
HAL Id: hal-04083835
https://hal.science/hal-04083835

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-Level Cooperation in Autonomic Cloud Resource
Management

Giang Son Tran, Laurent Broto, Daniel Hagimont, Alain Tchana

To cite this version:
Giang Son Tran, Laurent Broto, Daniel Hagimont, Alain Tchana. Two-Level Cooperation in Auto-
nomic Cloud Resource Management. International Conference on Intelligent and Automation System
(ICIAS 2013), Feb 2013, Hô-Chi-Minh-Ville, Vietnam. pp.217-221, �10.12720/joace.1.3.217-221�. �hal-
04083835�

https://hal.science/hal-04083835
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12483

To link to this article : DOI :10.12720/joace.1.3.217-221
URL : http://dx.doi.org/10.12720/joace.1.3.217-221

To cite this version : Tran, Giang Son and Broto, Laurent and
Hagimont, Daniel and Tchana, Alain-Bouzaïde Two-Level
Cooperation in Autonomic Cloud Resource Management. (2013) In:
International Conference on Intelligent and Automation System -
ICIAS 2013, 23 February 2013 - 24 February 2013 (Ho Chi Minh City,
Viet Nam).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12483/
http://oatao.univ-toulouse.fr/12483/
http://dx.doi.org/10.12720/joace.1.3.217-221
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Two-Level Cooperation in Autonomic Cloud

Resource Management

Giang Son Tran, Laurent Broto, and Daniel Hagimont
ENSEEIHT – University of Toulouse, Toulouse, France

Email: {giang.tran, laurent.broto, daniel.hagimont}@enseeiht.fr

Alain Tchan
University of Joseph Fourier, Grenoble, France

Email: alain.tchana@inria.fr

Abstract—Virtualized cloud infrastructures are becoming

very popular as they allow separation of hardware and

software management. Infrastructure as a Service (IaaS) is

the model providing many advantages to both provider and

customer. Minimizing the number of resource (and power

consumption) in use is one of the main services that such a

cloud model must ensure. This objective can be done either

by the customer at the application level (by dynamically

sizing the application based on the workload) or by the

provider at the virtualization level (by consolidating virtual

machines based on the infrastructure's utilization rate).

Many research works investigate resource management

policies separately at the application level or at the

virtualized level. In this paper, we study different strategies

for cloud resource management: virtual machine

consolidation only, dynamic application sizing only, both

policy at the same time (either independent or cooperative).

We show that virtual machine consolidation and dynamic

application sizing do not fully bring benefits to the cloud

provider and customer when being implemented without

cooperation. Finally, we propose a cooperative model to

improve the efficiency of these strategies, in reducing power

consumption and keeping application's Quality of Service.

Index Terms—cloud computing, cooperative, resource

management.

I. INTRODUCTION

Cloud computing is the current trend of separating

hardware and software management, improving the

devotion of the customers and the providers: the customer

only needs to manage their applications without the need

of hardware maintenance; while the provider is expected

to ensure Quality-of-Service to the customer according to

their Service Level Agreement. Cloud hosting

infrastructures are generally split into 3 categories:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). In this article,

we consider a cloud as an IaaS: a virtualized

infrastructure managed by the provider. Virtual machines

are provided to the external customers to deploy and

execute their applications.

In this context, on demand resource management is

one of the main services that such an environment must

ensure: the allocation of resource as needed and the

deallocation when unused. The number of machines is

therefore optimized, and energy consumption is reduced.

On demand resource management can be handled

either at the customer level (i.e., by the administrator of

the deployed application), or at the provider level (i.e., by

the administrator of the virtualized infrastructure).

Our main contributions in this paper are:

· We describe various resource management

policies, advantages and disadvantages of each

with a hypothesized workload.

· We show that resource management at the

customer and provider levels are complementary.

· We propose a cooperative resource management

policy for these two levels.

We experimented these management policies in

virtualized environments with a multiple-tier web

application. We implemented an autonomic management

system jTune, based on TUNe [1], as the deployment and

resource management system.

