
HAL Id: hal-04083840
https://hal.science/hal-04083840

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Repository-Centric Process Modeling - Example of a
Pattern Based Development Process
Jacob Geisel, Brahim Hamid, Jean-Michel Bruel

To cite this version:
Jacob Geisel, Brahim Hamid, Jean-Michel Bruel. Repository-Centric Process Modeling - Example
of a Pattern Based Development Process. 11th International Conference on Software Engineering
Research, Management and Applications (SERA 2013), Aug 2013, Prague, Czech Republic. pp.247-
261, �10.1007/978-3-319-00948-3_16�. �hal-04083840�

https://hal.science/hal-04083840
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12477

The contribution was presented at SERA 2013
Official URL: http://dx.doi.org/10.1007/978-3-319-00948-3_16

To cite this version : Geisel, Jacob and Hamid, Brahim and Bruel, Jean-Michel
Repository-Centric Process Modeling - Example of a Pattern Based Development
Process. (2013) In: 11th International Conference on Software Engineering
Research, Management and Applications (SERA 2013), 7 August 2013 - 9 August
2013 (Prague, Czech Republic).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Repository-Centric Process Modeling -
Example of a Pattern Based Development
Process

Jacob Geisel, Brahim Hamid, Jean-Michel Bruel

Abstract Repositories of modeling artefacts have gained more attention re-
cently to enforce reuse in software engineering. In fact, repository-centric
development processes are more adopted in software/system development,
such as architecture-centric or pattern-centric development processes.
In our work, we deal with a specification language for development method-
ologies centered around a model-based repository, by defining both a meta-
model enabling process engineers to represent repository management and
interaction and an architecture for development tools.
The modeling language we propose, has been successfully evaluated by the
TERESA project for specifying development processes for trusted applica-
tions centered around a model-based repository of security and dependability
(S&D) patterns.

Key words: Metamodel, Model-Driven Engineering, Process, Security, De-
pendability, Repository, Pattern

1 Introduction

Non-functional requirements such as Security and Dependability (S&D) [12]
become more and more important as well as more and more difficult to
achieve, particularly in embedded systems development [17]. Such systems
come with a large number of common characteristics, including real-time
and temperature constraints, security and dependability as well as efficiency
requirements. In particular, the development of Resource Constrained Em-

Jacob Geisel, Brahim Hamid, Jean-Michel Bruel
IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France
e-mail: {geisel,hamid,bruel}@irit.fr

bedded Systems (RCES) has to address constraints regarding memory, com-
putational processing power and/or energy consumption. The integration of
S&D features requires the availability of both application domain specific
knowledge and S&D expertise at the same time. Hence capturing and pro-
viding this expertise by means of a repository of S&D patterns and models
can enhance embedded systems development. We seek mechanisms which
allow a safer, easier and faster RCES development processes.

Modeling software and system process is fundamental in order to improve
the quality of applications. The main goal of these processes is to provide
to organizations with the means to define a conceptual framework. For this
reason, several tentatives (including those developed by the OMG1) have been
proposed to model software process. For instance, the SPEM [10] specification
is used for describing a concrete software development process or a family of
related software development processes. It conforms to the OMG MOF meta-
metamodel and is defined as a UML profile.

In this paper, we study the RCPM metamodel which defines a new formal-
ism for system development processes. This formalism is centered around a
repository of modeling artefacts, providing new concepts related to repository
management and interaction. The paper also presents the design environment
for process modeling, supporting reuse in form of predefined libraries of pro-
cess element types. These libraries may be used to facilitate process modeling
from scratch or to adapt existing process models for certain domains. Fur-
thermore, the design environment offers the ability to build new type libraries
based on the recommendations of a targeted domain.

The rest of this paper is organized as follows. In Section 2, we introduce
the context and background related to this work. Then, Section 3 details the
specification of the repository-centric process modeling language. Section 4
describes our proposed tool implementation through an example of a process
model from Railway domain targeting RCES applications. In Section 5, we
present an extract from a process enactment to develop an RCES application.
In Section 6, we review some principal existing process metamodels close to
our work. Finally, Section 7 concludes and draws future work directions.

2 Development Context and Background

2.1 Development Context

The proposed methodology promotes a model-based approach coupled with
a repository of modeling artefacts. In this vision, the modeling artefacts
derived from (resp. associated with) domain specific models aim at help-
ing the application developer to integrate these artefacts as building blocks.

