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Morphisms of pre-Calabi-Yau categories and
morphisms of cyclic A,.-categories

Marion Boucrot

Abstract

In this article we prove that there exists a relation between d-pre-Calabi-morphisms intro-
duced by M. Kontsevich, A. Takeda and Y. Vlassopoulos and cyclic A..-morphisms, extending a
result proved by D. Ferndndez and E. Herscovich. This leads to a functor between the category
of d-pre-Calabi-Yau structures and the partial category of A..-categories of the form A® A [d—1]
with A a graded quiver and whose morphisms are the data of an A-structure on A® B*[d — 1]
together with A.-morphisms A[1] & B*[d] — A[1] ¢ A" [d] and A[1] ¢ B*[d] — B[1] & B*[d].

Mathematics subject classification 2020: 16E45, 18G70, 14A22
Keywords: A, -categories, pre-Calabi-Yau categories

1 Introduction

Pre-Calabi-Yau algebras were introduced by M. Kontsevich and Y. Vlassopoulos in the last decade.
These structures have also appeared under different names, such as V,.-algebras in [10], Ao-
algebras with boundary in [7], or weak Calabi-Yau structures in [3] for example. These references
show that pre-Calabi-Yau structures play an important role in homological algebra, symplectic
geometry, string topology, noncommutative geometry and even in Topological Quantum Field
Theory.

In the finite dimensional case, pre-Calabi-Yau algebras are strongly related to A-algebras.
Actually, for d € Z, a d-pre-Calabi-Yau structure on a finite dimensional vector space A is equiva-
lent to a cyclic A-structure on A @ A*[d — 1] that restricts to A. The definition of pre-Calabi-Yau
morphisms first appeared in [5] and then in [6], in the properadic setting. A natural question is
then about the link between pre-Calabi-Yau morphisms and A.,-morphisms of the corresponding
boundary construction.

D. Fernandez and E. Herscovich studied this link in [1] at the level of double Poisson dg al-
gebras and a restricted class of pre-Calabi-Yau algebras, when the multiplications m,, vanish for
n > 4. In this paper, we study the relation between A.,-morphisms and pre-Calabi-Yau mor-
phisms in a larger generality. The main result of this paper is the existence of a functor from the

category of d-pre-Calabi-Yau structures pCYy to the partial category Aooq whose objects are A..-
categories of the form A & A*[d — 1] and whose morphisms are the data of an A, -structure on



A @ B*[d — 1] together with a diagram of the form

All] @ B*[d]

/ \ (1.1)

All] & A*[d] B[1] @ B*[d]

where each of the arrows are A..-morphisms.
We also show that this functor restricts to a functor between a subcategory of pCYy and the

partial subcategory of Ay whose objects are those of A, and whose morphisms are the data of
an almost cyclic A-structure on A @ B*[d — 1] together with a diagram of the form (1.1) where
the arrows are A.-morphisms.

Let us briefly present the contents of the article. In Section 2, we fix the notations and conven-
tions we use in this paper and in Section 3, we recall the notions related to A,.-categories. Section
4 is devoted to present the notion of discs and diagrams as well as the notion of pre-Calabi-Yau
structures based on the necklace bracket introduced in [5], which is given as the commutator of
a necklace product, and their link with A..-structures in the case of a Hom-finite graded quiver.
We incidentally show that the necklace product for a graded quiver A is in fact equivalent to the
usual Gerstenhaber circle product on A @ A*[d — 1] (see Proposition 4.29), which does not seem to
have been observed in the literature so far. In Section 5, we recall the definitions of pre-Calabi-Yau
morphisms and of the category pC'Y; given in [5].

Section 6 is the core of the article. In Subsection 6.1, we prove that given d-pre-Calabi-Yau
categories A and B and a strict d-pre-Calabi-Yau morphism A — B, we can produce a cyclic
Aso-structure on A & B*[d — 1] and a diagram of the form (1.1) whose arrows are cyclic strict A-
morphisms. We summarize these results in Corollary 6.14. In Subsection 6.2, we prove that given
d-pre-Calabi-Yau categories .4 and B and any d-pre-Calabi-Yau morphism .4 — 3, we can produce
an A.-structure on A ¢ B*[d — 1] and a diagram of the form (1.1) where the arrows are A-
morphisms. Moreover, with an additional assumption on the pre-Calabi-Yau morphism A4 — B,
the A.-structure on A @ B*[d — 1] is almost cyclic. We summarize this in Corollary 6.20 in terms
of functors.

Acknowledgements. This work is supported by the French National Research Agency in the
framework of the “France 2030” program (ANR-15-IDEX-0002) and by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01).

2 Notations and conventions

In what follows k will be a field of characteristic 0 and to simplify we will denote ® for ®j. We will
denote by N = {0, 1,2,...} the set of natural numbers and we define N* = N\ {0}. Fori,j € N,
we define the interval of integers [, j] = {n € N|i <n < j}.

Recall that if we have a (cohomologically) graded vector space V = @,z V¢, we define forn € Z
the graded vector space V[n] given by V[n]* = V" for i € Z and the map sy, : V — V[n] whose
underlying set theoretic map is the identity. Moreover, if f : V' — W is a morphism of graded
vector spaces, we define the map f[n] : Vn] — W{n] sending an element sy, (v) to sy, (f(v)) for
all v € V. We will denote sy, simply by s,, when there is no possible confusion, and s, just by s.



We now recall the Koszul sign rules, that are the ones we use to determine the signs appearing
in this paper. If V, W are graded vector spaces, we haveamap 7y, : V@ W — W @ V defined as

(v @w) = (~1)Mw g o

where v € V is a homogeneous element of degree |v| and w € W is a homogeneous element of
degree |w|. More generally, given graded vector spaces Vi, ..., V;, we have a map

Vi,V V1R @V, — Vg—l(l) Q- Va—l(n)

defined as
TV Vo (V1 @ - @ V) = (—1)(Vo-1(1) @+ ® Vg-1(n))

e= > |vorpllveigy]

i>7
o~ Mi)<a T (4)

with

where v; € V; is a homogeneous element of degree |v;| for i € [1,n].

Throughout this paper, when we consider an element v of degree |v| in a graded vector space
V', we mean a homogeneous element v of V. Also, we will denote by id the identity map of every
space of morphisms, without specifying it. All the products in this paper will be products in the
category of graded vector spaces. Given graded vector spaces (V;);c;, we thus have

[Tv - @I

i€l nezZiel

where the second product is the usual product of vector spaces.

Given graded vector spaces V, W we will denote by Homy (V, W) the vector space of k-linear
maps f : V — W and by hom{(V, W) the vector space of homogeneous k-linear maps f : V — W
of degree d, ie. f(v) € WnTd for all v € V". We assemble them in the graded vector space
Homy(V,W) = Dy hom¢ (V, W) C Homy(V, W). We define the graded dual of a graded vector
space V = @, ., V" as the graded vector space V* = Homy(V, k). Moreover, given graded vector
spaces V, V/, W, W' and homogeneous elements f € Homg(V,V') and g € Homx(W,W’), we
have that

(f®g)(vew) = (1)l f(v) @ g(w)

for homogeneous elements v € V and w € W. Recall that given graded vector spaces Vi,...,V,
and d € Z we have a homogeneous linear isomorphism of degree 0

Hy: (QVild »Vig- oV, 1 eVde Vi o, 2.1)
=1

sending an element s4(v; @ - -+ @ v,,) to (—1) vl Fvi-ihy @ @ 1 @ 50, @ Vj41 @ @ v,
Moreover, given graded vector spaces V and W and an integer d € Z, we have homogeneous
linear isomorphisms of degree 0

Homy(V, W)[d] = Homy(V, W|[d]) (2.2)



sending sqf € Homk(V, W)|[d] to the map sending v € V to sq(f(v)) and
Homy (V, W)[d] — Homy(V[—d], W) (2.3)

sending sqf € Homy(V, W)[d] to the map sending s_4v € V[—d] to (1)1 f(v).

Recall that a graded quiver A consists of a set of objects O together with graded vector spaces
y Az for every z,y € O. A dg quiver A is a graded quiver such that ,.A, is a dg vector space for
every z,y € O. Given a quiver A, its enveloping graded quiver is the graded quiver A° = AP ® A
whose set of objects is O x O and whose space of morphisms from an object (x,y) to an object
(¢',y") is defined as the graded vector space (/) (A”? @ A)(z,y) = 2 Az ® v Ay. A graded quiver
A with set of objects O is said to be Hom-finite if ,.A, is finite dimensional for every z,y € O.
Given graded quivers A and B with respective sets of objects O 4 and O , a morphism of graded
quivers (®g, ) : A — B is the data of a map & : O4 — Op between the sets of objects together
with a collection ® = (,®,). yeco,, of morphisms of graded vector spaces ,®, : y Az — @, (y)Bao(z)
forevery z,y € O 4. In this paper we will only consider small graded quivers and small categories.

We will denote

o= |]o"

neN*

and more generally, we will denote by O the set formed by all finite tuples of elements of O, i.e.

0= |_|@":|_| |_| OPL x ... x OPr

neN- 7>0 (p1,...,pn ) €T

where 7,, = N* forn > 1 and 7; = N*. Given # = (1,...,7,) € O we define its length as
lg(z) = n, its left term as 1t(Z) = z; and right term as rt(z) = z,. Fori € [1,n], we define
T<i = (T1,...,24), T>; = (T4,...,2,) and for j > 4, Z[; ;7 = (24, %iq1,...,2;). One can similarly
define z; and Z~;. Moreover, given T = (z!,...,2") € O we define its length as lg(Z) = n, its left
term as 1t(Z) = z' and its right term as 1t(z) = z". For 7 = (71, ..., 7,) € O, we will denote

AP = Apy @ 2y Ay @ Dy A

Zlg(z)

and we will often denote an element of A®? as a1, ag, .. ., ig(z)—1 instead of a1 ® a2 ®@ - - @ arg(z)—1
for a; € 4, Az, i € [1,1g(Z) — 1]. Moreover, given a tuple Z = (z',...,z") € O we will denote
AT = A9 @ A% @ ... @ A®T". Given tuples T = (21,...,20),7 = (W1, ym) € O, we
define their concatenation as Z Uy = (21, ..., Tn,Y1,- - -, Ym). We also define the inverse of a tuple
T = (21,...,7,) € Oas 3! = (vp,Tp_1,...,71). f o € S, and Z = (z1,...,2,) € O", we
define 7 - 0 = (To(1): To(2): - - - » To(n))- Moreover, given o € 8, and z = (z',...,2") € O", we
define 7 - o = (27, 77 ... 77("). We denote by C,, the subgroup of S,, generated by the cycle
o= (12...n) whichsendsi € [1,n — 1] toi+ 1 and n to 1.

