
HAL Id: hal-04083782
https://hal.science/hal-04083782

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Tool Support for Pattern-Based Secure and
Dependable Systems Development

Brahim Hamid, Adel Ziani, Jacob Geisel

To cite this version:
Brahim Hamid, Adel Ziani, Jacob Geisel. Towards Tool Support for Pattern-Based Secure
and Dependable Systems Development. Workshop on ACadeMics Tooling with Eclipse (ACME
2013), a joint ECMFA/ECSA/ECOOP 2013 workshop, Jul 2013, Montpellier, France. pp.1-10,
�10.1145/2491279.2491285�. �hal-04083782�

https://hal.science/hal-04083782
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12558

The contribution was presented at ACME 2013 :
http://www.acme-workshop.org/

Official URL: http://dx.doi.org/10.1145/2491279.2491285

To cite this version : Hamid, Brahim and Ziani, Adel and Geisel, Jacob Towards
Tool Support for Pattern-Based Secure and Dependable Systems Development.
(2013) In: Workshop on ACadeMics Tooling with Eclipse (ACME 2013) : a joint
ECMFA/ECSA/ECOOP workshop, 2 July 2013 - 2 July 2013 (Montpellier, France).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Towards Tool Support for Pattern-Based Secure and
Dependable Systems Development

Brahim Hamid
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9,

France
hamid@irit.fr

Adel Ziani
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9,

France
ziani@irit.fr

Jacob Geisel
IRIT, University of Toulouse

118 Route de Narbonne
31062 Toulouse Cedex 9,

France
geisel@irit.fr

ABSTRACT

In our work, we promote a new discipline for secure and
dependable system engineering using a pattern as its first
class citizen: Pattern-Based System Engineering (PBSE).
Therefore, PBSE addresses two kind of processes: the one
of pattern development and the one of system development
with patterns. To interconnect these two processes we pro-
mote a structured model-based repository of patterns and
their related property models.

This paper presents the SEMCOMDE Tool Suite develop-
ment status conducted in the context of the FP7 TERESA
project aiming to support the automation of building, stor-
ing and processing reusable artifacts (S&D patterns and
property models). This tool promotes the PBSE method-
ology in the domain of assistance to the trusted embedded
system engineering.

A video tutorial presenting the SEMCO MDE Tool Suite
is provided under: http://www.semcomdt.org/semco/demo/
video_semco/toolsuite/ToolSuiteIRIT.mp4

Categories and Subject Descriptors

D.2 [Software Engineering]: Design Tools and Techniques—
Design,Software Architectures,Reusable Software

General Terms

design

Keywords

Embedded Systems, Security, Dependability, Repository, Pat-
tern, Metamodel, Model-Driven Engineering.

1. INTRODUCTION
The software of embedded systems is not conventional

software that can be built using usual paradigms. In par-
ticular, the development of Resource Constrained Embed-

ded Systems (RCES) addresses constraints regarding mem-
ory, computational processing power and/or limited energy.
Non-functional requirements such as Security and Depend-
ability (S&D) become more important as well as more dif-
ficult to achieve. The integration of S&D features requires
the availability of both application domain specific knowl-
edge and S&D expertise at the same time.
In our previous work [1], we studied pattern modeling

frameworks [2, 3] and we proposed methods to model secu-
rity and dependability aspects in patterns and to validate
whether these still hold in RCES (Resource Constrained
Embedded Systems) after pattern application. The ques-
tion remains at which stage of the development process S&D
patterns are involved. We promote a new discipline for sys-
tem engineering using a pattern as its first class citizen, to-
wards meeting our wider objective: Pattern-based System
Engineering (PBSE). PBSE addresses challenges similar to
those studied in software engineering. Closely related to
our vision is the Component Based Software Engineering
(CBSE) [4]. Therefore, PBSE focuses on patterns and from
this viewpoint addresses two kind of processes: the process
of pattern development and system development with pat-
terns. The main concern of the first process is designing
patterns for reuse and the second one is finding the adequate
patterns and evaluating them with regard the system-under-
development’s requirements.
In this paper, we propose an Model-Driven Engineering