1 Organization normalizing the UML language

The repository presented here is a model-based repository of modeling arte-
facts. Concretely, the repository is a structure that stores specification lan-
guages and the modeling artefacts coupled with a set of tools to man-
age/visualize/export/instantiate these artefact in order to use them in en-
gineering processes. For instance, to define an engineering discipline for S&D
that is adapted to RCES, a repository-centric engineering process model will
have to recognize the need to separate expertise on applications (represented
by an application designer), expertise on security and dependability (repre-
sented by an S&D engineer), and expertise on repository-based development
(represented by a model-driven and pattern engineer).

2.2 Process Models and Artefacts

Models are used to denote some abstract representation of system engineering
processes. Specifically, we need models to represent the process activities,
models to encode the artefacts and software platforms to test, to simulate
and to validate the proposed solutions. Accordingly, comprehension, study
and analysis of system engineering processes require the seek of models which
make it as easy as possible to express and to encode them with the following
characteristics:

• Intuitive: to develop them and teach them,
• Practical: to test and validate them by a simple implementation.
• Formal: to prove their correctness using formal method tools,

As a benefit, the study of problems on high-level models allows deduc-
ing properties on other less abstract models. Here, we deal with the two first
characteristics through metamodeling technique and its associated implemen-
tation environment.

2.3 DSL Buildung Process

Domain Specific Modeling Languages (DSML) [2] have recently increased in
popularity to cover a wider spectrum of concerns. A process defining those
DSMLs reuses many practices from Model-Driven Engineering. For instance,
metamodeling and transformation techniques. SEMCO2 is a set of federated
DSLs working as a group, each one relevant to the key concern. A DSL process
3 is divided into several kinds of activities: DSL definition, transformations
and consistency and relationships rules as well as design with DSLs and

2 http://www.semcomdt.org
3 DSL process defines how development projects based on DSL are achieved.

qualification. The first three activities are achieved by the DSL designer and
the two last ones are used by the final DSL user.

There are several DSML environments available. In our context, we use
the Eclipse Modeling Framework (EMF) [15] open-source platform to support
such a building process and to create our tool suite. Note, however, that our
vision is not limited to the EMF platform.

2.4 Working Example

The illustrating example is a simple variant of the well-know V-Model. In
this process model, the developer starts by requirements engineering/ spec-
ification, followed by system specification. In a traditional approach (non
repository-of-pattern-based approach) the developer would continue with the
architecture design, module design, implementation and test.

In our vision, instead of following this phases and performing their re-
lated activities, which usually are time and efforts consuming as well as er-
rors prone, the system developer merely needs to select appropriate patterns
from the repository and integrate them into the system under development
(Figure 1 shows the process and points out the phases with repository interac-
tions). For each phase, the system developer executes the search/select from
the repository to instantiate appropriate patterns in his modeling environ-
ment and then integrates them in his models following an incremental process.
The downside of this approach is that in a very early stage of the develop-
ment, mainly during the requirements and design phases, the requirements
engineers and the system architects have to be aware of existing patterns.

3 Repository Interaction Metamodel

In the following subsection, we highlight the sub-metamodel architecture of
the Repository- Centric Process Metamodel (RCPM), while the next subsec-
tions concentrate on the presentation of the repository interaction part of the
RCPM metamodel.

3.1 RCPM

The RCPM is a metamodel defining a new formalism for system development
process modeling based on a repository of modeling artefacts. The RCPM
metamodel contains different sub-metamodels, as shown in Fig. 2, which offer
different capabilities. RCPM is oriented to support:

Repository-Centric Process Modeling 5

��������	
�����

��������	
�

���������������������������	
�

����������������
�

�	�����������������
�

�����������

��������
����
��

����
�
������������������

��������
����
��

����
�

�������
���	
�

���

�������
���	
�

����������

�������
���	
�

�	����� ���
��

����������

�	����� ���
��

����	�����

 ���
��

�
������	
�

��������
������	
�

�	��!����������	
�

 �����

�
������	
� �����

�
������	
��	�����

�
������	
�"#"#$"��

������	
�
�������������	
�

�������	
�

�
�
�
�
�
�
�
	

�

�
�
�
�
�
�
�
	

�

�������	
�

�������	
�

�������	
�

��������	�
�	

���	�������	

�
��������
	������
	��	�
�	���	

��
	��	�	���������
	�
��������	

���

��	

 �����!�
�	"	�����#	

 ����	$��
��	

%

	

��

��

����

����

��

����

��

����

����

��

����

����

��

����

����

����

	�

����������

%�������
���

��������	
�

����������

������������

����
�

�	��!����������	
%	

�������	
�

����

����

����������	
�������
����������

�����

������

�
���
�����		�	$�����

�
�������		�	$�����

���%��	��	������

			&�$������#	���������

���%��	��	������	��

%��	��	��

�
���&�������	��	���

��
���������	��	���

Fig. 1 Railway Engineering Process Lifecycle

Fig. 2 Design principles of RCPM

• The development of embedded systems. The metamodel orients to facil-
itate the modeling the development of embedded systems, including the
concepts of partitions which are popular in embedded system development.