3 A.-categories

In this section, we recall the notion of (cyclic) A,.-categories and (cyclic) Ao-morphisms as well
as the definition of the natural bilinear form associated to a graded quiver. We also introduce a
bilinear form on categories of the form A & B* where A and B are graded quivers related by a
morphism A — B. We refer the reader to [7] for the definitions of modules and bimodules over a
category.



Definition 3.1. Given a graded quiver A with set of objects O, we define the graded vector space

C(A) = H H Homy (A[1]®7, 14(z)Are(z))

p>1zcOP

Given & = (x1,...,2,) € O™ and a map F* : A[1]®% — 1y (3) Avy(z), we associate to F* a disc with
several incoming arrows and one outgoing arrow (see Figure 3.1).

X
xIs 2 T

Tn—1 In
Figure 3.1: A disc representing a map F* : A[1]%% — y;(3) A (z), where T = (z1, ..., ;)

To simplify, we will often omit the objects and assemble the incoming arrows in a big arrow (see Figure

3.2).

Figure 3.2: The representation of a homogeneous element in C'(A)

Definition 3.2. The type of a disc representing a map F* : A[1]%7 — y;(z) Ay is the tuple T € O.
Definition 3.3. Let A be a graded quiver. By the isomorphism (2.2), an element sF € C(A)[1] induces
maps i

A1®" = 1) Az [1]
sending an element (say, ..., san_1) to s(F%(say,...,sa,_1)) forz = (1,...,7,) € O, a; € AV
i € [1,n — 1]. To a homogeneous element sF € C(A)[1], we thus associate disc with a bold outgoing arrow

2

(see Figure 3.3) to indicate that the output of sF is an element in A[1].

@

Figure 3.3: The representation of a homogeneous element in C'(A)[1]



Example 3.4. The diagram

is the composition of a disc associated to a map
G@iy1se s YmTitr) . A[H@(wz‘,yl,4--7ym7fti+1) . P 1]

with a disc associated to a map

F*: ./4[1]@9? — m1Azn [1]
with & = (x1,..., ). The type of this diagram is T<; Uy U T~;. This diagram is associated to the map
FZo (id®z—1 ®G(mi,y1 ..... Ym , Tit1) ® id@m_l).

Definition 3.5. Given a dg bimodule M over a dg category A with set of objects O, its naturalization is
the chain complex M1 = (@ +M.)/(fg — (=1)\9gf) where f € , A, and g € ,M,,.
z€O

Definition 3.6. Given dg category A with differential d 4 and product i, we define the dg bimodule Bar(.A)
as Bar(A) = (,» Bar(A)y)s,2rc0, where

#Bar(Ae =P P oA @A 1@ @, Ar 1] ® 4, A,

P20 (zo,...,zp)EOP

whose differential restricted to . Bar(A), is given by Y. 5 df 4 df where

) ntl g4
dg(fo (4 Sf1 R..Q an X fn+1) = Z(_l)]:o fo [ Sf1 ® ... S(d_A(fZ)) R...R an ® fn+1

i=0
and

A7 (fo®8[1® .. @8fn® foy1) = (1) fofi @ sfa @ ... @ 5fn @ fria

n—1

Y (D)0 Rs1 Q.. 08(fifir1) ® ... ® $fn ® frt1
1

+ (_1)671'](‘0 ® Sfl ®...® an,1 ® fnfnJrl

forallz = (zo,x1,...,2n), fo € w2 Awys frnt1 € w, Agand f; € 4, | Ay, i € [1,n], with

i—1

e =|fol + Y _(1fil +1)

Jj=1



where we have written f; f;11 instead of u(f;, fix1) for i € [0,n] to denote the composition of A.
The bimodule structure of Bar(A) is given by p = ((2/,y/)P(z,y))ey.a' ' cO Where

(@ ) Play) © (@) Ay © yBar(A)y — o Bar(A)y

) |FI(lal bl + 3 Jsai]) ,
sends (f®g)®(a®sag®@sa1 Q- - Qsa, @a’) to (—1) i=0 (ga®sag®@sa1®- - Rsa, a’ f)

forall (f @ g) € (wy) Al (T0s- o Tng1) € O™t a € yAy, b € 4 Ay and a; € 4, Ay, for
i € [0,n]. Moreover, in that case, we have a quasi-isomorphism of dg bimodules Bar(A) — A whose
restriction to Bar(A), vanishes for p > 1 and whose restriction to Bar(A)g is p.

Definition 3.7. Given a dg category A, the dual bimodule of the dg bimodule Bar(A) is given by
Bar(A)Y = [] ,Bar(A)Y, with

z,yeO
yBar(A)Y = Hom_ ac(, Bar(A) .y, Ap @ y Ayr)

where the subscript — A° of the Hom indicates that we consider the space of morphisms of right A°-modules.
In particular, , Bar) is a right graded A°-module for each x,y € O for the left A°-structure of A¢ which is
the inner one.

More precisely, Bar(A) is a A-bimodule with the action given by p = (27 ) P(x,y))z,y.2” " c0 Where

(@ ) Pley) * (@) Ay @y Bar(A)) — » Bar(A))s

sends (f ® g) @Y % to the map Z/ U2, ¢y Bar(A)y — Ay @ 40 Ay defined by

’

gy/” \I]ﬁ:7 (a ® sa ® saq ® e ® SQp, ® a/) — (fl)(‘fl“"lgl)l(b(l)‘@(l)f ® g(p(2)
where we have written g/(ﬁf(a ® sag @ sa; @ - @ sa, @ a') as a tensor product ®V) @ &), for all
(f X g) c (x’,y’)Afm7y)/ (ﬂfo, e ,I'n+1) e @n+1/ a € yAmor a,, € :En+1"4m and a; € jSAxi+1 fOTi S [[O,n]]

Remark 3.8. If A is a dg category, we have a map

Bar(A)y.: — [[ I Homu(ALI®, 1) Ara))
p>1zTEOP
sending > ®7 € Hom_ 4-(; Bar(A)., . Az ® 4.A.) to the collection of k-linear maps
v P A l]®.@a, A (1] apAs,

p>0 (zg,...,xp) EOP

given by V(sao, ..., sap—1) = p(1 0 3070 (1, S0, - - ., Sp—1,1s,)) for a; € 4, Ay, , and where 1, is
the identity of 4, As,. Moreover, this map is an isomorphism of graded vector spaces.

Definition 3.9. Given a graded quiver A with set of objects O, the Gerstenhaber product of elements
sF, sG € C(A)[1] is defined as the element sF g sG € C(A)[1] given by

(sF 0 sG)* = E sF<iYT2i o gGTliil
G G,i,j
1<i<j<lg(®)



for z € O where

(sFP<i2i o sG™lil)(say, ..., San_1)
G,i,j
= (—=1)“sF*<iY=i(say,. .., sa;—1, SG19 (sa;, ..., 8a;-1),8Q;j, ..., S0n_1)

i—1

fora; € o, Az, withe = (|G| +1) > |sa,|.
r=1
The map (sF S sG)® is by definition the sum of the maps associated to diagrams of type T and of the

(A

Definition 3.10. Given a graded quiver A with set of objects O, the Gerstenhaber bracket is the graded
Lie bracket [—, —] on C(A)[1] defined for elements sF, sG € C(A)[1] as the element [sF, sG] € C(A)[1]
given by

form

[sF,sG|¢ = (SFg sG)® — (=1)FFDIGHD (56 S sF)*
forz € O.

Definition 3.11. An A-structure on a graded quiver A is a homogeneous element smy € C(A)[1] of
degree 1 satisfying the Maurer-Cartan equation [sm 4, sm4]c = 0.

Remark 3.12. An Ao-structure on a graded quiver A is tantamount to the data of a homogeneous element
sm 4 € C(A)[1] satisfying the following identities

ST smIETT 0 (1d®TE @sm T ©1d®T2) = 0 (SI)
1<i<j<n

for every n € N* and & € O". These are called the Stasheff identities and were first introduced in [8] by
J. Stasheff.

Example 3.13. If A is a dg category with differential d 4 and product p, it carries a natural A.-structure
smy € C(A)[1] withmY = da, m* = pand m”y = 0 forn > 3.

Definition 3.14. Given a graded quiver A with set of objects O its graded dual quiver is the quiver A*
whose set of objects is O and for x,y € O, the space of morphisms from x to y is defined as , A}, = (. Ay)*.

Definition 3.15. A bilinear form of degree d on a graded quiver A is a collection T' = (,I';)z yco of
homogeneous k-linear maps ,I'; : Az [1] ® 5 Ay[1] — k of degree d + 2.

Definition 3.16. A bilinear form I on a graded quiver A is nondegenerate if the induced map
yA:[1] = (yA=[1])"

sending an element sa € A [1] to the map sending sb € A, (1] to ,I';(sa, sb) is an isomorphism.



