical level is the lowest.

Before analysing these results, it is important to note that alhough the test shown in 4.2.2 is simple and easily explainable, BACH was used to generate heavier black boxes that allowed us to enhance ESCHER.

Analysis

ESCHER is able to adapt itself and to find an optimum for abstract black-boxes as well as for the real engine. This means that the models used in the black-boxes correctly replicate the main aspects of the engine in terms of non-linearity and degree of interdependency. The behavior of ESCHER faced to these main aspects of complexity was properly tested thanks to the generated abstract black-boxes. However, some adjustements in the way ESCHER interacts with the process had to be made before obtaining these results.

This was due to the fact that two important features had not been tested with the black-boxes: the noise on the perceived data, and the latency between an action and its effects. As ESCHER reacts quickly to correct its mistakes, the noise did not prevent the system to work properly, it only made it make a few more mistakes. But the latency caused more difficulties, the system was not able to find the correlation between its actions and its observations of the process behavior. We overcomed this problem by slowing down ESCHER, making it wait three seconds between its actions and its perceptions.

As most of the work had been done thanks to the black-boxes, the second phase of development lasted about three months (versus 12 months for the first phase) and was only about minor modifications. In conclusion, the abstract black-boxes were sufficient for a very large part of the development of ESCHER but still need some improvements to be more efficient. This will be discussed in the next section.

CONCLUSION AND FUTURE WORKS

In this paper, we presented models that replicate some aspects of complexity and a way to simply generating them and use them as black-boxes. We showed that they can be used during the development of self-adaptive systems to test the adaptiveness skills because they properly imitate the main features of complex systems. The easy generation allows to produce tailored simulators. Interdependencies are ensured by the slef-composition process while nonlinearity is provided by the self-tuning process. Latency can be obtained by varying the number of functions in the model. As abstract black-boxes only rely on general properties of the real world processes they represent, they remain generic and can be used in various domains. They allowed us to abstract the specifics of engines and thus to obtain a generic controller.

We claim that this approach avoids a time consuming work: the creation of a fitted model of the system we have to control. We show that the self-adaptive control system tested on abstract black-boxes gives interesting results when applied on a real heat engine. Nevertheless abstract black-boxess are only interesting when we have to develop a software able to learn.

Our future works will focus on two main drawbacks: the absence of noise simulation and the lack of control on the generation process. The first one should be dealt by adding some classical noise generation algorithms on the Output Agents, such as [START_REF] Taralp | Efficient fractional gaussian noise generation using the spatial renewal process[END_REF]. The second one leads to the generation of models that are too intricate when the number of functions is too high. The outputs stay in their user-defined variation range but are unable to really reach their minimum and maximum. This should be handled by finding better behaviors for the agents of BACH during the self-composition process. Finally, the self-tuning process can also be improved by adding different methods for the calculation of the matrices, such as b-splines surfaces [START_REF] Catmull | Recursively generated b-spline surfaces on arbitrary topological meshes[END_REF].
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 3 Figure 3: Test on an abstract black-box: outputs critical levels (up) and inputs values (bottom)
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