Tool-chain supporting the PBSE methodology, and hence
to assist the developers of secure and dependable systems.
The framework is centered around a model-based repository
of S&D patterns and models providing operational reposi-
tory, tools for managing, tools for populating and accessing
the repository. At the core of the framework is a set of
Domain Specific Modeling Languages (DSML) [5, 6] that
allow modeling S&D patterns, property models and reposi-
tory structure.
The work is conducted in the context of a framework

called SEMCO1 for System and software Engineering for
embedded systems applications with Multi-COncerns sup-
port. SEMCO is a federated modeling framework built on
an integrated repository of metamodels to deal with sys-
tem engineering. The end-user part of such a framework
is an integrated repository of modeling artifacts to be used
in order (1) to promote engineering separation of concerns,
(2) to support multi-concerns, (3) to use patterns to em-
bed solutions of engineering concerns and (4) to support

1http://www.semcomdt.org

Figure 1: SEMCO DSL building process and artifacts

multi-domain specific processes. This project is three-folded:
providing repository of modeling artifacts, tools to manage
these artifacts, and guidelines to build complete engineering
systems.

Domain Specific Modeling Languages (DSML) [6] has re-
cently increased in popularity to cover a wider spectrum of
concerns. As we shall see, such a process reuses many prac-
tices from Model-Driven Engineering. For instance, meta-
modeling and transformation techniques. SEMCO founda-
tion is a federated DSLs processes working as a group on
how relevant each one is to the key concern. As shown in
Figure 1, a DSL process 2 is divided into several kinds of
activities: DSL definition, transformation, consistency and
relationships rules, design with DSL and Qualification. The
three first activities are achieved by the DSL designer and
the two last activities are used by the final DSL user.

There are several DSM environments available. In our
context, we use the Eclipse Modeling Framework (EMF) [7]
open-source platform to support such a process and to create
our tool suite. Note, however, that our vision is not limited
to the EMF platform.

The rest of this paper is organized as follows. An overview
of the modeling approach we proposed including a set of
DSLs is presented in Section 2. Then, Section 3 presents
the architecture and the functionality of the tool-chain. Sec-
tion 4 presents in detail the implementation of the tools
composing the chain. In Section 5, we provide a first feed-
back on the tool-suite we propose. Finally Finally, Section 6
concludes this paper with a short discussion about future
works.

2DSL process defines how development projects based on
DSL are achieved.

2. OVERVIEW OF THE DSMLS
In this section we present the specification languages to

support the PBSE methodology: repository structure speci-
fication language (SARM), property modeling language (GPRM)
and pattern modeling language (SEPM).

2.1 Repository Structure Specification Language
A repository is a data structure that stores artifacts and

that allows the user to publish and to select them for reuse
and to share expertise. The specification of the structure
of the repository is based on the organization of its content
and the way it interacts with other engineering processes.
The analysis of these requirements allows us to identify two
main parts: the first one is dedicated to store and man-
age data in the form of Compartments, the second one is
about the Interfaces in order to publish and to retrieve pat-
terns and models. The following part depicts more detailed
the meaning of the principal concepts used to structure the
repository:

• SarmRepository. Is the core element used to define a
repository.

• SeArtifact. We define a modeling artifact as a formal-
ized piece of knowledge for understanding and com-
municating ideas produced and/or consumed during
certain activities of system engineering processes. The
modeling artifact may be classified in accordance with
engineering processes levels. An SeLifecycleStage de-
fines an enumeration to the development life-cycle stage
in which the artifact will be used. In our study, we fo-
cus on S&D pattern models.

• SarmCompartment. Is used for the categorization of the

stored artifacts. We have identified two main kinds
of compartments: (1) SarmSpecLangCompartment to
store the specification languages (SeSpecLang) of the
modeling artifacts (SEPM and GPRM), and (2) Sar-

mArtefactCompartment to store the modeling artifacts
(S&D pattern and property models).

• SeReference. This link will be used to specify the re-
lation between patterns with regard to domain and
software life-cycle stage in the form of a pattern lan-
guage. For instance, a pattern at a certain software
life-cycle stage uses another pattern at the same/or
at different software life-cycle stage. The enumeration
SeReferenceKind contains examples of these links.

• SarmStorable. Is used to define a set of characteristics
of the modeling artifacts, mainly those related to its
storage. We can define: RepositoryID, StorageDate,
SizeByte, etc. . . . In order to keep the structure of pat-
tern language as the set of patterns and their links for
a certain domain, the concept SarmStorable includes a
list of references (SarmReference).