• Reuse of existing solutions. The metamodel enables to model existing mod-
eling artefacts and their integration process. For instance, the metamodel
supports the repository-centric design methodology, introducing new con-
cepts on repository management and interactions with the traditional pro-
cess metamodel.

• A safety process lifecycle. As we can find in standards as IEC 61508 [7],
there are more and more requirements for transforming traditional pro-
cesses to safety processes to meet specific safety requirements of systems or
software. This metamodel adds the concepts used in the safety lifecycle to
support this kind of process model, such as verification and validation [4].

In this paper, we concentrate on presenting the repository part of the
RCPM metamodel. For a general description and other referenced metamodel
concepts see [3].

3.2 Repository Interaction sub-Metamodel

Our specification language is described by a metamodel that we call Repos-
itory Interaction Sub-Metamodel, as depicted in Figure 3. It constitutes the
base of our process modeling language, describing all the concepts (and their
relations) required to capture all the facets of Repository Interactions.

The principal classes of the metamodel are described with the Ecore no-
tations of the Eclipse Modeling Framework4 in Figure 3 as well as the link
with the libraries models 5. As we shall see, we define a set of libraries with
a set of tasks and steps dedicated to specify the repository interaction tasks
and steps during the process model enactment. These libraries will be used as
external models to type the process tasks. The meaning of the main elements
of the metamodel with the working example are described in the sequel.

Step ToolWorkproduct

Task

Role

Repository

BreakdownElement

TaskTypeLibraryTaskType

ProcessElementType

RepositoryInteractionTaskType

tools

0..*

mandatoryInputFrom 0..*

steps
0..*

primaryPerformedBy

0..*

types

0..*

recommendedBDE

0..*

type

0..1

respoitory

1

Fig. 3 Overview of the Repository Interaction Sub Metamodel

• BreakdownElement. A BreakdownElement is an abstract generalization
for any Process Element that is part of a breakdown structure. Any of its
concrete sub-classes can be used to compose an Activity*6.

4 http://www.eclipse.org/modeling/emf/
5 We use gray to label concepts imported from the library model
6 Elements marked with * are not shown in Figure 3, please refer to [3] for more details

• Task. A Task is a WorkBreakdownElement* that represents the work that
should be done in an Activity*. The Task should be related to a Role, a
WorkProduct and, if necessary, a Tool. In our example, as visualized in
Figure 1 we define a set of Tasks, which are related to repository manage-
ment (initialize a repository, manage a repository) and those related to
repository interactions (instantiate a pattern, deposit a pattern, integrate

a pattern). The later Task is not strictly related to repository interaction,
but may lead to some repository interactions. A Task is decomposed into
Steps, which detail what exactly is done in which order. A Task has nor-
mally WorkProducts (mandatory or optional) as input and output.

• Step. A Step is a detailed description of the work to be done. It is the
smallest entity in the decomposition of Process*, Phase*, Activity* and
Task. It describes the elementary step, which leads to the realization of a
WorkProduct. For instance, instantiate a pattern task may be decomposed
into three steps: search a pattern in the repository, select the appropriate

one from the search results list and finally import the selected one into the

development environment.
• Role. A Role describes the role of an actor in a Process/Phase/Activity/Task.

It is generally linked to the realization of a WorkProduct for a specific Task

using a specific Tool. In our example, we can associate repository manager

role to the actor responsible of the manage a repository task and system

engineer role to actor responsible of the instantiate a pattern task.
• WorkProduct. A WorkProduct is a special BreakdownElement that rep-

resents an input and/or output for a Task. The WorkProduct is related to
a Task and a Role. A pattern is a key workproduct of the proposed process
model.

