
HAL Id: hal-04083769
https://hal.science/hal-04083769

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Process for Maintaining Heterogeneous Models
Consistency through Change Synchronization

Mahmoud El Hamlaoui, Sophie Ebersold, Adil Anwar, Mahmoud Nassar,
Bernard Coulette

To cite this version:
Mahmoud El Hamlaoui, Sophie Ebersold, Adil Anwar, Mahmoud Nassar, Bernard Coulette. A
Process for Maintaining Heterogeneous Models Consistency through Change Synchronization. 10th
ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2013),
IEEE Computer Society; Arab Computer Society (ACS), May 2013, Fès, Morocco. pp.1-4,
�10.1109/AICCSA.2013.6616433�. �hal-04083769�

https://hal.science/hal-04083769
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12612

To link to this article : doi: 10.1109/AICCSA.2013.6616433
URL : http://dx.doi.org/10.1109/AICCSA.2013.6616433

To cite this version : El Hamlaoui, Mahmoud and Ebersold, Sophie
and Anwar, Adil and Nassar, Mahmoud and Coulette, Bernard A
Process for Maintaining Heterogeneous Models Consistency through
Change Synchronization. (2013) In: ACS/IEEE International
Conference on Computer Systems and Applications (AICCSA), 27
May 2013 - 30 May 2013 (Fès, Morocco)

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Process for Maintaining Heterogeneous Models

Consistency through Change Synchronization

Mahmoud EL HAMLAOUI
1,2

, Sophie EBERSOLD
1
, Adil ANWAR3, Mahmoud NASSAR

2
 and Bernard COULETTE

1

1
University Toulouse 2 –Le Mirail

IRIT Laboratory, MACAO Team

5 Allée Antonio Machado, 31058 Toulouse, France

{mahmoud.el- hamlaoui, sophie.ebersold, bernard.coulette}@irit.fr

TEL: (+33)5 61 50 38 96- Fax: (+33) 5 61 50 41 73
2
University of Med V Souissi

ENSIAS, SIME Laboratory, IMS Team

BP 713, Agdal Rabat, Morocco

nassar@ensias.ma

TEL: (+212)5-37 77 85 79- Fax: (+212)5 37 77 72 30
3
University of Med V Agdal

EMI, Siweb Laboratory

BP 765, Agdal Rabat, Morocco

anwar@emi.ac.ma

Abstract—This paper falls into the context of modeling

complex systems according to various viewpoints. More precisely,

it presents an iterative process of heterogeneous models

consistency management – by taking into account various types

of evolution - based on building a correspondence model. In the

case of models evolution, this process is intended to capture

changes in the models, to list modifications to be made in the

impacted models and finally to update the correspondence model

for a future iteration.

Keywords- evolution; changes; correspondence model;

virtualization; impacts;

I. INTRODUCTION

Today, development of complex systems is based on a
varied set of languages, tools and environments that are
generally used separately by modeling experts working on
different dimensions of a project.
Most of these complex systems are designed so that their
multiple views are defined in different heterogeneous
DSMLs (domain-specific modeling languages), representing
projections of the global view of the system according to
specific needs. In the avionics domain for example, it is
common to develop various models corresponding to
different viewpoints on a given system: mechanical, thermal,
electrical, computing, etc.
To tackle consistency problems between heterogeneous
partials models (views), it is commonly admitted that a
“matching” phase is necessary. It is a way to connect those
models via a set of relationships defined between them. We
have investigated this issue by defining a correspondence
meta-model that will be recalled in subsequent sections.

The question that arises then is “how to manage partial
models evolutions?” Indeed, during the modeling or the
maintenance phase of a complex system, designers working
with specific DSLs according to their viewpoints tend to
change the models on which they operate. This may cause
inconsistencies since models are related so that the change of
one of them may cause the inconsistency of the whole
system. In fact, there is a need to reflect and adapt the
change, or at least to identify the models that are impacted
by it. To solve this issue we introduce a semi-automatic
iterative process based on a proposed correspondence model,
oriented to deal with evolution aspects.
In this paper, we focus on maintaining consistency by
impacting changes as a result of partial models evolution.