2.2 Generic Property Modeling Language
The metamodel of property [8] (GPRM) captures the com-

mon concepts of the two main concerns of trusted RCES
applications: Security, Dependability and Resource on the
one hand and Constraints on these properties on the other
hand. The libraries of properties and constraints includes
units, types, categories and operators. For instance, security
and dependability attributes [9] such as authenticity, con-
fidentiality and availability are defined as categories. These
categories require a set of measures types (degree, metrics,
. . .) and units (boolean, float,. . .). For that, we instanti-
ate the appropriate type library and its corresponding unit
library. These models are used as external model libraries
to type the properties of the patterns. Especially during
the design of the pattern (see next sections) we define the
properties and the constraints using these libraries.

2.3 Pattern Specification Language
The System and software Pattern Metamodel (SEPM) [1]

is a metamodel defining a new formalism for describing pat-
terns. Note, however, that our proposition is inspired from
GoF [10] specification, which we deeply refined in order to
fit with the non-functional needs. In the following, we detail
the meaning of principal concepts used to edit a pattern.

• SepmPattern. This block represents a modular part of
a system representing a solution of a recurrent prob-
lem. It specializes the conceptual SeArtifact. An Sepm-

Pattern is defined by its behavior and by its provided
and required interfaces. An SepmPattern may be man-
ifested by one or more artifacts, and in turn, that ar-
tifact may be deployed to its execution environment.
The SepmPattern has attributes [10] (name, problem,
context, . . .) to describe the related recurring design
problem that arises in specific design contexts.

• SepmInternalStructure. Constitutes the implementa-
tion of the solution proposed by the pattern. Thus
the InternalStructure can be considered as a white box
which exposes the details of the pattern.

• SepmInterface. A pattern interacts with its environ-
ment with Interfaces which are composed of Opera-
tions. We consider two kinds of interface: (1) Sep-

mExternalInterface for specifying interactions with re-
gard to the integration of a pattern into an application
model or to compose patterns, and (2) SepmTechnical-

Interface for specifying interactions with the platform.

• SepmProperty. is a particular characteristic of a pat-
tern related to the concern dealing with and dedicated
to capture its intent in a certain way. Each property
of a pattern will be validated at the time of the pat-
tern validation process and the assumptions used will
be compiled as a set of constraints which will have
to be satisfied by the domain application. Security at-
tributes [9] such as Confidentiality and Availability are
categories of S&D properties.

3. IMPLEMENTATION ARCHITECTURE
To tackle secure and dependable system engineering chal-

lenges, in the context of PBSE methodology, we are devel-
oping an integrated set of software tools to enable S&D em-
bedded system applications development by design. These
tools improve the design, implementation, configuration and
deployment of S&D RCES applications. In fact, capturing
and providing this expertise by means of a repository of S&D
patterns can support and improve embedded systems devel-
opment. The following details this software system from the
installation, over modeling artifacts development and reuse,
evolution and maintenance for acquiring organizations, end-
users and front-end support provider.

3.1 Tool-suite Architecture
TERESA provides three integrated sets of software tools:

(i) Tool set A for populating the repository, (ii) Tool set
B for retrieval from the repository and (iii) Tool set C for
managing the repository. As shown in Figure 2, thanks to
UML component diagram the tool-suite is composed of:

• Gaya (G). for the repository structure and interfaces
conforming to SARM,

• Tiqueo (T). for specifying models of S&D properties
conforming to GPRM,

• Arabion (A). for specifying patterns conforming to SEPM,

• Admin. for the repository management,

• Retrieval. for the repository access.

3.2 Tool-suite Functionality
In this section we present the design tools proposed for

the repository populating, repository management and the
repository accessing.

3.2.1 Repository Set-up

Gaya is a repository platform to store the modeling ar-
tifact specifications and instances through the APIs. The
server part is responsible for managing and storing the data,
and provides a set of features to interact with the reposi-
tory content. As shown in Figure 2, the server part is com-
posed of two components: (1) GayaServer providing the
implementation of the common API and (2) GayaMARS

Figure 2: The tool suite architecture

providing the storage mechanisms. The client part is re-
sponsible for populating the repository and for using its
content providing APIs interfaces for applications, such as
depicted in Figure 2, in order to populate, access and to
manage the repository. For instance, Gaya4Pattern (im-
plements the API4PatternDesigner), Gaya4Property (imple-
ments the API4PropDesigner), Gaya4Admin (implements
API4Admin) and Gaya4SystemDeveloper (implements the
API4PatternUser).