The rest of the article is organized as follows. Section

describes the article context regarding virtualization and

cloud computing. Section motivates our work. Section

details the resource management policies. Section

presents our cooperative resource management policy

between the two layers. Section highlights various related

works. Finally, we conclude and present our future work

in section

II. CONTEXT

A. Virtualization

Virtualization is a software- and/or hardware-based

solution for building and running many operating systems

simultaneously on the same bare hardware. Those

operating systems are named guest OS and their

execution environment is called Virtual Machine (VM).

The Virtual Machine Monitor (VMM) or hypervisor

represents the virtualizing software responsible of

hardware emulation and communication between guest

OS and devices. The guests OSes are guaranteed to be

isolated from each other, providing better security for the

applications than when being deployed unvirtualized on

the same physical machine.

With the help of virtual machine migration [2], the

provider can move executing virtual machines across

different physical machines easily and rapidly, allowing

separation of hardware and software, and consolidating

clustered hardware into a single coherent management

domain (virtual machines). Therefore, in cloud

computing, virtual machines are provided to the customer

instead of physical machines. Server utilization is greatly

improved with runtime dynamic allocation and

deallocation of virtual machines on the physical machines,

and thus, reduce power consumption for the provider.

Figure 1. Server consolidation only

B. Cloud Computing

Cloud computing connects the needs of the customer

(the application manager) and the services of the provider

(the hardware manager). The provider shares the same

resource pool to all customers, and provides on demand

resource management on it. This strategy brings the

benefits for both actors:

· Customer's economy: only needs to focus on

application management, leaves the hardware side

to the provider, and only pays for the real usage.

· Dynamic capacity of the customer's application:

based on the real runtime load, the customer can

resize the application (modify the number of

virtual machines executing application instances)

to handle load peaks or idle states.

· Shared resources: all customers share the same

resource pool in the provider's hosting center.

Unused machines are switched off, and therefore

this strategy provides higher hardware utilization

rate and less energy waste.

In cloud computing, the customer generally does not

have knowledge of the provider's infrastructure, and only

has access to the resource in the form of virtual machines.

III. MOTIVATION

Application sizing and server consolidation, with the

help of virtual machine migration, have proved their

effectiveness in the hosting centers [3], [4], [5]. However,

research works only deducted in these policies separately.

Server consolidation with virtual machine migration has

the limitation of memory amount of the host: all virtual

machines, although being idle, consume memory of the

host. Further more, VM overhead increases along with

the number of running VMs [6]. Finally, the lack

knowledge of the application tier prevents the provider

from having an optimal virtual machine placement.

On the other side, application sizing does not fully

optimize hardware resources: there is a high possibility

that many virtual machines are spread among the physical

machines, leaving them unable to free for switching off.

These disadvantages show some limitations which can be

improved with a two level management, as analyzed in

the below sections.

IV. MANAGEMENT POLICIES

This section describes the various cloud management

policies being investigated in the research community,

including: server consolidation only; dynamic application

sizing only; both policies, but working independently. We

also describe our experiments for each scenario, and

pinpoint the drawbacks of each policy when being used in

a hosting center.

We use a typical web application with the Apache –

PHP – MySQL stack as the customer application. Fig. 1

(left) shows the synthesized workload we generated to the

3 different web applications. Before time (a), all of the

applications are idle (almost no request is generated).

Start from time (a) to time (c), application 1 load is

increased. Application 2 load is increased from time (c)

to (e), followed by increase load of the application 3,

from time (e) to (g). These loads are then decreased with

the following order: application 2 (time (h)-(j)),

application 1 (time (j)-(l)), then application 3 (time (l)-

(n)). This synthesized workload is used in all experiments

throughout the paper to better compare the benefits and

the drawbacks of each policy.

Our experiments were performed in a private cluster of

7 Nodes, equipped with an Intel Core 2 Duo 2.66GHz in

single processor mode, 4GB RAM, and Debian Squeeze.