Example 3.17. Consider two graded quivers A and B and a morphism (®q, ®) : A — B of graded quivers.
Define the bilinear form T'® : (A[1] ® B*[d])®? — k of degree d + 2 by

oI (tf, 50) = (=)D (sa,tf) = (=1 (f 0 .9y)(a)
for | € a4(4) B, (2 @ € oAy, where t stands for the shift morphism B* — B*[d] and
oLz (tf:19) = T3 (s, 5b) = 0

Jor | € a4)Bayay 9 € 00(2)Bay(yy @ € yAz and b € o A, This bilinear form I'® will be called the
&-mixed bilinear form.

Example 3.18. If B = A, the bilinear form T''? of the previous example is called the natural bilinear form
on A and will be denoted T'A.

Remark 3.19. The natural bilinear form on a Hom-finite graded quiver A is nondegenerate, whereas the
O-mixed bilinear form is not in general.

Definition 3.20. An A-structure sm 4 € C(A)[1] on a graded quiver A is almost cyclic with respect
to a homogeneous bilinear form T : A[1]%? — k if the following holds:

e, Day (sm¥(sa,. .., 8a,-1), sap)
no1 3.1
[san|( Z [sa;l) 7.0~ L ( )
=(-1) i=1 wn_ 1Lz, (sm%°  (san,sa1,...,S0n_2),80n_1)

foreachn € N*, & = (21,...,2,) € O, 0 = (12...n) with a; € 5, Ay,,, fori € [1,n — 1] and
Ay, € g, Ay, . An almost cyclic Ao-category is an A.-category whose Aoo-structure is almost cyclic with
respect to a fixed homogeneous bilinear form. An almost cyclic A.-category with respect to a nondegenerate
bilinear form is called a cyclic A..-category.

The following definition was first introduced by M. Sugawara in [9].

Definition 3.21. An A..-morphism between Ao.-categories (A, sm 4) and (B, smp) with respective
sets of objects O 4 and Op is a map Fy : O4 — Op together with a collection F = (F®),c5,, where
F?: A[1]%% = g (0(2)) Bro(eo(a)) [1] is @ map of degree 0, that satisfies

ST TR o (id¥TE @sml Y @id®7)
1<i<j<lg(z
<i<j<lg(®) - ) ) (MT)
= Z smb(F<i @ Folinial @ ... @ Folinls@1)

1<y <+ <in <1g()

for every & € O 4 and with j = (Fo(x1), Fo(xi,), . .., Fo(21g(z)))- Note that given & € O 4 the terms in
both sums are sums of maps associated with diagrams of type T that are respectively of the form




The following definition was introduced in [2] by H. Kajiura in the cyclic case.

Definition 3.22. An A.-morphism (Fy, F) between almost cyclic A-categories (A, sm4) and (B, smp)
with respect to bilinear forms v and T is cyclic if

Fg(y)FFU(m)(Fl(sa), Fl(sb)) = Yz (sa, sb)

forz,ye O,a€ Ay andb € z Ay and forn >3

Z lt(z)Frt(z) (Fi(sal, ey sa,-), Fy(sai+1, ey Sa,n)) =0
€z
yez’

forz € O, (say,...,sa;) € A[1)®% and (sa;y1, . .., sa,) € A[1]®Y where

Z={z€0| Itz =lt(2),rt(z) =1t(2)}and Z' = {g € O | It(y) = rt(2),1t(y) = It(2)}

4 Pre-Calabi-Yau categories

In this section, we present the diagrammatic calculus and recall the definition of d-pre-Calabi-Yau
structures, d € Z, appearing in [5] and [11] as well as their relation with A..-structures when the
graded quiver considered is Hom-finite.

4.1 Diagrammatic calculus

In this subsection, we define discs and diagrams and we explain how to evaluate and compose
them.
Following [11] we define the following graded vector space.

Definition 4.1. Given a graded quiver A with set of objects O, we define the graded vector space

Multi®(Bar(A)[d]) = [ Multi"(Bar(A)[d])) = J] [] Multi*(Bar(A)[d])

neN* neN* zeOn

where Multi” (Bar(A)[d]) is the graded vector space consisting of sums of homogeneous k-linear maps of
the form

zt,....7 z! z2 z"
F2 oo A% AP @---@A[1]% = 1@y Ar@2) [~ d] @1 a2) Area3) [~ d) @ - ®1e(an) Aryz1)[—d]

forz = (x',...,z"). i
The action of T = (Tn)nen= € [],en- Cn on an element F = (F*)
element 7 - F € Multi® (Bar(A)[d]) given by

co € Multi®(Bar(A)[d]) is the

z

T -1 T-T
- F)2 =+ oF*TorT z z zn
( ) 1c(51)-'4n<1v2)[—d]m(ﬁ)A”(is)[—d]v--wu(m)/\rt(il)[—d] A1)zt A[1]®%2 | A[1]®F

forz € O. We will denote by Multi® (Bar(A)[d]) =) the space of elements of Multi® (Bar(.A)[d]) that are

invariant under the action of [ [,,cx- Ch-

10



Remark 4.2. If Ais a dg category, Multi" (Bar(A)[d)]) is the dg vector space
Hom 4eyen (Bar(A)[d], a(A®™),)

where ;4 (A®™), denotes the A®™-bimodule A®™ whose structure is given by

(ylv--vyn)(A@n)(xl7~--7xn) - ® yiAai
i=1

with the convention that x,+1 = x1.
The action on morphisms is given by

(1@ Dgp)ewe(fi@---Qf,) = (*l)lfl‘(|f2‘+”'+|f”|)(91®"'®gn)‘w'(fn®f2®'"®fn—1®f1)

n
for objects xi, x}, yi,y; € O,0 € [L,n], w € Q y, Au,y, fi € 2, Au and g; € ,, A, where - denotes the
i=1

usual bimodule structure of Hom 4eyen (Bar(A)[d], A®™).

Definition 4.3. A disc D is a circle with distinguished set of points which are either incoming or outgoing
points. An incoming (resp. outgoing) point will be pictured as an incoming (resp. outgoing) arrow (see
Figure 4.1). The size of the disc D is the number of outgoing arrows, and it will be denoted by |D|.

Figure 4.1: A disc of size 3

Definition 4.4. Given a graded quiver A with set of objects O, a decorated disc of size n is a disc of
size n together with a clockwise labeling of the outgoing arrows from 1 to n and a distinguished object of
O between any couple of consecutive arrows. Given an arrow o of the disc D, we will write it o = you,
with x,y € O to indicate that « clockwise precedes the arrow o in D and o clockwise precedes y in D. For
instance, the outgoing arrow labeled by 3 in Figure 4.2 might be denoted by ,10v,3.

The type of the decorated disc is the tuple of the form (z', ..., z™) where T* is the tuple formed by objects
of O, read in counterclockwise order, between the outgoing arrows i — 1 and i, with the convention that the
arrow O is the arrow n (see Figure 4.2).

11



Figure 4.2: A decorated disc of type z = (z!,22,2%) where 7! = (21,23, 2}), 2% = (23,23, 2%, 23)
and 7% = (23,23, 23)

Definition 4.5. Given & € O we associate to a map F* € Multi® (Bar(A[d))) the unique decorated
diagram of type .

Definition 4.6. A marked disc is a decorated disc with a bold arrow (see Figure 4.3).

Figure 4.3: A marked disc

Definition 4.7. Consider sq1F* € Multi®(Bar(A)[d])[d + 1] with Z = (z',...,2") € O™. Given
(a,b) € ({1} x [1,1g(z") + --- +1g(z™)]) U ({0} x [1,n]), by the isomorphisms (2.1), (2.2) and (2.3),
Sa+1F* induces a morphism of the form

AN @ @ AN T @ AN @ Al-d),  © AP @ AR
% b/ 41 4.1)
— lt(il)Art(f2)[_d} ® -+ @ 1p(zn) Arg(z) [—d]
given by (—1)(HDIFF| pEo(ig®s@E ) Ha@ 4 —0) g\ i@ 0s@E) b He@ )+ Hg(@") —nti))
ifa=1iand b =lg(z') + - +lg(@) + V¥ with j € [1,n], b’ € [1,1g(z?) — 1], and a morphism of the
form
AL @ AP © - ® AL

4.2)
— lt(il)Art(iz)[_d] ®--® lt(ibfl)Art(ib)[_d] ® lt(ib)Art(iHl) [1} ®-® lt(i")Art(il) [_d]

given by (id®°®V @544, @ 1d®"7Y) o F7 if q = 0. T0 sq41 F'" and (a,b) as before, we associate the
marked diagram which is decorated as the one of F'*, where the bold arrow is the b-th incoming arrow if
a = i and the b-th outgoing arrow if a = o where the incoming arrows are numbered in clockwise order, the

12



first being the incoming arrow following the last outgoing one. Given a disc D of type , we will denote by
E(D, sq41F*) the map (4.1) ifa = i and (4.2) ifa = o.

Example 4.8. Given the marked disc in Figure 4.3 and an element sq.1 F € Multi® (Bar(.A)[d])[d+ 1], the
evaluation of £(D, sqy1F®) at elements (sa', sa®, sa°) is obtained by first compute F*(sa', sa?, sa®) =
lt(:il)Fr;ég) ® It(i2)Fr¥(dj?’) ® 1t(fs)FrZé3), and then apply the shift sqy1 to the third tensor factor of the
result since the bold arrow is the third outgoing arrow of the disc. The result is then

(*1)€lt(fc1)F£é2) ® lt(EQ)Fr;(izs) ® lt(fS)Frlt(ch)
with e = (d + 1)(‘113(51)}7‘;552” + |1t(52)FrZ(di3)|)'

To simplify, from now on we will omit the objects when drawing a marked disc as well as
the label of the outgoing arrows. By convention, if the bold arrow of the marked disc (of size n) is
outgoing, it denotes the n-th outgoing arrow, and if the bold arrow is incoming, then the clockwise
preceding outgoing arrow of the marked disc is the one labeled by n. Moreover, we will draw a
big incoming arrow instead of several consecutive incoming arrows (see Figure 4.4 and 4.5).