• Tool. A Tool represents the tool used to fulfill a Task and to realize a
WorkProduct. Here, we deal with a set of tools supporting to the repository
management (Repository Admin) and repository interactions (Repository

Retrieval).
• ProcessElementType. The ProcessElementType allows to type a Pro-

cessElements*, adding mandatory or optional properties to a ProcessEle-

ments*, as well as references to different Phases*, Roles, Tools, WorkProd-

ucts or Activities*.
• TaskType. A TaskType allows to type a Task to reuse capitalize knowl-

edge about Roles, Tools, WorkProducts and Steps. This Type links these
information.

• RepositoryInteractionTaskType. A RepositoryInteractionTaskType is
a specialization of a TaskType introducing the idea of Repository. Thess
TaskTypes can be linked to a Repository. In our example, we could define
instantiate a pattern as RepositoryInteractionTaskType instance.

• TaskTypeLibrary. A Library containing TaskTypes which are common
to an application domain or standard recurring TaskTypes and can be
reused to type recurring Tasks in a process or Tasks in different processes.

The repository specific interaction tasks may be grouped into one or mul-
tiple libraries to foster reuse.

• Repository. It describes the repositories used in development process. As
the repository-centric development processes are more and more adopted
in software/system development, such as architecture-centric or pattern-
centric development processes. In our example, we use a repository of S&D
patterns.

4 Tool Architecture and Implementation

Fig. 4 Overview of the Naravas Architecture

Using the proposed metamodels, ongoing experimental work with SEM-

COMDT7 (SEMCO Model Development Tools, IRIT’s editors and platform
as Eclipse plugins) is realized, testing the features of Naravas, a tool for
formalizing process models and documentation generation. In the following
subsections, we present our tooling. Figure 4 depicts the architecture of the
development framework based on Eclipse Technologies.

4.1 How the Process Model Editor is Built?

We used the Eclipse EMF based Ecore editor to model our Repository-centric
Process Metamodel (RCPM), creating one Ecore file containing the three
packages needed for the process model, the core package, the type pack-
age and the process package. Minor modifications have been applied on the

7 http://www.semcomdt.org

metamodel to support an EMF based editor and HTML documentation gen-
eration. The generated editor code was modified to limit the user actions on
the ones needed and to enhance user experience (e.g. modifying the process
model creation workflow).

The second part of the project was to create the HTML code generator
based on Acceleo8, a Model-to-Text (M2T) component of the Eclipse Mod-
eling Framework. We developed modularized code transformation templates,
generating one HTML file per process model object and type and managing
the links among them.

4.2 Process Model Designer: Naravas

Naravas is an EMF tree-based editor for specifying models of processes, li-
braries of types and generation of documentation. Naravas implements several
facilities conforming to the RCPM metamodel.

4.2.1 Library Design

The design environment of the type libraries is presented in Figure 5. The
figure represents a Task Type Library for Repository Task. The Task Types
presented here are identically to the ones presented in Figure 1. For instance,
the second Repository Interaction Task Type (Artefact Instantiation) show
the mandatory steps (Search repository, Select Patterns in Repository and
Import Patterns to IDE), the optional Roles, the Tool and the output Work
Product for a Task typed by this type. The other Task Types in this library
represent Tasks with Repository Interactions, encountered multiple times in
the shown process (e.g. Repository Management, Artefact Publishing, Arte-
fact Retrieval).

4.2.2 Process Model Design

The design environment is presented in Figure 6. Naravas enables the user to
model processes in a tree-based manner. There is a design palette on the right
(enabled by a right click on an element), a tree view of the project on the left
and the main design view in the middle. As we shall see, the design palette is
updated regarding the targeted process element. The used example shows the
Railway Application Process built by Ikerlan. It represents the Repository,
the Phases, Activities, Tasks, Steps, Roles, Tools, Work Products and Flows
among the Elements, such as Control, Retrieve, Verification and Validation

8 http://www.eclipse.org/acceleo/

Flows. The Process model editor allows to add, delete, move and modify
the elements, as well as conformance validation. It also allows the import
of external resources, such as Process Element Type Libraries. The usage of
the Task Types is shown in Figure 7. When creating a Task, it is possible
to type it from the Task Types already defined in a Library. By choosing a
Type (Repository Interaction), the mandatory Steps, Work Products, Roles
and Tools are filled in automatically (Search Repository, Select Artefact in

Repository, Import Artefact to IDE), and the mandatory ones are proposed
in addition to the standard items when creating new entities.