All of the Nodes are connected with a 100Mbps Ethernet.

The VM disk images are stored on a NFS server so that

VM migration can be performed between the nodes. We

use Xen 4.1.4 as the hypervisor in our experiments.

A. Server Consolidation Only

Taking into account the objective of minimizing

hardware resource of the provider, this policy is

straightforward: pack the deployed virtual machines into

as few physical machines as possible. However, the

number of VMs in one physical machine is limited by the

memory amount of the host. This policy is made possible

with the support of virtual machine migration.

Figure 2. Dynamic application sizing only

In this scenario, only the provider level is implemented

with autonomic management. The customer application is

provisioned with a static tier allocation (i.e. with a fixed

number of tier instances). The management policy at the

provider level takes into consideration each virtual

machine CPU load, and makes migration decision: the

IaaS manager can either migrate the most loaded VM out

of the most loaded node (so that this node becomes less

load), or migrate other VMs (to provide more power for

the most loaded VM).

Fig. 1 (right) shows the VM allocation on each

physical machine according to the generated workload.

Each node is equipped with a monitoring probe,

periodically reporting CPU load of all VMs on it. These

results show the reaction of the IaaS manager toward

generated workload to the applications based on the

actual VM CPU load. At time (a), all 6 VMs are packed

into Node 1. The IaaS manager decides to migrate a VM

of the application 1 (red) from Node 1 to Node 2.

Gradually, when the loads of all applications increase, the

VMs are distributed among physical Nodes (time (b)-(k)).

This policy shows some merits in minimizing resource

usage (and therefore, energy waste). However, it still

produces several types of performance overhead because

of running multiple VMs of the same tier simultaneously:

· Live VM migration overhead: migrating VMs

between physical hosts is costly.

· Balancer overhead: each request to the application

must be passed through the balancer.

· Hypervisor overhead: The hypervisor has to

switch CPU resources among many VMs,

generating overheads.

These overheads can be reduced by using less VM

instances with dynamic application sizing. This method

will be described in the next section.

B. Dynamic Application Sizing Only

 This approach is based on the dynamic allocation and

deallocation of the application instances. Initially, all

applications are deployed with a minimum number of

instances. Each instance is deployed and launched in a

separated VM. During runtime, tier loads are captured by

monitoring probes in the VMs, and gathered by the

autonomic manager. It, in turns, based on current tier load,

requests to add or remove the VMs accordingly. Dynamic

application sizing is quite generic as it can be applied to

any multiple-tier applications.

Fig. 2 (right) shows the VM allocation on physical

machines. As the load increases from time (c) to time (g),

the application manager gradually deploys and launches

more application instances on Node 2 and 3. When the

load decreases, the VMs containing these instances are

also removed from the hosts.

This behavior ensures the minimal number of the

instances of the application, and therefore reduced

performance overhead over the previous policy (Server

consolidation only). However, this policy raises some

possible optimizations at time (l) and (m): two VMs of

the same tier (application 3) are running on the two

different physical machines. This placement can be

improved by migrating the VM from Node 3 to Node 2,

and free Node 3 for turning off, benefiting in energy

saving.

This drawback can be solved with the combination of

the two above policies: the IaaS manager ensures server

consolidation with virtual machine migration, and the

application manager optimizes its tier allocation. This

combined policy is described in the next section.

C. Both Levels, Independent

In this scenario, both the customer and the provider

implement their resource management policy

independently, to eliminate each other's drawback. In

other word, this complementarity attempts to improve

both real resource usage (to reduce energy waste) and

application performance (by reducing overhead) in the

hosting centers.

The dynamic application sizing policy at the customer

level ensures that all allocated VMs' usage are optimized

(the idle or unused VMs are deallocated automatically).

Thus, it isn't necessary for the IaaS manager to migrate its

VMs based on the CPU load. Instead, the migration

policy is based on the capacity of each VM.