3.2.2 Repository Populating - Design Tools

The property designer (Tiqueo), to be used by a property
designer, provides features for specifying models of proper-
ties and constraints. In addition, Tiqueo provides some fea-
tures to create a library for reusable objects, like the types
and units which allows us to use the libraries in a domain
independent manner. Furthermore, Tiqueo includes mech-
anisms to validate the conformity of the property and con-
straint library to the GPRM metamodels and to publish the
results into the Gaya repository using the Gaya4Property
API.

The pattern designer (Arabion), to be used by a pattern
designer provides a set of features for specifying domain in-
dependent and domain specific patterns. In addition, Ara-
bion includes mechanisms to validate the conformity of the
pattern to the SEPM metamodel, the generation of docu-
mentation and to publish the results to the repository thanks
to the repository interfaces (Gaya4Pattern API).

3.2.3 Repository Managing

For the repository management, to be used by repository
manager, we provide a set of facilities for the repository or-
ganization allowing the enhancement of its usage using the
Gaya4Admin API. We provide also basic features such as
user, domain and artifact management. Moreover, we pro-
vide features to support the management of the relationships
among artifacts specifications and between artifacts specifi-
cations and their complementary models.

3.2.4 Repository Accessing (Retrieval)

For accessing the repository, to be used by a system engi-
neer, the tool provides a set of facilities to help selecting ap-
propriate patterns including key word search, lifecycle stage
search, domain independent vs. domain specific and prop-
erty categories. The results are displayed in search result
tree as System, Architecture, Design and Implementation
patterns. The Tool includes features for exportation and
instantiation as dialogues targeting domain specific devel-
opment environment. Moreover, the tool includes depen-
dency checking mechanisms. For example, a pattern can’t
be instantiated, when a property library is missing, an error
message will be thrown.

4. IMPLEMENTATION DETAILS
Using the proposed metamodels and the Eclipse Model-

ing Framework (EMF) [7], ongoing experimental work is
done with semcomdt 3 (SEMCO Model Development Tools,
IRIT’s editor and platform plugins).

4.1 CDO Repository Implementation
Our approach, relying on an MDE based techniques to

build a set of DSLs and thus in our context supporting au-
tomated model-based repository building, such as visualized
in Figure 3. Then, we provide the environment for the use
of the resulted repository through APIs.

The models specifying the structure of the repository and
the APIs are built through an EMF tree-based editor imple-
menting the SARM metamodel, as shown in the top part of
Figure 3. The resulting Ecore model is then used as input
for the model to text transformations in order to generate
the repository and APIs software implementation artifacts
targeting the CDO platform [11] (as seen in the mid part of
Figure 3).

The structure of the repository is derived from the repos-
itory structure model and implemented using Java and the
Eclipse CDO Server technology. The server part of the

3http://www.semcomdt.org

Figure 3: The Model-based repository building process

repository is provided as an Eclipse plugin that will han-
dle the launch of a CDO server defined by a configuration
file. The repository client APIs are derived from the reposi-
tory APIs model and then implemented as CDO clients. In
our example, the repository interfaces model are visualized
in Figure 4. We specified a set of functions and the data
structure of their parameters in the form of UML class dia-
gram. The implementation is based firstly on the automatic
code generation from the APIs model. In our development
environment, the generated Java code defines the different
interfaces and functions provided by the repository APIs.
The skeleton of the APIs implementations are then com-
pleted manually based on CDO technology. As the CDO
server, the CDO clients are provided as Eclipse plugins (as
shown in the down part of Figure 3).