The remainder of this paper is structured as follows.
Section II, investigates related works. Section III, introduces
the proposed correspondence model. Section IV, presents our
process called “evolution process” and its different phases
and, finally, the paper is concluded in Section V.

II. RELATED WORK

Several approaches in the literature treat one or several
aspects of model evolution issue. In this section we focus on
some of these approaches, namely COPE [7], EMFMigrate
[5] and the one developed by Cicchetti et al. [3].
 To lead this study, we have identified the following criteria:
Heterogeneity, number of input artifacts and their types,
mechanism of change detection, the adopted support of
classification and the evolution level. These criteria − that
should ideally be present in every approach − are defined
below:

· Heterogeneity: expresses if the approach in question
takes into account heterogeneous artifacts. As a
reminder, we consider that two artifacts are
heterogeneous if their modeling languages are
themselves heterogeneous,

· Change detection: assesses how an approach
proceeds to detect the elements of artifacts that have
undergone an alteration,

· Number of input artifacts: since we are interested in
multi-environment modeling, this criterion
characterizes the possible limitation on the number
of input artifacts,

· Types of artifacts: identifies the shape of
representing artifacts. The latters are not necessarily
models, they might be rules of transformation or
other types of artifacts,

· Classification support: indicates whether the
approach supports a classification of changes in
order to assign to each kind of change a particular
action. This is generally done in some phases
preceding the evolution phase. It is interesting to
take this criterion into account, because the
classification of changes allows the automation of
the whole evolution process or at least a part of it,

· Evolution level: characterizes the type of level:
vertical or horizontal. Co-evolution, for example, is
a vertical evolution level as its objective is to
maintain the conformity relationship between a
model and it’s meta-model. The horizontal
evolution level concerns changes at the same level
between models, also called model migration.

TABLE I presents a synthesis of the studied approaches,
based on these criteria. By analyzing it we can deduce that
the evolution process has not yet reached maturity level.
Firstly, studied approaches take into consideration only
homogeneous models (i.e. derived from the same meta-
model). Yet it is essential to be able to take into account
heterogeneous models. Secondly, they do not define any
classification support, a factor that we consider as mandatory
in order to automatically manage changes and their impacts
on models, through predefined actions. Last but not least,
most of the approaches discussed above (except Cicchetti et
al.), focus on the migration of models as a result of
adaptation of their corresponding meta-models (co-
evolution) to preserve the conformity relationship. That is to
say that these approaches only treat the vertical level of
evolution. Yet it is on the horizontal level that models
synchronization is based

TABLE I. COMPARISON OF MODEL EVOLUTION APPROACHES

Criteria

Approaches

H NA TA CD CS EL

Cope (Edapt) No 2 M
1
 SA

3
 No V

4

EMFMigrate No 2 M/T
2
 Manual No V

Cichetti & al. No 2 M Manual No H
5

1
: Model,

2
: Transformation rules,

3
: Semi-automatic,

4
: Vertical,

5
: Horizontal

To sum up, the identified approaches do not fully address
these important aspects of system evolution. Also, different
criteria are not considered, which limit their use to specific
case studies.

III. CORRESPONDENCE META-MODEL

It was mentioned above that view-based models of the
system are connected through a set of relationships. In other
words the global system view is a couple {Vn, Rn} such that
Vn is the set of views and Rn is a set of relationships
instantiated from a correspondence meta-model. Therefore,
before tackling the part relating to model evolution, we
briefly describe a preliminary phase of the evolution process
that is called “Matching”. For this phase, we have defined a
correspondence meta-model called “CMM” (see Fig 1). It
has been designed to meet two main quality criteria:
genericity and extensibility. CMM provides a “generic” part
– common to all domains - that defines a syntactic
description of most common types of correspondence. CMM
can be extended depending on the specificities of the
application domain under consideration, in order to support
the concepts relating to specific business areas. A description
of the concepts of the proposed CMM will be detailed in [6].