Fig. 3 shows the generated workload and the VM

placement among the physical machines. Similar to the

scenario in IV.B, one instance of each application is

deployed initially. When the workload increases, the

application manager gradually deploys and launches

more application instances on Nodes 2 and 3 to ensure

application response time. The IaaS manager's migration

check is activated upon receiving a VM removal request

from the customer level. In this scenario, it only performs

a migration after a VM of the application 1 is removed

from Node 2 at time (k).

Figure 3. Both policies, cooperative

Figure 4. Both policies, independent

Comparing these results to those we obtained with

management at application level only (IV.B), and IaaS

level only (IV.A), we have significant improvements.

First, there are fewer migration (one time, at time (k),

compared to 4 in (IV.A). Second, the number of

application instances is still minimized, same as (IV.B).

Finally, Node 3 can be freed from time (l), when the IaaS

manager optimizes its VM placement. This migration, in

turn, helps to reduce power consumption of Node 3 when

compared with (IV.B).

However, comparing this result with (IV.A), we still

have the same problem: the possibility of having multiple

VMs of the same application tier on a physical machine

(time (l), (m)). This is not optimized for performance with

VM overhead and balancer overhead, as previously

discussed in (IV.A). This problem comes from the fact

that the application manager is not aware of its VM

location, and that the IaaS manager is not aware of the

application tier. The next section describes our proposal

to overcome this problem, in order to minimize both

power consumption and performance overhead.

V. COOPERATIVE RESOURCE MANAGEMENT

The key difference in this policy, compared with the

above policies, is to gather application instances into

groups, and manage groups with quotas instead of VMs.

These quotas can be dynamically changed in runtime.

This group notion provides the application architecture to

the IaaS manager, thus simplifies the VM management.

The two layers communicate with each other through

cooperation calls. A call from application layer to the

IaaS layer is a Downcall. The call in the other direction is

an Upcall. In our experiment, these cooperation calls are

made possible thanks to Java RMI. Fig. 5 shows the

architecture of the cooperation calls between layers.

Figure 5. Cooperative calls

The customer's application manager monitors its tier

load, and based on the actual runtime situation, either:

· Overload: requests a group quota increase, or

· Under load: requests a group quota reduction

According to the request to modify a group quota Δq,

either it's an addition (Δq > 0), or it's a subtraction (Δq < 0)

the IaaS manager can:

· Add quota (Δq > 0) for an existing Vx: qvm = qvm +

Δq. This is the case when this VM has 0 < Δq +

qvm < 100 and its host is free enough (in terms of

remaining quota). In case of not having enough

free quota in the host, the IaaS manager allocates a

new virtual machine, VMk, and notifies the

application manager about VMk to deploy an

application instance on it.

· Reduce quota (Δq < 0) for an existing VM: qvm =

qvm - |Δq|, only possible when qvm < |Δq|. If no VM

satisfies this constrain, the IaaS manager reduces

quota of several VMs and/or stop a running VM.

The notification about this tier reconfiguration will

also be sent to the application manager for tier

reconfiguration.

After every quota change, the IaaS manager always

checks for possibility of server consolidation. In our

experiment with the synthesized workload (Fig. 4), we

identified several possible consolidation situations:

· Only migrations of VMs for a possibility of

freeing a physical machine.

· Merges of collocated VM from the same group:

time (l), when the IaaS manager merges two small

VMs from Node 1 and 2 into one VM with a

bigger quota on Node 2, reducing overheads.

· Splits of a VM to smaller VMs, in attempts to free

a Node: time (j).

As can be seen from Fig. 4, these two levels, when

implemented to work cooperatively, effectively optimize

hardware resources (Node 3 is only used in 5 time slots,

from time (e) to (i), similar to 5 time slots in (IV.A)), as

well as minimize the performance overhead due to live

migrations, hypervisor and balancer (similar to IV.B). In

summary, the cooperative resource management policy

combines all possible advantages, and provide a greater

benefit for the customer (less used VMs, and therefore,

less cost) as well as for the provider (less hardware

resources, and thus, less power consumption). However,

it requires both the provider and the customer to have a

common API and protocol for the communication of each

party's manager.