4.2 Design Tools
As shown in Figure 5, we used the Eclipse Modeling Frame-

work (EMF) to support such a process and to create our
tool suite design editors: (1) we create the model’s Ecore
file (MM) and then (2) we use the code generation tech-
niques of EMF as a transformation engine to build DSLs
editors. That is, we derived the EMF Generator Model (gen-
model) file based on the model’s Ecore file to make use of the
code generation techniques of EMF. Then we generated the
model, the editor and the test code, as well as the different
Eclipse plugins, using these two files (Ecore and genmodel).
The generated editor code was modified to limit the user ac-
tions on the ones needed and to enhance user experience (e.g.

modifying the name of some concepts). The tool provides fa-
cilities for editing modeling artifacts instances in a domain
independent manner (DIM). Then the user can refine the
guidelines for domain-specific application (DSM). Further,
using EMF features, we added the metamodel conformance
function to the editor (Model Checker) and code/documen-
tation generation (Generator).

The second part of the project was to create the HTML
code generator based on Acceleo, a M2T component of the
Eclipse Modeling Framework. We created two plugins, one
for the HTML code generation and a second as the user-
interface plugin. The code generation plugin is based on the
Ecore file to parse the model. We developed modularized
code transformation templates, with every module template
generating one HTML file per selected model element, and
managing the links among them.

We applied the DSL process to build the property designer
and the pattern designer: Tiqueo is an EMF generated tree-
based editor for specifying models of properties and con-
straints, and Arabion is an EMF generated tree-based ed-
itor for specifying domain independent and domain specific
patterns. Then, we applied the code generation strategy for
HTML generation for both pattern and property models.

For a pattern, the design environment is presented in
Figure 6. There is a design palette on the right, a tree
view of the project on the left and the main design view in
the middle. In our example, the SecurityCommunication-
Layer@DetailedDesign pattern uses the HMAC mechanism.
The call of the method send() of the Sender calls internally

Figure 4: The Repository Interfaces and Classes

Figure 5: Overview of the Semco tool suite architecture

to generateAH() to prepare an appropriate authentication
header for the data. Once this header is appended to the
message it is sent by the communication channel. On the Re-
ceivers side, the call of the method receive() returns the last
received message from the sender. This message is checked
by the method checkAH(). If the message is correct it is
passed to the application, in any other case is discarded.
The operations generateAH() and checkAH() are provided
through an internal interface called HMAC Computation.

To type the category of an S&D property, the user has
to create a reference to the library as a resource. As a pre-
requisite, the designer uses the Retrieval tool (see subsec-
tion 4.2.2) to search and then to upload the appropriate
library in its environment.

In our example, an instance of the sdLibrary called sdCat-
egoryLibrary.tm is imported from the repository to the local

project workspace. We specified an S&D property called Au-
thenticity of Sender and Receiver. To type the category of
this property, we use the one defined in the library: Authen-
ticity.

4.2.1 Repository Managing (Admin)

We provide software, as a Java based GUI application,
called GayaAdmin to manage relationships among S&D pat-
terns specifications, and between S&D patterns and their
related property models. For instance, as visualized in Fig-
ure 7, a pattern may be linked with other patterns and
associated with property models using a predefined set of
reference kinds such as those proposed in the SARM meta-
model. Moreover, we support basic features such as artifact
management and user management. GayaAdmin uses the
Gaya4Admin API.

Figure 6: Pattern designer -Arabion

Figure 7: Repository organization

4.2.2 Repository Accessing (Retrieval)

To access the repository, we are building an Eclipse plu-
gin application, which uses the Gaya4SystemDeveloper API
for the search/selection/sorting of the patterns. The Tool

includes features for exportation and instantiation as dia-
logues, mainly those based on model transformation tech-
niques to adapt the model of the pattern to the target de-
velopment environment (for example Rhapsody UML).

Figure 8: Mapping rules from SEPM to UML Component using QVT

A transformation (in our case implemented with the OMG
standard QVT – Query/View/Transformation) synchronizes
the pattern model between the SEPM pattern model and
UML model. For instance, we propose a process within a
set of model transformation rules to target UML object and
component architectures. In Figure 8, we show an overview
of a set of transformation rules using QVT [12] under EMF.
SEPM and UML are specified using Ecore metamodel to be
used as model types inputs.

5. ASSESSMENT
This section provides a preliminary evaluation of the ap-

proach along ISO-9126 ’s quality-in-use dimensions, i.e. ef-
fectiveness, productivity, safety and satisfaction.