Figure 4.4: A disc representing a map of the form (4.2)

/A
Figure 4.5: A disc representing a map of the form (4.1)

Now, we explain how to compose discs.

Definition 4.9. A diagram is roughly speaking a finite collection of decorated discs, each of which shares
at most an arrow with any other one (see Figure 4.6). More precisely, a diagram (D, R) is the data of a
collection D of discs {D», ..., D,}, each of which having sets of arrows A; for i € [1,n], together with a
subset R C (U, A;)? satisfying that

(D.1) if (a, B) € RN (A; x Aj), then i # j and o is an incoming arrow and (3 is an outgoing arrow;
(D.2) if (yogr,yBe) € R, then o' = yand x = y/;

where we use the notation introduced in Definition 4.4. We will represent a pair (o, ) € RN (A; x Aj) by
connecting the outgoing arrow (3 of D; with the incoming arrow o of D; (see Figure 4.6), and we will say
that the disc D; shares an arrow with D; or that o and [ are connected.

13



An incoming (resp. outgoing) arrow of the diagram (D, R) is an arrow « of one of the discs D;
such that there is no arrow J satisfying that (o, 8) € R (resp. (B,a) € R). A diagram (D, R) has a
distinguished object of O between any couple of consecutive arrows of (D, R) given by the decoration of the
discs D1, ..., D,,.

Figure 4.6: A diagram

Definition 4.10. We say that a diagram (D, R) is admissible if, roughly speaking, each of the discs in
D = {Dx,...,D,} is marked and if D is connected, with no cycles and if every couple of arrows in R
contains a unique bold arrow. More precisely, a diagram (D, R) is admissible if the following conditions are
satisfied

(A1) Vi€ [1,n],3 a; € D; such that («;, B;) € R for some j # i, B; € D;;
(A.2) for (z,y) € R, either x or y is a bold arrow, but not both;
(A.3) there is no family of arrows {x1, ...,z } such that (x;,x;11) € R forall i € [1,k] and zy, = 1.

Note that there is precisely one disc in D = {D, ..., D,,} whose bold arrow is also an incoming or
outgoing arrow of the diagram (D, R), i.e. an admissible diagram (D, R) always has either an incoming or
outgoing bold arrow.

The size of an admissible diagram (D = {Dx, ..., Dy}, R)is > ., |D;| —n+1, and it will be denoted
by |D|. We will relabel the outgoing arrows of (D, R) in clockwise direction from 1 to |D|, such that the
outgoing arrow labeled by |D| is precisely the bold arrow of (D, R) if the latter arrow is outgoing, and it
is the outgoing arrow preceding the bold arrow of (D, R) in clockwise sense if the bold arrow of (D, R) is
incoming.

Definition 4.11. The type of an admissible diagram (D = {Ds, ..., D, }, R) is the tuple

&Kl

=('...,zm) €O

where m = |D| and z* € O is the tuple composed of the objects of (D, R), placed in counterclockwise order,
that we can read between the outgoing arrows i — 1 and i of (D, R).

Definition 4.12. A source (resp. sink) of an admissible diagram is a disc which shares none of its incoming
(resp. outgoing) arrows with another one.
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Remark 4.13. An admissible diagram has at least one source and one sink.

Given an admissible diagram (D = {D,...,D,}, R) and a tuple (sqt+1F1,...,Sq¢+1F,) with
F; € Multi® (Bar(A)[d]) such that Z; is the type of D; for all i € [1,n], we will define a map
E((D,R),sas1Fy,. .., 5441 F,) € Multi®(Bar(A)[d])[d + 1] where Z is the type of (D, R), as follows.
First, we suppose that the bold arrow is on a sink.

Definition 4.14. Let (D = {Dy,...,D,}, R) be a diagram and let (sq41F1, ..., sa+1Fn) be a tuple of
homogeneous elements with F; € Multi” (Bar(.A)[d]) such that &, is the type of D; for all i € [1,n]. We
will define the evaluation of E((D, R), sq41F1, ..., Sar1Fn) at an element sa* of A[l]®”:”, where T is the
type of (D, R) by induction on n as follows. We fix a source D, of (D, R).

(E.1) We place each element saj- € _Ti_Amng [1] in the incoming arrow . i of (D, R) in counterclockwise
J J J J

order beginning at the bold arrow. This will create a sign, as follows : if an element of degree m turn

around the source representing a map of degree m/, we add a sign (—1)"™"" and if an element of degree

{ pass through an element of degree ' to go to its place, we add a sign (—1)**'. Here, turning around
the source means passing through all of its inputs.

(E.2) We evaluate £(Dy, sq41Fs) at the elements sa’; € m@Az;“ [1] corresponding to the incoming arrows
J J
of Dy, to obtain an element of the form

1 foog|plDsl—1 _
(—1)@FDb -+ ' @ @blP 1 @ 54107l € y Ay [—d @ ® y(ps\Ales\ [1]

(E.3) We add a Koszul sign coming from transposing b' @ --- ® blPsI=1 with all of the elements sal; €
v Az, [1] corresponding to the incoming arrows of (D, R) between the last outgoing arrow of (D, R)
and the bold arrow of D connected with an arrow of the rest of the diagram in the clockwise order.
Recall that the elements b for i € [1,|Ds| — 1] are labeled with an index from [1,|D|] coming from

the corresponding outgoing arrow of (D, R).

(E.4) We consider the diagram (D', R') given by removing the disc D from (D, R) and place s4.1b/P+! at
the incoming arrow of (D', R') that was previously connected to the bold outgoing arrow of D;. By in-
duction we evaluate E((D', R'), sa1F1, ... Say1Fs, - .., 8441 Fn) at the elements sa’ € ;i A,i [1]

Tt
J+1
corresponding to the incoming arrows of D'. This evaluation carries a sign

IDs|(Isa™|+|sa|)+|sa™||sa"|

(-1)°

where |sa™| and |sa” | are the tuples of objects corresponding to the incoming arrows of D' that precede
and follow the element bl P! without any outgoing arrow between them. Recall that the tensor factors

in the evaluation of E((D', R'), sq+1F1, ..., 8a41Fs, .. ., Sar1F},) at the elements sa§» € o sz-_ﬂ 1]
stated before are labeled with an index from [1,|D|] coming from the corresponding outgoing arrow
of (D, R).

(E.5) We reorder the tensor factors obtained in steps (E.4) and (E.5) according to the labeling of the outgoing
arrows of (D, R), and add the respective Koszul sign.

We illustrate the previous procedure with an admissible diagram D consisting of two discs, given as
follows

15



In this case, the evaluation of (D, 5441GY, sq411F%) at

PHL L sa™)

sat, ... saP7t, s_bl, sa? ,.s_b2 e s_bmil, sab . sb", sa
>q <q
with sa' € A[1)%%" and sb' € A[1)®V, where & = (',...,2") and § = (§*,...,§™) are the respective
types of Dy and Dy, is detailed as follows.
First, we place each tensor factor sa’ and sb} of sa and sb' in the corresponding incoming arrow, as

|G¥ I+ 1) (|50’ [+-+lsa 1 +15aL o) Also, we add a sign

explained in (E.1), adding a sign (—1)!
(_1)\8771IIS’ainHSfbmHsﬁgq\

for the permutation of the corresponding elements. We picture this as follows

In step (E.2), we compute E( Dy, sd+1G75)(5_b1, .. .,s_bm) = (—1)(d+1)(|51|+“'+‘6m4|)61®' - ®Sd+1€m-
After step (E.3) we have gained a total sign (—1)* with

A = (|G7|+d-+ 1)(|$a%, |+ |5 4+ |5a™]) + (1G7| + 150 | 4 -+ [saZ ) (lex |+ -+ lej—ia]),

multiplying the element €1 ®- - -®€;_;_1 ®E(D, sdHFf)(s‘al - -®s‘a’;q®sd+16j,i ®s‘a2q®- -®sa™).
In (E.4), we compute

E(Dy, 5441 FH)(s0' @---® $a%, @ Say1€j-i @505, @ ®sa") =6 @ ® 01 ®I; @+ @ 84410y

and add a sign (—1)2" to the final result, with

A" = |sal gl (d+ 1+ lej—il ]sag, ) +Hlsag, | (d+1+]ej—i) +(d+1) (614 - +10i-1 | +16;] 4 -+ [0n-1])
In (E.5), we reorder the outputs with a sign, giving finally

E(D, 5a11GY, 5441 FF)(sa,. .., s0") = (~1)ATA A5, 0. .00, 106,@- - Q€ 108;@- - -®84110n

where A" = ([61] + ... [dia])(lex| + -~ + lej—ial)-
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Now, supose that the bold arrow is on a source.

Definition 4.15. Let (D = {Dy,...,D,}, R) be a diagram and let (sq41F1, ..., sa+1Fn) be a tuple of
homogeneous elements with F; € Multi® (Bar(A)[d]) such that ; is the type of D; for all i € [1,n]. We
will define the evaluation E((D, R), sa+1F1, . .., Sa+1Fy) at an element sa” 0fA[1]®”:”, where  is the type
of (D, R) by induction on n as follows. Suppose that the bold arrow is an arrow of the source D, of (D, R)
and that the p-th outgoing arrow « of D; is connected with another disc.

(F1) We place each element sa; € wi Ay [1]in the incoming arrow i Qi of (D, R) in counterclockwise
order beginning at the bold arrow. Thzs will create a sign, as follows zf an element of degree m turn
around a source representing a map of degree m’, we add a sign (—1)"™" and if an element of degree ¢

pass through an element of degree ¢’ to go to his place, we add a sign (—1)%*'. Again, turning around
a source means passing through all of its inputs.