Fig. 5 Naravas for Library Design Environment

Fig. 6 Naravas Process Design Environment

Repository-Centric Process Modeling 11

Fig. 7 Example of the Usage of a Library - Repository Interaction Task Types

4.2.3 Conformance Validation

Further, using EMF features, we added the metamodel conformance valida-
tion to the editor. The process validation tool is used to guarantee design va-
lidity conforming to the process metamodel. Process model validation starts
by right clicking on Process Core and pressing the Validation tool. In our
example, the process model built by Ikerlan for the railway domain can be
validated, where a violation of a metamodel construct will yield an error
message (see Figure 8).

Fig. 8 Process Validation

4.2.4 Documentation Generation

Documentation generation of a process model is triggered by running the
SEMCO Model to Doc tool. Our implementation allows so far to generate
HTML documentation using M2T transformations through Acceleo.

5 Process Model Enactment

In this section we will present an extract of the process model and its en-
actment to build an industry control application from the railway called
Safe4Rail acting as a TERESA case study. In this case, SIL4 level is tar-
geted. A repository of patterns for TERESA called Gaya was built. Gaya
contains so far (as of March 2013):

• Users. 5 organizations and 10 users.
• Patterns. 59 S&D patterns.

The following table depicts a subset of inputs and outputs consumed and
produced during the chosen activities of the process enactment, mainly those
related to the repository. Repository Interactions are highlighted, as well as
results from Repository Interaction.

6 State of the Art

State of the Art of process metamodels have been analyzed from a perspective
of repository interactions, embedded systems and safety lifecycles support.
Process metamodels can be modeled from different types of views: activity-
oriented, product-oriented and decision-oriented views [13, 6]. Most process
metamodels and process frameworks based on metamodels adopt the activity-
oriented views, such as SPEM, RUP and OPF.

The SPEM (Software & Systems Process Engineering Metamodel) [10] is a
de facto, high-level standard for process modeling used in object-oriented soft-
ware development. The scope of SPEM is intentionally limited to the minimal
elements necessary to define any software and systems development process,
without adding specific features for particular development domains or dis-
ciplines. The goal is to accommodate a large range of development methods
and processes of different styles, cultural backgrounds, levels of formalism,
lifecycle models, and communities.

The RUP (IBM’s Rational Unified Process Framework) and its extension
RUP SE (SE stands for System Engineering) are derived from the Unified
Process Framework [8]. Both metamodels are, like SPEM, described by a
UML profile and define a Process Modeling Language (PML). The OPEN

Phase Activity Task

Module
Detailed
Design

SW Detailed
requirement
and Design -
SW detailed
requirement
specification

Define the SW detailed requirements
Step Role Tool WP in WP out
Analysis and
Definition

SW Archi-
tect, SW
Designer

Rhapsody,
DOORS

SW Require-
ments Speci-
fication, SW
Architecture

SW De-
tailed Re-
quirements
Specification

SW Detailed
requirement
and Design -
SW detailed
design

Define the SW detailed design
Step Role Tool WP in WP out
Define Inter-
nal Descrip-
tion

SW De-
signer

Rhapsody SW
Architecture,
SW Detailed
Require-
ments
Specification

SW Detailed
Design

Define Com-
ponents

SW De-
signer

Rhapsody

Define Inter-
faces

SW De-
signer

Rhapsody

Define Com-
munication

SW De-
signer

Rhapsody

Generate
SW Detailed
Design

SW De-
signer

Rhapsody

Instantiate Design Patterns
Step Role Tool WP in WP out
Search

Repository

SW De-
signer

Repository

Retrieval

Tool

SW
Architecture,
SW Archi-

tectural

patterns,
SW Detailed
Require-
ments
Specification,
SW Detailed
Design

SW

Detailed

Design

Patterns

Select Pat-

terns in

Repository

SW De-
signer

Repository

Retrieval

Tool

Import

Pattern to

IDE

SW De-
signer

Repository

Retrieval

Tool, Rhap-
sody

Integrate Patterns
Step Role Tool WP in WP out
Elicitation SW De-

signer
Rhapsody SW Detailed

Design, SW

Detailed

Design

Patterns

SW Detailed
Design with
integrated
PatternsBinding SW De-

signer
Rhapsody

Consoli-
dation

SW De-
signer

Rhapsody

Table 1 Description of the Railway Process Enactment (Extract from the Module
Detailed Design)

Process Framework (OPF) [11] is a componentized OO development method-
ology underpinned by a full metamodel, encapsulating business as well as
quality and modeling issues.