VI. RELATED WORKS

Many research works investigated dynamic resource

allocation in the hosting center environments. Ref. [7]

presents a dynamic allocation architecture for a hosting

center based on an autonomic computing system and a

load balancer. Similarly, Ref. [8] proposed many

strategies: jobs distribution to a pool of VMs in a cloud

infrastructure, based on dynamic VM

allocation/deallocation: new VMs are

deployed/undeployed when being overloaded and idle,

respectively. Regarding our classification, these solutions

are only customer-level strategies.

Second category includes systems which implement

resource management at the IaaS level. Consolidation

systems such as GreenCloud [9] or [10] aim at saving

resource in a hosting center using solely VM migration.

Finally, only few systems addressed dynamic resource

management at both levels (application and IaaS). Ref.

[11] proposed a two-level resource management, but their

resource provisioning at the hosting center level was only

based on the allocation of additional resource to VMs.

Most two-level resource management systems did not

provide a cooperative strategy for these two levels, and

thus, did not achieve optimal energy saving and

performance.

VII. CONCLUSION AND PERSPECTIVE

This paper describes different scenarios which consist

in ensuring dynamic resource allocation for a cloud in a

hosting center. It shows that resources can be managed at

two levels: at the level of the application layer and at the

IaaS level. Moreover, it shows that resource

managements at these two levels are complementary,

especially when these two levels work cooperatively.

We are currently conducting performance evaluations

with real workload (monitored in a real hosting center),

instead of synthesized workload, to demonstrate the

effectiveness of this approach. A longer term perspective

of this work will be to consider an optimal algorithm for

VM placement and quota management based on work

load prediction.

REFERENCES

[1] L. Broto, D. Hagimont, P. Stolf, N. Depalma, and S. Temate,

“Autonomic management policy specification in Tune,” in Proc

ACM Symposium on Applied Computing, Brazil, 2008.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I.

Pratt, and A. Warfield, “Live migration of virtual machines,” in

Proc. Conference on Symposium on Networked Systems Design &

Implementation, 2005, vol. 2.

[3] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad, “Cloud-

scale resource management: Challenges and techniques,” in Proc.

USENIX Conference on Hot Topics in Cloud Computing, USA,

2011.

[4] T. C. Chieu, A. Mohindra, A. A. Karve, and A. Segal, “Dynamic

scaling of web applications in a virtualized cloud computing

environment,” in Proc. IEEE International Conference on e-

Business Engineering, China, 2009.

[5] Rightscale Web Site. (December, 2012.) [Online]. Available:

http://www.rightscale.com

[6] A. Tchana, S. Temate, L. Broto, and D. Hagimont, “Autonomic

resource allocation in a J2EE cluster,” in Utility and Cloud

Computing, India, December 2010.

[7] H. S. AbdelSalam, K. Maly, R. Mukkamala, M. Zubair, and D.

Kaminsky, “Towards energy efficient change management in a

cloud computing environment,” in AIMS, Lecture Notes in

Computer Science, vol. 5637, Springer, 2009.

[8] S. Genaud and J. Gossa, “Cost-wait Trade-offs in Client-side

Resource Provisioning with Elastic Clouds,” in IEEE CLOUD,

USA Washington DC, 2011.

[9] L. Liu, H. Wang, X, Liu, X. Jin, E. B. He, Q. B. Wang, and Y.

Chen, “GreenCloud: a new architecture for green data center,” in

International conference industry session on Autonomic

computing and communications industry session (ICAC-INDST),

Spain 2009.

[10] Pablo Graubner, Matthias Schmidt, and Bernd Freisleben,

“Energy-Efficient Management of Virtual Machines in

Eucalyptus,” in IEEE CLOUD, USA, 2011.

[11] Y. Song, H. Wang, Y. Li, B. Feng, and Y. Sun, “Multi-tiered on-

demand resource scheduling for vm-based data center,” in

IEEE/ACM International Symposium on Cluster Computing and

the Grid, May 2007.