(E.2) We transpose all the elements that do not correspond to incoming arrows of D, with the elements
corresponding to incoming arrows of D between o and the bold arrow. We add the sign coming from

this transposition. We evaluate (D, 5411F) at the elements sa’; € i Aw@+1 [1] corresponding to
J J

the incoming arrows of Dj, to obtain an element of the form

5001 (01 @ @) € ( Ay, [~d] @@y Ay, [~d)[d+1]

(F.3) We add a Koszul sign coming from transposing b»*1 @ - - - @ bIP=| with all of the elements that do not
correspond to an incoming arrow of Ds. Recall that the elements b for i € [1,|Ds|] \ {p} are labeled
with an index from [1,|D|] coming from the corresponding outgoing arrow of (D, R).

(F.4) We then consider the diagram (D', R') given by removing the disc D from (D, R). Its bold arrow is
the one previously connected to «.. Note that the element b is associated with this incoming arrow of
(D', R).

(E5) We evaluate E((D', R'), sq+1F1, .. ., 5d+1FS, .oy Sqr1Fy) at the elements sa§ € I@.Ami_ﬂ [1] corre-

sponding to the incoming arrows of D’. Recall that the tensor factors in this evaluation are labeled
with an index from [1,|D|] coming from the corresponding outgoing arrow of (D, R).

We illustrate the previous procedure with an admissible diagram D consisting of two discs, given as
follows

In this case, the evaluation of (D, sq41F%, s441GY) at

_ 1 5l g 52 -m _ -1 _ _
(sa',...,saP 1,sbgq,sap,sb ...,8b ,3ap+1,sb>q,sap+2...,sa")
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with sa' € A[1)®%" and sb' € A%V, where & = (2',...,2") and § = (§',...,§™) are the respective
types of Dy and Dy, is detailed as follows.
First, we place each tensor factor sa’; and sb; of sa* and sb' in the corresponding incoming arrow,

31 - 51
sb.,|lsa?|+|sbs

as explained in (F.1), adding a sign (—1)! 9”1 for the permutation of the corresponding

elements.

In step (F.2), we place all the elements sb' after the others and multiply by a sign

(_1)(|§b1‘+"'+|§bm\)(\§a”+1|+‘,,+|sfan|)

We then compute £(Dy, 841 F%)(sa, ..., sa") = (—1)(@D(alttHenle @ ... @ 54,16,
After (F.3), we end with

QR Dep1®(E,5411G7)(ep ® s_bléq ® --Rsb @ s_b1>q) ®€pt1 ® - ® Say1€n
preceded by a sign (—1)2" with
—1 = —1 = 1 —m, ol
A" = [sbe,llsa?| + [sbs |50 + A + ([sbeg| + -+ [s™| + [sbsgDllepsr] + -+ fen] +d +1)
+ (IG|+d+1)(e1 + -+ €p—1)
In (F.5), we order the elements and compute £(Da, 8441 G-’j)(sfblgq ®Rep ® sfb1>q, sb>,...,sb™) and mul-
tiply the result by .
(_1)|s_b1>q|(\si\+|s_b2|+~~-+\s_bm|)+(d+1)|G@\
Finally, we get
E(D,5411F%, 54:1G)(sa",... s0") = (-1)2 1@ Qep1 Q01 @ @6 D epy1 @+ @ Sas16n
where A" = A+ |sbL,|(le;] + s + - -+ |sb™]) + (d + 1)|G7|.
Definition 4.16. A filled diagram is an admissible diagram (D = {D, ..., D,}, R) together with ele-

ments sq1F; € Multi®(Bar(A)[d])[d + 1] for i € [1,n].
To each filled diagram D = {(D = {D1, ..., Dyn}, R), (Sar1Fi)ic[1,n] } We associate the element

E(D) =E((D,R), s411F, ..., 541 F™) € Multi® (Bar(A)[d])[d + 1]
where T is the type of (D, R) and <, is the type of D; for i € [1,n]. We depict a filled diagram as a diagram
replacing the names of the discs by the corresponding maps (see Figure 4.7).
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Figure 4.7: A filled diagram

Example 4.17. Consider the following filled diagram.

It represents a map
sac 2 AP 0 ALY © AP = 1 Ass [-d] © o3 sy [-d) © op sy [1]
where & = (z',22,7%) and 77 = (z7,. .. ,x{g(j,))forj € [1, 3] that takes as an input the last output of a
map

5a+1G7 ) L AT @ ALY 5 1 Age [~d] © 45 Age[l]

-1 i
With gl = (y%7y%7 A 7y’l]:L7m13)/ :U2 = (x§—1’y%7 M} y?ﬂ,)'

The type of the diagram is (z*,2*,4" U 7%, 7%, U §*), meaning that it represents a map that can be
evaluated at (sa*, sa?, sb' ® sa’,, sa3, ® sb°) where sa' € A[1)®%" and sb’ € A®Y'. This evaluation goes
in 5 steps. B

1. We place the elements around the diagram, which creates a sign (—1)¢ with

TR _ _ _ -1 =20 _
e = [sa1G7 T (|sa'| + |5a%| + |sal,]) + [sazil|sb | + |sb”||sasil

2. We evaluate E(Dy, sd+1G(?7l’?72)) at (s_bl, sb2). The result of this evaluation is an element of the
shifted tensor product (,1 Ayz [—d| @3  Ays[—d])[d+1] that we will write sa41 (1 G;2d®x§_1 G~ .

2

We then use the isomorphism (2.1) to obtain the tensor product

eH(d+1)],1G |

(1) NG @us Gla € Ay [—d® s Al

m i © i—1 i
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3. We put the first output before and get

e+(d G2 |+e
(-1 HAHD, G 1 Yl Gy2 ® E(Dy, 5411 F7(sa', 502, sa>4, $aci @ , 3 1Gglcs))

with €’ = d|(|F|+d+1+|s’al|—|—|sa2|—|—|sa>l|)

lsas;|(jsa<il+,3  Grsl)
) i—1 T3

4. We evaluate F* at (sa', sa%, sac; ® , 3 G ® Sa>;) which add a sign (—
to the result for the transposition of the correspondmg elements.

5. We order the outputs according to the labeling of their corresponding outgoing arrow and finally get

e+(d+1)] 1 G;;i |[+€ +e”
m

—d —d —d 1
(-1) m%Fng ®‘T%FI?,3 ®y%Gy72n ®m§szl)1

—d —d —d —d - d
1 F F d+1 F F
with " = (_1)(‘1:}(;1,3”""' mz} x%2‘+|m§ fgg‘H—( + )(|z% m%2|+ +l, ! |+ A+ 1GJ |)

4.2 The necklace graded Lie algebra

In order to recall what a pre-Calabi-Yau structure on A is, one first defines a graded Lie algebra,
called the necklace graded Lie algebra and appearing in [5]. As a graded vector space, this graded
Lie algebra is Multi®(Bar(A)[d])“'s*)[d + 1]. In order to define a graded Lie bracket on this space,
we first define a new operation as follows.

Definition 4.18. Consider a graded quiver A with set of objects O as well as tuples of elements of O given by
=z .., 7"), 5 = (", ....i™) € O such that rt(y") = xf and 1t(g™) = xy_, for some v € [1,n] and
j € [1,1g(zY)]. The inner necklace composition at v,j of elements sq1 F* € Multi® (Bar(A)[d])[d + 1]
and sq41GY € Multi? (Bar(A)[d))[d + 1] is given by

]

— £(D) € Multi >+ (Bar(A)[d))[d + 1]

<

s F? o sqaG
nec,v,j
inn

with
— —1 = = — 1 = 1 =
U Y Uz gaya"'aym x>g 1|_|ym 'u+7.”7l,n)

=V
I
v,7,inn

Sl
]|
1
—
8l
. —-

and where D is the filled diagram of type z Uy given by
v,J,inn
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Definition 4.19. Consider a graded quiver A with set of objects O as well as tuples of elements of O
given by & = (z',..,2"),5 = (J*,..,g™) € O such that t(3*) = xj_y and vt(y'tt) = xj for
some v € [1,m] and j € [1,1g(z"')]. The outer necklace composition at v,j of elements sq 1 F® €
Multi® (Bar(A)[d])[d + 1] and sq41G¥ € Multi? (Bar(A)[d])[d + 1] is given by

s01F? o sunGl=E(@) € Multi” »sw” (Bar(A)[d])[d + 1]
out
with
z v’j’|_(|)ut g=(y"....9" L, uyt, e, gttt ual gttt g
and where D is the filled diagram of type x J!T(I)ut y given by

Definition 4.20. Given a graded quiver A with set of objects O, the necklace product of elements
sa+1F, 5401G € Multi®(Bar(A)[d]) =) [d + 1] is the element

$g+1F o s441G € Multi®(Bar(A)[d])[d + 1]

given by
(5441 F o 3d+1G)§ > sapFT el sanGV+ Y sq PR ralo i s441GY
(%,9v,7) €Linn inn (Z,5,v,9) €Zous out
forall z € O, where
Timn = {(,7,v,§) € O x O x [1,1g(2)] x [1,1g(z")]|Z U § = Z}

v,7,inn

Tows = {(Z,5,v,5) € O x O x [L,1g@)] x [1,1g(z Dl U g

"@
Il
t\zu

Definition 4.21. Given a graded quiver A with set of objects O, the necklace bracket of two elements
sat1F,5401G € Multi®(Bar(A)[d]) =) [d + 1] is defined as the element

[$4+1F, 84+1G]nec € Multi®(Bar(A)[d])[d + 1]

where

z

[sar1F, 8441Gee = (8d+1F ° Sd+1G)§ (—1)(FIHdFDAGIHd+1)

5411G o sq11F)
nec
for every % € O.
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Definition 4.22. Given a graded quiver A with set of objects O, we define the graded vector space 64(A) =
11 6z(A), where

G

z€e

n—1

Gz (A) = Homy, ( QAL @ yyanieny Ay gy [d]) @ Au]@fl,wn)Arm)

i=1

forz = (z',...,z") € O.