Fig 1. Overview of the correspondence meta-model (CMM)

Another property of the MMC is that its instance, the
correspondence model (CM), is built in a virtual manner.
That means that the CM does not contain any concrete data.
A virtual model provides tools/users the illusion of working
with a regular model whereas, in fact, all model
manipulation requests are transparently redirected to
elements contained in the virtualized contributing models
[4]. In our case this means that CM only contains –
physically− the relationships without the related elements
which are located into the source models. During the
matching phase, a virtual link is established between the
instance of “Element” in the CM and the elements that still
exist in the input models.

IV. EVOLUTION PROCESS

In this section, we present the “evolution process” which

takes place after the matching phase mentioned in the

introduction. This suggested process, represented in SPEM

[8] (Fig 2), aims at describing the phases to perform after an

evolution of connected models (called input models), in

order to maintain the consistency of the system. It involves

two actors, namely, a domain expert who can be seen as an

orchestrator of the system, and designers who are

responsible for input models.

The suggested process consists of three major phases

which are: change detection, change classification and

change processing. The process takes as input the various

models that may have evolved, and the correspondence

model (CM). This latter is conform to the correspondence

meta-model (CMM) obtained in the matching phase (out of

scope of the evolution process). Firstly, a change detection

step is triggered in order to trace changes that might have

occurred on the various input models. These changes are

specified (added) in an extended part of the CMM. Secondly

a classification phase is performed. It aims, by involving the

domain expert, at classifying the previous changes stored

into CMM by producing a change list. This is performed in

order to better manage impacts by assigning to each case a

specific action. The final phase, called change processing,

aims to migrate models by applying specific treatments to

them. Some of them require the approbation of domain

expert and designers.

Fig 2. The whole evolution process (for one iteration)

A. Change detection

A change considered meaningful for one purpose may be
irrelevant for another [9]. Therefore, we aim to provide three
ways for triggering this phase, exploitable depending on the
needs:

· On a model element change: Every change of model
element causes the initialization of the phase,

· Periodical: The actors work independently on their
respective models, and the change detection is
triggered at specific times in the development cycle
to evolve the elements in question,

· On expert user request: A contextual menu is
implemented so that the actor could evaluate the
need of triggering the phase.

1) Extension of CMM supporting model evolution

The change detection phase aims to detect the models
elements that have undergone a change, i.e. elements that
have been altered, deleted or added. Unlike the
correspondence process that highlights the similarities and
dependencies between (meta-) models elements, the result of
this phase is the specification of discrepancies (deltas)
caused by the evolution of one or several models elements.
Based on these deltas, we will subsequently identify the
model elements affected by the change and the necessary
amendments to ensure the system consistency.
To describe these evolutions, we extend the CMM meta-
model (see Fig 1) by adding a set of concepts, mimicking a
CRUD [1] operation set.

Fig 3. Extract of correspondence meta-model, oriented towards model

evolution

As described in the Fig 3, several types of changes are taken
into accounts which are represented by the following
concepts:

· EltDiff: Abstract meta-class that stores through it
specialization concepts, a trace of the changed
elements,

· EltDeleted: Elements of models that no longer exist,
as a result of a delete operation,

· EltAdded: New model elements that are added to
the initial models,

· EltModified: New state of a model element that is
defined as a result of an amendment to existing
ones.

2) Enrichment of the correspondence model

The extension of the meta-model presented in the
previous sub-section, define only where to store the different
changes without defining the how part that will be the
purpose of this sub-section. In order to supply the
correspondence model (CM) with the different types of
change, we exploit the comparison engine EMFCompare[2].
EMFCompare is a Framework that provides a generic
algorithm for calculating differences between two versions
of a model, based on distance calculating techniques. The
provided result could be used in different ways. In our case,
we used it as input for enriching the correspondence model,
by filling in the elements have been changed

Fig 4. Identifying changes using EMFCompare

B. Classification of changes

The classification of changes is used to manage impacts
by assigning to each type of change a special treatment.
Therefore, we propose to classify them into two categories:

· “Automatic Evolution Category”: contains changes
that lead to automatic actions performed on models.
For example, if we delete a model element, the
relationship becomes orphan. We define an orphan
relationship as a relationship for which one of its
extremities (that are model elements) is missing.
When a relationship is orphan it must be deleted
from the correspondence model,

· “Monitored Evolution Category”: includes actions
that require a human assistance to decide about
certain types of changes. For example, if one of the
relationship-ends has been modified, it is the
expert’s responsibility to decide whether to
maintain the relationship with the new ends or to
modify one of them, if it still needs to exist.