In the context of the TERESA project4, we evaluated
the tool-chain to build two demonstrators combining MDE
and a model-based repository of S&D patterns and their re-
lated property models: (1) Railway Safe4Rail application
in charge of the emergency brake of a railway system and
(2) Metrology SmartMeterGateway application in charge of
connecting Smart Metering devices. Figure 9 shows a set of
roles and the environment of the integrated modeling, stor-
age and system development process based on our vision and
approach.

Eleven TERESAmembers participated. They were handed
out a sheet with instructions for each task (e.g., what prop-
erties to specify and what patterns to develop, when to take
note of the time, etc.).

The study was divided into three tasks. Before they started,
a general description of the aim of the study was given (30’).
Some running examples were introduced to them. After
these two tasks, achieved during the TERESA MDE work-
shop in Toulouse (April 2012), a 6-months evaluation was
conducted.

All the subjects were already familiarized with MDE, S&D
patterns and Eclipse, though some did not know some of the
companion plugins (e.g. Acceleo). Hence, the generation of

4http://www.teresa-project.org/

documentation was not part of the evaluation. The proce-
dure includes four tasks: SEMCO plug-in installation, prop-
erty models development, pattern development and patterns
instantiation.

• Effectiveness. Figure 10 shows a table providing the
fulfillment for the five tasks. One subject had prob-
lems in using UML editors (Rhapsody or Papyrus) for
pattern integration, and hence, he was excluded from
the rest of the experiment.

Item Frequency %

Task 1. Plugin installation 3.5 100
Task 2. Property Model development 5.5 100
Task 3. Pattern development 10 100
Task 4. Pattern instantiation 11.2 100

Figure 10: Effectiveness Results

• Productivity. Productivity is measured as the number
of minutes required for each task (only for those that
successfully completed the first task). As shown in
Figure 11, SEMCO plugins installation took between
10 and 15 minutes, with a mean of 12; property model
development took between 20 and 60 minutes, with a
mean of 42.5 minutes; pattern development took be-
tween 40 and 60 minutes, with a mean of 53 minutes;
pattern instantiation took between 10 and 30 minutes,
with a mean of 19 minutes and finally.

Item Mean St.
(minutes) Dev.

Task 1. Plugin installation 12 2.8
Task 2. Property Model development 42.5 11.5
Task 3. Pattern development 53 8.4

Figure 11: Productivity Results

• Satisfaction. Satisfaction is the capability of the soft-
ware product to satisfy its users. In this case, the

Figure 9: Integrated Modeling/Configuration/Assembly Process

product is the repository of S&D patterns engine, and
its ability to develop a trusted RCES application. We
asked participants to give scores from 1 to 5 (5 is the
best) and comments. We focus on the tool-suite as a
mean to build the modeling artifacts. We separately
collected the satisfaction along the four tasks (items
1-7). Finally, we want also to measure the willingness
to use repository of modeling of S&D patterns in the
future in the related activities (items 8-13). The fol-
lowing table depicts an overview of the results of our
experiment.

These scores indicates the degree of satisfaction of the
users and provides a feedback to us in order to enhance
our tool suite.

These results seem to suggest that subjects like the MDE
Tool-chain as a means to speed the development of pattern-
based S&D applications development by design, and in so
doing, improving focus on tough tasks (e.g. implementa-
tion). However, pattern instantiation stands up as the main
stumbling block for pattern-based system development adop-
tion. More to the point, if we consider that the subjects
were programmer natives (i.e. accustom to use program-
ming language for security engineering). Specifically, users
tend to overlook the three rules that govern pattern-based
system development (i.e. (1) each pattern must be specified
domain-application independently, (2) more than one pat-
tern is required to fulfill one S&D property and (3) every pat-
tern should instantiated in the target domain-development
environment).

6. CONCLUSION AND FUTURE WORK
The proposed approach promotes a model-based approach

coupled with a repository of models for embedded system

applications, focusing on the problem of integrating non-
functional properties by design to foster reuse. Currently,
we are developing an MDE Tool-chain, with EMF editors
and a CDO-based repository, supporting the approach. Cur-
rently the tool suite named semcomdt is provided as Eclipse
plugins.

The approach presented here has been evaluated in the
context of the TERESA project for a repository of S&D
patterns and property models. For instance, a pattern de-
signer defines patterns and store them in the repository. A
system designer reuses existing patterns from the repository
through instantiation mechanisms which leads to simpler
and seamless designs with higher quality and costs savings.