Lemma 4.23. Let A be a graded quiver with set of objects O. Then, we have an injective map
4 : Multi®(Bar(A)[d])[d + 1] — 6. (A)[1]

given by the family j = (jz);.5 where jz : Multi” (Bar(A)[d])[d + 1] — Bz(A)[1] is defined by
J7(8a410) = stz with

n—1
Yz (sa”, tf"t sa" 2t .,sh2,tf2,s711):(—1)6(®(fiosd)®Sd)(qﬁ(s’al,s’cﬂ,...,s’a”))

i=1

for ¢ € Multi”(Bar(A)[d]), n = lg(Z), sa’ € A[1]®* fori € [L,n] and tf' € y(zit) Afi iz ld] for
i € [Ln— 1] with

e—Z|tf’| Z |sa?| + (|¢] + d) Z|tf1|+dn—1) S lsalllsall + D [t

j=i+1 1<i<j<n 1<i<j<n—1

We denote by I' the natural bilinear form on the boundary quiver 9,14 = A ® A*[d — 1],
defined in Example 3.18.

Definition 4.24. Given a graded quiver A with set of objects O, the noncounitary cofree conilpotent
graded cocategory on Ais defined as T°(A[1]) = @, o A[1]®* with coproduct given by deconcatenation
and the induced grading by the one of A.

Remark 4.25. We have that

aol 1»/4 @ ® ®w" " rt(i"—i-%—l)Aikt(in—i)[d]) ® A[1]®i1 (4.3)

zeo =1

Definition 4.26. Given a graded cocategory A with coproduct A given by maps ,AZ : A, — 4 A, ® ; Ag
for z,y,z € O, a homogeneous coderivation of degree d on A is a collection ,(By)s yeco of k-linear
maps By : y Ay — A, of degree d such that

yAZ o By = (B, ®id+1d®,B,) o ,AZ
foreach x,y,z € O.

We will denote by Coder(T¢(9,-1.A[1])) the graded vector space formed by sums of homoge-
neous coderivations of 7¢(9,_1.A[1]).

If B € Coder(T¢(94-1.A[1])), we will denote by B? the restriction of B to the tuple indexed by
z € Oin (4.3), by BY the composition of B and the canonical projection 7¢(9;-1.A[1]) — A[1] and
by B%. the composition of B® and the canonical projection 7¢(94—1.A[1]) — A*[d].
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Definition 4.27. A coderivation B € Coder(T¢(04_1.A[1])) is cyclic with respect to the natural bilinear
form T if the following equations are satisfied

(B (sa™, tfmL, ... sa%, tf1, sat), tf™) = (—1)T(BYE(sal, tf™, sa™, tf*71, .., sa), tf1)  (4.4)
and
T(BY. (sa™, tf" 1, ..., sa> tf', sat), sb) = (1) T(BY (sa' @ sb® sa™, tf*~ ', ..., sa%),tf1) (4.5)

fork=(z',...,2"),0 = (12...n)and ¥’ = (z%,...,&" UZ"), where the arguments are sa' € A[1]**,
tf* e rt(ii+1)¢41*t(i,i) [d]fori € [[1, n]], sb e rt(fl)Alt(fiﬂl)[l} and

n n—1
= (|sa*| +[tf"])( ZIS’G’HZIU” ,€ = (Isa'| + |sb) (Y [sa’| + > [tf'])
=2 i=1

We define Coder,.(T¢(04—1.A[1])) as the graded vector subspace of Coder(T°(9;-1.A[1])) con-
sisting of sums of homogeneous coderivations that are cyclic with respect to the natural bilin-
ear form I'. We also define the graded vector subspace of Coder(7T¢(8,-1.A4[1])) which we denote
Codercye,0(T¢(94—1.A[1])) and which is formed by the elements of Coder.,.(T¢(94-1.A[1])) sending
T¢(A[1)) to itself.

Proposition 4.28. The linear map
R : Codercye,o(T(0q—1.A[1])) = Bo(A)[1]
of degree 0, sending a coderivation B to the collection (B%) g is an isomorphism of graded vector spaces.

Proof. We will construct the inverse R~ of this map. Consider B% € Multi®(Bar(A)[d]) . We
construct a collection (B%.)- 5 of maps

n—1

= ~n—it1 * =1 *
Bi* : ®(A[1]®x ® rt(a’c"’i+1)‘Alt(f”L*i) [d]) ® -A[l]@m — lt(i’”)Art(jl)[d]

1=1
given by
T(B%. (sa”, tf™, ..., sa%, tf', sa'), sb) = (=1)° T(BY (sa' ® sb® sa™, tf" ', .., sa%), tf")

foreach Z = (z!,...,2") € O and elements sa’ € A[1]%%" fori € [1,n], tf* € (zi+1) A, oy [d] for
i€ [l,n—1]and sb € (z1) Az (1], where & = (z,...,z' Uz") and

n—1 n—1
= (Isa'| + [sb])(D_ |sa’| + D> [tf*])
i=1 =2

One can easily check that the map that associates to B the coderivation given by (B%, B%.); is
the inverse of R. O

~ We will denote by R4 (resp. R ' the composition of R~! and the canonical projection
T¢(Dg—1.A[1]) = A*[d] (resp. T¢(Dg—1.A[1]) — A[1]).

We have the following relation between the necklace product and the usual Gerstenhaber circle
product, which does not seem to have been observed in the literature so far.
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Proposition 4.29. Let F, G be elements in Multi®(Bar(A)[d])©'=»). Then, we have

Ji u (s F” necoijdHG?) = Ji (8441 F") &0 17(sa11GY) (4.6)

»P,q

forZ,j € O,v e [1,lg(Z)] and j € [1,1g(z*)] and

Ji U (841 F" o ,3d+1G§):—(—1)(|F‘+d+1)(|G‘+d+1)i§(Sd+1G§)GO Rt (J7(sa1FT)) (47)

v,j,0ut nec,v,j »Psq
out
_ lg(y) _
forv e [1,1g(y)] and j € [1,1g(z")], where p = 1g(z') + ... +1g(z¥) +j + 2and g =p + > lg(¥").
i=1

Proof. We will first show the identity (4.6). Given Z = (z',...,z"),5 = (¢*,...,J™) € O, both the
compositions _ _
Sd+1Fx o Sd+1Gy

nec,v,j

and i, _
J#(sap1F") o J5(sat1GY)

G.p,q
are zero if there are no u,v € [1,n] andj € [1,1g(z")] such that 1t(g*) = «¥ and rt(g**') = x¥,,
with the convention that 2! = z!. We will thus assume that there exist such u,v € [1,n] and
Jj € [1,1g(z")]. We can further suppose that u = n because of the invariance under the action of
C,,. To simplify the expressions, we will denote the result of applying F* on any argument as a
tensor product yy(z1)F, (T2) Q- ® lt(fnfl)Fgén) ® lt(g—;n)Fgél), where we omit those arguments.
We have

Jz o §(5d+1F§ o sa11GY)

v,j,inn nec,v,j
(sa™, tf™ ", ... sat 1, tf’, sa%;,sb™ tg™" 1,...,s_bQ,tgl,s_bl,sh%j,tfv_l,...,s?zQ,tfl,s’al)
=D os) @& (f oscz)®(g 08a) @ ® (g™ 0sa) ® (S 0sa) @@ (S 054) ®id)
sar1FT o sap1GY)(sat,sa’,... 50" sal;, sbt, .., sb ™ b, sal ..., 50", sa”
+ . J >j
nec,v,j =
= (-1

(flosa)®--@(fMosa) @ (g 0sa) @@ (g™ " 0sa) ®(f* " 0sa)®-- ® (f"" 05a) ®id)

—d
Sd+1(lt(il)Frt(z2)7~ 'lt(a'c”_l)Frt(z 5 1t( I)Grt<y2):~ 7lt(gjm_l)Grt(gm)7lt(i”)Frt(qurl) lt(i")Frt<z1))

for elements sa’ € .A[l]‘mi, sb' e A[1]®?7i, tft e ri(zi+1)Afy (1 [d] and tg' € rt(yi+1)Aikt(gi)[d], with

6—X:Itfl Z |sa |+Z\t9| Z |sa*| + |sa¥,| + Z |sb"])

k=i+1 k=v+1 =i+1
+Z\tf| Z |sa |+\sa>]|+§:|sb |+ |sa%;] + Z |sa®]) + d(n +m)
k=v+1 k=i+1
— — - m—1
+(IF|+IGI+1)(Z tf |+ Z Itg’|)+Z|tfl\ Doltg'+ > s
i=1 i=1 i=1 i=1 1<i<k<n-—1
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i k — ik — v — v St 3.k - _q = 51
> Iglltgt I+ Do Isa'llsa”| + Isalyllsak; Y [sbIsbT+ ) [sa’| D |sb']
=1 1=1

1<i<k<m-—1 1<i<k<n 1<i<k<m
v—1
¢ =(IGl+d+1)(Y_|sa’| + |sat|)
=1
m—1
+ Z |1t(y )Grt(y1+1)|(‘5a>]‘ + Z |Sa |+ Z ‘lt L)Frt(lwl |+ ‘lt(ym)Grt(y1)| +d+1)
1=1 i=v+1 i=v

On the other hand, we have that

J7(sa41F") &8 J5(Sa+1GY)

»Ps

(sb",tf"_l,...,s?z““,tf“,s’a’;j,gbmjgm_l,...,sfbg,tgﬂsfbl,s’a%j,tf”_ﬂ...,s?zQ,tfl,sZtl)
m—1
= (-1 6 ;_ F% .t nfl v+1 t v = i id G:L? _bl _bm
(=1 fa(sass F)(sa™, L, . 50 7 50l (R (g 0 5a) © id)sasa GI(sb .., sb™),
i=1
s’a%j,tf”_l,...,Sﬁ27tf1,s’a1)