In addition to the above mentioned process metamodels, exist other
activity-based metamodels like OOSPICE [5] and SMSDM [14]. Other types
of process metamodels such as decision based etc., do not orient to safety crit-
ical system development. As far as we know, the studied process metamodels
unfortunately do not support safety related development processes explicitly
or facilitate the modeling of safety lifecycles. Many safety critical systems
use Safety Instrument Systems (SIS) to manage the safety lifecycle, however,
these SIS do not have process metamodels. Works like [1] propose to model
different standards and try to give recommendations during the application
development.

[16] presents a survey of business process model repositories and their
related frameworks. This work deals with the management of a large collec-
tions of business processes using repository structures and providing common
repository functions such as storage, search and version management. It tar-
gets the process model designer allowing the reuse of process model artefacts.
A comparison of process model repositories is presented to highlight the de-
gree of reusability of artefacts. For example, the repository for process models
described in [9], supports activity, control-flow and monitoring aspects. The
metamodel described in this paper may be used to specify the management
and the use of this kind of process models. In fact, a process model aspect or
the process model as a whole of the aforementioned process models can be
seen as artefacts supported by our metamodel. In return, the vision of the
business process model repositories may be used in our work to manage the
process element type libraries.

7 Conclusion

In our work, we target the development of a modeling framework built around
a model-based repository of modeling artefact in order to be used in an
MDE approach for trusted RCES applications in several domains. In this
paper, we have proposed a modeling language to specify repository-centric
process models, providing new appropriate concepts related to repository
management and interaction. The design environment supports reuse in form
of libraries of types, facilitating process modeling. The later may be used to
specialize process models for a certain domain. In this case, the library is
build on the recommendations of the targeted domain. Furthermore, we walk
through a prototype with EMF editors supporting the metamodel. Currently
the tool is provided as part of a tool-suite named SEMCOMDT as Eclipse
plugins.

The design environment presented here has been evaluated in two use
studies from TERESA industrial partners mainly for a repository of S&D
and resource property and pattern modeling artefacts. By this illustration,
we can validate the feasibility and effectiveness of the proposed specification
and design frameworks.

As future work, we plan to study new libraries for additional process ele-
ments. Also, we will seek new opportunities to apply the framework to other
domains.

References

1. L. Y. C. Cheung, P. W. H. Chung and R. J. Dawson. Managing process compliance,
48–62. IGI Publishing, Hershey, PA, USA (2003)

2. J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale, S. Neema, and J. Sprinkle. Domain-
Specific Modeling. Chapman & Hall/CRC (2007)

3. B. Hamid and Y. Zhang. D3.2 - Common Engineering Metamodels. Technical re-
port, TERESA-Project (http://www.teresa-project.org/) (2012)

4. B. Hamid, J. Geisel, A. Ziani, and D. Gonzalez. Safety lifecycle development process
modeling for embedded systems - example of railway domain. In SERENE, volume
7527 of Lecture Notes in Computer Science, 63–75. Springer (2012)

5. B. Henderson-Sellers and C. Gonzalez-Perez. A comparison of four process meta-
models and the creation of a new generic standard. Information & Software Tech-
nology, 47(1):49–65 (2005)

6. C. Hug, A. Front, D. Rieu, and B. Henderson-Sellers. A method to build information
systems engineering process metamodels. J. Syst. Softw., 82:1730-1742 (2009)

7. I. S. IEC 61508. Functional safety of electrical/ electronic/programmable electronic
safety-related systems (2000)

8. P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2003)

9. C. Liu, X. Lin, X. Zhou, and M. E. Orlowska. Building a repository for workflow
systems. In TOOLS (31), pages 348–357. IEEE Computer Society (1999)

10. OMG. Software & Systems Process Engineering Meta-Model Specification (2008)
11. OPF Repository Organization. OPEN Process Framework (OPF).

http://www.opfro.org/ (2009)
12. S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in embedded sys-

tems: Design challenges. ACM Trans. Embed. Comput. Syst., 3(3):461–491 (2004)
13. C. Rolland. A comprehensive view of process engineering. In Proceedings of the 10th

International Conference on Advanced Information Systems Engineering, pages 1–
24, Springer-Verlag, London, UK (1998)

14. Standards Australia. Standard Metamodel for Software Development Methodolo-
gies (2004)

15. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition (2009)

16. Z. Yan, R. M. Dijkman, and P. Grefen. Business process model repositories - frame-
work and survey. Information & Software Technology, 54(4):380–395 (2012)

17. R. Zurawski. Embedded systems. CRC Press Inc (2005)