We must note that, for each type of change, it is possible
through the correspondence model to find for a specific
element, the type of links and elements of models on the
relationship extremities.

C. Change processing

To maintain the consistency of the system with regard to
established relationships, model migration must be
performed. In this phase, models are amended to take into
account the identified changes and the modifications
deemed by the experts to be impacted. On the one hand, the
evolutions classified under “Automatic Evolution Category”
will be handled automatically. On the other hand, evolutions
classified under “Monitored Evolution Category” will result
in a semi-automatic migration operation that offers
evolution suggestions to guide the expert and help him to
evolve the model elements of the system.

Fig 5. Detailed vision of the change impact activity

The figure above describes the process followed for the
change processing phase. There are four global activities
related to addition, modification, deletion and the
maintaining of the relationship and two operations:
matching and delete. The modification activity is a
successive execution of deletion and matching.

V. CONCLUSION AND PERSPECTIVES

In the context of complex systems development, a set of

heterogeneous and evolving view-based models must be

managed. This brings out the need for a change

management mechanism enabling impact of changes on the

elements concerned and thereby ensuring the coherence of

the system. In this paper we have addressed some

maintenance issue in case of input models evolution. This is

done through a semi-automatic process that uses an

extended correspondence model with virtual access to the

evolved element, allowing to (i) detect changes made in a

given input model, (ii) handle the modifications according

to a performed classification and (iii) update the

correspondence model to maintain the consistency of the

system. In a multi-environment modelling, several

modifications can be performed simultaneously on different

models. A perspective given to this paper is to coordinate

and schedule the synchronization of data between model

elements. In addition, how the integration of the proposed

approach in a tooling suite can be achieved, is still to be

investigated.

ACKNOWLEDGMENT

This paper describes the results of a research work in the

scope of the PHC Volubilis MA/11/254

 REFERENCES

[1] Franck Barbier, Sylvain Eveillard, Kamal Youbi, and Eric

Cariou. Model-driven reverse engineering of cobol-based applications.
Information Systems Transformation. Architecture Driven Modernization

Case Studies, Morgan Kauffman, Burlington, MA, pages 283–299, 2010.

[2] C. Brun and A. Pierantonio. Model differences in the eclipse
modeling framework. UPGRADE, The European Journal for the

Informatics Professional, 9(2):29–34, 2008.

[3] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. In Enterprise

Distributed Object Computing Conference, 2008. EDOC’08. 12th

International IEEE, pages 222–231. IEEE, 2008.
[4] Cauê Clasen, Frédéric Jouault, and Jordi Cabot. Virtualemf: a

model virtualization tool. Advances in Conceptual Modeling. Recent

Developments and New Directions, pages 332–335, 2011.
[5] D. Di Ruscio, L. Iovino, and A. Pierantonio. What is needed for

managing co-evolution in mde? In Proceedings of the 2nd International

Workshop on Model Comparison in Practice, pages 30–38. ACM, 2011.
[6] Mahmoud El Hamlaoui, Sophie Ebersold, Bernard Coulette,

Adil Anwar, and Mahmoud Nassar. A process for defining a unique

correspondence model to relate heterogeneous models. In International
Conference on Evaluation of Novel Approaches to Software Engineering

(ENASE), Angers - France, 04/07/2013-06/07/2013. SciTePress, 2013.

[7] M. Herrmannsdoerfer, S. Benz, E. Juergens, et al. Cope: A
language for the coupled evolution of metamodels and models. In 1st

International Workshop on Model Co-Evolution and Consistency

Management, 2008.
[8] OMG SPEM. Omg spem-v2.0.

http://www.omg.org/spec/SPEM/2.0/PDF, April 2008.

[9] Y. Yu, T.T. Tun, and B. Nuseibeh. Specifying and detecting
meaningful changes in programs. In Proceedings of the 2011 26th

IEEE/ACM International Conference on Automated Software Engineering,

pages 273–282. IEEE Computer Society, 2011.