= (-1 ((flosa) @@ (f osa) ® (fosa) @ ® (f7! 054) @id)
sdJFl(lt(fl)Frt(xz) ' 'lt(i“_l)Frt(mv) AG’lt(fv)Frt(m“Jrl) 'lt(f")Fr;(:L’ ))

m—1
where \g = & (9 0 54)) (1(g1) Gy {2y s 1(zm—1) Gy ymy) € K and
i=1

= (|G| +d +1)( Z \sa\+|8a>J|+Z|tf| +Z\tg| Z |sb"| + d(m — 1)

i=v+1 =i+1
m—1
7 7 k S8 3.k
+(GI+D) D Itg'l+ D> Rlltg" I+ D] |sb|sb"]
i=1 1<i<k<m—1 1<i<k<m
= > I+ DY sal|lsa| + [sak;lsal; | 4+ Y Isa’|hegm) Gl
1<i<k<n-—1 1<i<k<n =1
k
+Z|tf| Z 56" ] + lie(gm) Greggn) ) +Z|tf\ Z |sa"|
=it+1 k=i+1
v—1 —
+ A6l Isa’] + [5a2;] + hem) Grgny |+Z\tf|+21cw) Folin)+dn—1)
1=1 =1 i=v
n—1 m—
—d
+(F|+d) Y [tf+ (d+1) Z ooy Gralions |
=1 =1

Therefore, we have

Ji(sa41 F7) =y 1i(5441GY)

(sa™ tf" . sa T Y s’aij,sibm,tgm*l,...,sib2,tgl,sibl,s’a%j,tfvfl,...,sh2,tf1,sh1)
! 1"
— (_1)5+6 +6
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(flos)®- ®@(f osa)®(g' 05a) @+ @ (g™ " 05a) @ (T 05a) @+ @ (f" " 05a) ®id)
—d —d
Sd+1(1t(i1)Frt(x2)7' 'lt(i”’I)Frt(zU ) 18 1)Grt(y 2)) - .7lt(gmfl)Grt<gm)71t<f’u)Frt(i,U+1> .. 'lt(in>Frt(x ))

m—1
with §” = 21 ltg*|( Z ltfil+ Z 16(z7) rt(zm)) One can easily check thate+¢€¢ =36+ +4"”
=v

mod 2. Then, the first identity is proved
We now prove the identity (4.7). Given z = (z%,...,2"),5 = (¥%,...,9™) € O, both the
compositions ) )
sar1F? o sq11GY

nec,v,j
out

and _ _
1y(san1GY) o R (45(sar1 F7))

P.q

are zero if there areno v € [1,m] and j € [1,1g(z")] such that z} ; = 1t(") and 7} = rt(y"*"). We
will thus assume that such v € [1,m] and j € [1,1g(z!)] exist. Then, we have

iz U 5(5d+1Fm o s4+1GY)
v,j,out nec,v,j
out
- _ v+l _ e _ = _ -1
(sb™,tg™ L, ... sb" sa1>],tf motfrl san 1,...,tf1,sa1<j,sbv,tg” ..., sb)

(9" osa) @ ® (9" osa) ® (flosa) @@ (fhosa) @ (9" 05a) @ ® (g™ " 054) ®id)
(8d+1F§neCOUde+1G§)(87b1,...,Sibv,sfaij,.. sa” sa>J,sbv+1 ,sb™)
oﬁt’

( )eJre'
((g'osa) @@ (¢ osa) ®(flosa) @@ (fMosa) (9" 0sg) @@ (¢ " 054) ®id)

- —d —d —d —d -
5d+1(1t(gjl)Grt(g2)a o (gt ) Mg (g lt(il)Frt(iz)y s 71t(i”)Frt(561)a lt(ﬂv+1)Grt(gv+2)7 s 1t(g Grt (gt ))
with

m—1 ) n ) m—1 ] m .
=(FI+[GI+ DO [tg' |+ D _tf D +dn+m)+ > [tg'| D [sb"| + |sal;||sal,]
i=1 =1 i1=v+1 k=i+1
m
_ _ _ i =k
+ Y |sa'||sa” |+Z|tf I( Z |sa®| 4 |sal ;| + Z E3)) +Z|tg I( Z\sa [+ > sb"])
1<i<k<n k=i+1 i=v+1 k=i+4+1
. K . . m—1 . n . m . n .
D D U e S (7| e S (7 A A S (A D S [T A B ST D S
1<i<k<m 1<i<k<m-—1 1<i<k<n i=1 i=1 i=1 i=1
n m m v—1
— 1 21 —d —d
=S lsall( S Isb+ > gty Gra(gieny ) + (F +d + n> lis(g1) Grgi)|
i=1 i=v+1 i=v+1 i=1

n
+Isaz;1 > lsa’| + [sa% ;] [u(ge) Graggoy |

=2
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On the other hand, we have that
J5(sa1GY) o R (jz(sar1F"))
G,p,q

AL m—1 v+l _1 n o n n—1 o n—1 —1 Y v—1 21
(s, tg yeeey8b T sas  tf" sa" tf" T sa" T sag, sbtg T sb)

= (—1)6i§(sd+1G§)(sb g™ gbUH, tg,sb” tg" "L, ..., sfbl)

where tg = R 31 (15 (sar1 F7))(sal ;,tf", sam, tf1, sa"~,. .. sal;) € A*[d] and

a3 S el

1=v+1 1=v+1
Therefore, we have that
. = 1, . =
J5(8a+1GY) oo q9i,4* (4z(sa+1F™))
(sb™ tg™ L, ..., s_varl, tg*T, s_alzj, sa™ tf" "t san L L ,s_al<j, sb’ tgv 7L, s_bl)

= ()" (g 0 s) @@ (9" 050) @ (9050) ® (9" 0 50) ® -+ @ (9™ 0 59) ©id)
—d —d —d —d
Sd+1 (lt(yl)Grt(g2)a o (T ) Mg () lt(yv)Grt(yu+1)7 cee >lt(ym)Grt(g1))

where

= |tg] Z |sb |+Z\t9| Z A R S FU [ FUA R S (74 (7

k=v+1 k=i+1 1<i<k<m 1<i<k<m—1
m—1 m—1

+ > Itg'litgl + (1G] + 1) Itg'| + Itgl) + d(m — 1)
i=1 i=1

Furthermore, by definition, we have that
90" Grigr))
= (- )|t9‘+1I‘(% Ngz(sq01 F® ))(s_alzj,tf" sa tf" 1t san L. ..,S_azij),lt(gv—l)G%t(gv))
= (—)IFIFAD (42 (sgp1 F3) (sa™, tf "1 sa™ L L s-a<j®1t(yufl)G§t@v)®su1>j) tf™)
= (~D)/FFATAT((flosg) @+ @ (7 0 50) @1d) (1(a) Frr(hay - - 16(m) Frogony s L)
= (- 1)|t9‘+1+A+N+N((f1OSd)®"'®(f"_1OSd)®(f"°Sd))(1t(fl)Frt( 2y @ 1) Fry(any)

where
n—1
A = (|saz;| + [t£"]) lea |+ IsaZ;] + heo) Grggorny | + D 1EF])
=2 i=1
— 1) — k 1 — 1 i k
A= 3" fsa'||sa"| + ) Grgerny | D 1sal T+ >0 1t 1ef
1<i<k<n i1=2 1<i<k<n-—1
+d(n —1) + (|F| + d) ZWHZW\ Z |sa’|
j=i+1

= |tf | 1 + Z |1t(x ©) t(zl+1)|)
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Finally, we have that

G001 G7) o R (ia(sar FD))

(sb™ tg™ L, ..., sfbvﬂ,tgvﬂ, s_alzj,tf”, sa™ tf"t sam L s_a1<j, sb tg" 7L, sfbl)
= (-1
((9'osa) @@ (¢" " osa)®(flosg) @@ (fMosa) @ (9" 0sg) @~ @ (¢ 054) ®id)
—d —d —d —d —d —d

Sa+1(1t(51) Gre(geys - - - 11657 ooy 16 Fro(zzyr - - 6@ Fro(m ) 1a+) Gre(gorays - - 165 Gra (1)
where

m—1 ) v—1

v=06+8+tgl( Y [tg'l+d+ 14> |inGriyi)
i=v+1 i=1

n v—1 m—1
A+ A A g+ 1+ DI et Grgieny |+ D [ta'])
i=1 i=1 i=vtl

It is straightforward to check thate + ¢ + v =1+ (|[F| +d + 1)(|G| + d + 1) mod 2. O

Corollary 4.30. The necklace bracket [—, —|yec introduced in Definition 4.21 gives a graded Lie algebra
structure on Multi® (Bar(.A)[d])©=@ [d + 1].

Proof. For F,G € Multi®(Bar(A)[d])“'=*), we have that
I([sa+1F, $a11Glnee) = ma([4(s441F), 1(sa11G)le)
where 74 : A[1] ® A*[d] — A[1] is the canonical projection. Moreover, using that j is injective, we

have that [—, —]yec is a graded Lie bracket. O

4.3 Pre-Calabi-Yau structures

Definition 4.31. A d-pre-Calabi-Yau structure on a graded quiver A is an element
Sa41 M4 € Multi® (Bar(A)[d])©=® [d + 1]
of degree 1, solving the Maurer-Cartan equation
[8a+1MA, Sa+1Ma]nec = 0
Note that, since sqy1M 4 has degree 1, this is tantamount to requiring that sqi1.M 4 o Sa+1 M4 = 0.

We now recall the following result of [5] which states the link beteween a d-pre-Calabi-Yau
structure on a Hom-finite graded quiver A and a cyclic A-structure on A ® A*[d — 1].