First evidences indicate that users are satisfied with the
MDE tool-chain. The approach paves the way to let users
define their own road-maps upon the PBSE methodology.
First evaluations are encouraging with 85% of the subjects
being able to complete the tasks. However, they also point
out one of the main challenges: automatic search for the user
to derive those ’S&D patterns’ from the requirements anal-
ysis. We plan to perform additional case studies to evaluate
both the expressiveness and usability of the methodology,
the DSLs and the tools. Our vision is for ’S&D patterns’ to
be inferred from the browsing history of users built from a
set of already developed applications.

As future work, we plan to study the automation of the
search and instantiation of models and patterns and a frame-
work for simpler specification of constraints would be ben-
eficial. In addition, we will study the integration of our
tooling with other MDE tools, mainly those used in embed-
ded system development. For that, we need to implement
code generators able to generate a restrictive set of code
complying to the domains standards.

Item Mean St. Dev.

1. I think the installation of the SEMCO plug-in is easy 4.10 0.48
2. I think repository populating tools are easy to use 3.80 0.54
3. I think repository access tools are easy to use 4.10 0.68
4. I think it is easy for me to develop new S&D patterns 3.50 0.36
5. I think it is easy for me to develop new properties models 3.80 0.70
6. I think S&D patterns instantiation is easy to use 3.80 0.64
7. I think properties models instantiation is easy to use 3.50 0.64

8. I would like to develop S&D patterns in the future 3.80 0.56
9. I would like to develop properties models in the future 4.10 0.68
10. I would like to install other SEMCO plugins in the future 3.50 0.54
11. I would like to exchange SEMCO in the future 3.60 0.56
12. I would like to customize some SEMCO plugins in the future 3.60 0.76
13. I would like to extend some SEMCO features in the future 3.70 0.83

Figure 12: Satisfaction Results from 1 (total disagreement) to 5 (total agreement).

7. REFERENCES
[1] B. Hamid, S.Gurgens, C. Jouvray, N. Desnos,

Enforcing S&D Pattern Design in RCES with
Modeling and Formal Approaches, in: J. Whittle
(Ed.), ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems
(MODELS), Vol. 6981, Springer, 2011, pp. 319–333.

[2] D. Riehle, H. Züllighoven, Understanding and using
patterns in software development, TAPOS 2 (1)
(1996) 3–13.

[3] D. Serrano, A. Mana, A.-D. Sotirious, Towards Precise
and Certified Security Patterns, in: Proceedings of
2nd International Workshop on Secure systems
methodologies using patterns (Spattern 2008), IEEE
Computer Society, 2008, pp. 287–291.

[4] I. Crnkovic, M. R. V. Chaudron, S. Larsson,
Component-based development process and
component lifecycle, in: Proceedings of the
International Conference on Software Engineering
Advances (ICSEA 2006), IEEE Computer Society,
2006, p. 44.

[5] R. B. France, B. Rumpe, Domain specific modeling,
Software and System Modeling 4 (1) (2005) 1–3.

[6] J. Gray, J.-P. Tolvanen, S. Kelly, A. Gokhale,
S. Neema, J. Sprinkle, Domain-Specific Modeling,
Chapman & Hall/CRC, 2007.

[7] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks,
EMF: Eclipse Modeling Framework 2.0, 2nd Edition,
Addison-Wesley Professional, 2009.

[8] A. Ziani, B. Hamid, S. Trujillo, Towards a Unified
Meta-model for Resources-Constrained Embedded
Systems, in: 37th EUROMICRO Conference on
Software Engineering and Advanced Applications,
IEEE, 2011, pp. 485–492.

[9] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr,
Basic Concepts and Taxonomy of Dependable and
Secure Computing, IEEE Transactions on Dependable
and Secure Computing 1 (2004) 11–33.

[10] E. Gamma, R. Helm, R. E. Johnson, J.Vlissides,
Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[11] CDO Model Repository Overview.
URL http://www.eclipse.org/cdo/

[12] Q. Omg, Meta Object Facility (MOF) 2 . 0 Query /

View / Transformation Specification,
Transformation (April) (2008) 1–230.
URL http://www.omg.org/spec/QVT/1.0/PDF/