Proposition 4.32. A d-pre-Calabi-Yau structure on a Hom-finite graded quiver A is equivalent to the data
of an Aso-structure on A & A*[d — 1] that restricts to A and that satisfies the cyclic condition (3.1).
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Proof. Consider an element s,41 M4 € Multi®(Bar(A)[d]) =) [d + 1] of degree 1. We then define
maps

n—1
zh,...,Z" zt " "

MG A " ®(~A[1]® & rt(fc”l)Alt(ii)[dD ® A[1]®* — 16(z1)Art(zn) 4.9)

i=1

and
. ~ n—1 )
mfélé:/.tfef\* : ®(A[1]®z & rt(ii+1)ATt(ii)[d]) Y -’4[1]®z — lt(il)A:t(ic")[d - 1} (4-10)
i=1

=1 —n n =1
T,...,T R )

uniquely determined by sm% 2", 4 = jz-1 (8441 M} for z = (z',...,z") and such that
the cyclicity conditions (4.4) and (4.5) hold. This is well-defined, since the bilinear form 4 is
nondegenerate. By Proposition 4.29, sq41M 4 defines a d-pre-Calabi-Yau structure if and only if
sm .- defines a cyclic A-structure on A & A*[d — 1]. If A is Hom-finite, the bijectivity of j tells
us that the collection of maps (4.9) and (4.10) are in correspondence with maps of the form M 4,
which shows the equivalence. O

5 Pre-Calabi-Yau morphisms

5.1 The mixed necklace graded Lie algebra

One can also define a “mixed” necklace bracket, which will be useful in the next section. As we
did for the necklace bracket, we first define the following graded vector space.

Definition 5.1. Given graded quivers A and B with respective sets of objects O 4 and Op and a map
¢ : O 4 — Op, consider the graded vector space

Be (A[1], B[—d])
n - n—1
=11 II H"mk(@““[”@z ' Q) ezt Bagai+1) [—d] @ () Al=dl () EB<b<lt<f">>3*[—1]¢<rc<i1>>)>
nGNie@z =1 i=1

Definition 5.2. Consider sq41F® € Bz(A[1], B[—d])[d+ 1] with T = (z*,...,z") € O". Then s441F*
induces a morphism of the form

n—1
zt P Zn—1
A" @ gy Baaean [—d © A% @ - @ A1]® — ® o1tz Baopo@i+1)) [—d] 6.1

=1

sending (sa',s_gb, sa™, ..., sa"" 1) to

€ —d —d 1
(-1 ¢>(1t(;z1))F¢(rt(fz)) R ® <I>(1t(:E””1))F<I>(rt(§7")) ® <I>(1t(£"))Fq>(rt(§:1))(5b)
where we have written
(id®n=b ®7T3)(Fil""’in(s_al, ...,8a™))

—d —d 1
= o(t(@) Forzz)) @ @ ot@ 1) Foip@n)) @ ect@) Foqiar))
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where wg denotes the canonical projection
1tz A=t z1) © aasEn) B [~ Lowean)) = o0t ) B [—1artz))

for sa' € A[1)9*" with

n—1 n—1
€= (d+1)(|sa' |+ [F7]) + (|sb] + [sa"[) Y |sa’| + [sbl[sa”| + (d+1) Y o) Fogaeny]
i=2 i=1
and a morphism of the form
n—1
A[l]ml ® A[l}mz ®- @AM - ® o1t@ ) Baoai@i+1) [—d] @ 1w@ny Al z1) (5.2)
=2

itz Al=dlrez1) D aaea) B [ 1awet) = 1w@n)Al—dlw@)

Lemma 5.3. Given two graded quivers A and B with respective sets of objects O 4 and Op and a map
¢ : O 4 — Op, we have an isomorphism

B : B(A[1], B[—d))[d + 1] = BL(A[1], B[—d]) ® BE(A[1], B[—d])

where
n n—1
BHA[L], B[—d]) = H H HOmk<®A[H®ilv®<I>(lt(a‘ci))6<1>(rt(ii+1))[d] ® lt(a;")A[l]rt(a;l)>
nENfe@z i=1 =1
and

—n—1

B(AN]Bl-d) =[] T] Homu (A[l]ml ® o) Bl=dloq@) © AL @ - @ AQ]®T
nENfE@z

n—1

® @(lc(ii))B@(rt(ii“)) [_d]>
i=1
sending an element sq 1 F € By (A[L], B[—d])[d + 1] to the elements defined in (5.2) and (5.1).

Definition 5.4. Let A and B be graded quivers with respective sets of objects O 4 and Og and consider
amap ® : O — Op. We define the graded quiver Qg whose set of objects is O 4 and whose spaces of
morphisms are ,(Qe)e = yAs @ a(y) By, ld — 1] for z,y € Oa.

Definition 5.5. Let A and BB be graded quivers with respective sets of objects O 4 and Op and consider a
map ® : O — Op. Given sq11F, s441G € Bo(A[l], B[—d])[d + 1], we define their P-mixed necklace
product as the element sq1F 0 Sa+1G € Bo(A[1], B[—d))[d + 1] given by

(sa1F o $a11G)" =Y E(D)+ Y E(D') € Bu(All], B[—~d))[d + 1]
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where the sums are over all the filled diagrams @ and D' of type T and of the form

%

More precisely, each of D and D' can be pictured as two different filled diagrams by put in bold the
arrow corresponding to the last output of F which is either an element in A[1] or in B*[d]. Thus, D is one
of the following

D =

7

and ' is one of the following

Remark 5.6. The diagrams of Definition 5.5 are filled with F and G seen as elements of Multi® (Bar(Q%,)[d])
where Q is the graded quiver whose set of objects is O 4 and whose spaces of morphisms are ,(Q%)s =
vAs ® a(y)Ba o).

Definition 5.7. Given graded quivers A and B with respective sets of objects O 4 and Op and a map

¢ : Oq4 — Op, the O-mixed necklace bracket is the graded Lie bracket which is defined for elements
F,G € B,(A[1], B[—d]) by

(|F|+d+1)(|G|+d+1)

[5d+1F, 54+1Glonec = 8¢+1F o 511G — (—1) 544+1G o sqp1F
® nec ® nec

Lemma 5.8. Let A and B be graded quivers with respective sets of objects O 4 and Op and consider a map
® : O 4 — Op. Then, we have an injective map

1% Be(AL], B[—d))[d + 1] - C(Aa B*[d — 1])[1]
sending sqr1¢ € Bz (A[1], B|—d])[d + 1] to siz where

n—1

‘,E’n.fi#»l % 3_1'1 %
Yz ®(A[1]® Qg (re(zn—i+1))B [—d]<1><1c(wfi)))®¢4[1}® = 1@ Al=dliez1) Daauan) B [~ aowrezt))

i=1
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is given by

n

Yz(sa™, tfr Y sa" 2t L sat tf? sat) = (—1)6(®(]” 084)® sd) (gi)(s_al, sa?, ..., S_a”))

i=1

forn =1g(Z), sa' € AN and tf' € gy Brg(aiyd] with

n—1
e= Y sallltf (el + D) D tf -1+ D fsalllsal [+ Y [tflef]

1<i<j<n—1 i=1 1<i<j<n 1<i<j<n—1

Proposition 5.9. Let A and B be graded quivers with respective sets of objects O 4 and Opg and consider a
map ® : O 4 — Op. Then, we have

itb([sdﬂLlF’ Sd+1G}<I>neC) = [l.(p(sdJrlF)al.(b(sdJrlG)]G
for F, G € B (A[l], B[—d)).

5.2 Pre-Calabi-Yau morphisms (after M. Kontsevich, A. Takeda and Y. Vlas-
sopoulos)

Following the article [5], we recall the definition of the category of d-pre-Calabi-Yau categories.

Definition 5.10. Given graded quivers A and B with respective sets of objects O 4 and Og and a map
Fy : O 4 — Og, consider the graded vector space

Multi® (A[1], B[—d])

n—1

= H H Homk(®_,4[1]®f , ® Fo(lt(rii))BFo(rt(-ii+l))[_d] ® Fo(lt(j’rL))B[—d}F()(rt(il))))
i=1

neN ie@g i=1

The action of T = (T )nen+ € [l,cn+ Cn on an element F = (F?)
element 7 - F € Multi® (A[1], B[—d]) given by

z

5 € Multi®(A[1], B[—d)) is the

z -1 z-T
T F) =7 oF*Tor 21 22 o
( ) Fo(1t(a1)) Bro (e (@2)) [~ Fp (16 (a7)) By (et 21y [~ 4] A[1]@2 A[1]®2% | A[1]®

for € O. We will denote by Multi® (A[1], B[—d])©= the space of elements of Multi® (A[1], B[—d]) that
are invariant under the action of Cig(s).

Definition 5.11. Given d-pre-Calabi-Yau categories (A, sqi1 M) and (B, sq11Mp) with respective sets
of objects O 4 and Op and an element s4 1 F € Multi® (A[1], B[—d])[d + 1] of degree 0, the multinecklace
composition of sq1 M 4 and sq 1 F is the element

saiF o sqp1Ma € Multi®(A[1], B[—d))[d + 1]

multinec
given by
(sa1F o sqMa)” =D E(D)

multinec

for & € O 4, where the sum is over all the filled diagrams < of type x of the form
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and where we have omitted the bold arrow, meaning that it is any of the outgoing arrows.

Definition 5.12. Given d-pre-Calabi-Yau categories (A, sq11M 4) and (B, sq+1Mp) with respective sets of
objects O 4 and Op and an element sq1 F € Multi® (A[1], B[—d])[d + 1] of degree O, the pre composition
of sq1F and s, 1 Mp is the element

Sa+1Mp o sq+1F € Multi® (A[1], B[—d))[d + 1]

given by
(sa+1Mp o sq+1F)" = Z E(D)

for & € O 4, where the sum is over all the filled diagrams D' of type & of the form

and where we have omitted the bold arrow, meaning that it is any of the outgoing arrows.

Definition 5.13. Given d-pre-Calabi-Yau categories (A, sq+1Ma) and (B, sq+1Mp) with respective sets
of objects O 4 and Op a d-pre-Calabi-Yau morphism (Fy, F) : (A, sqx1Ma) — (B, sq41Mp) is a map
Fy : O — Op together with an element sq1F € Multi® (A[1], B[—d])%=® [d + 1] of degree 0 satisfying
the following equation

20

(sa1F o Ma)" = (Mg 2 sa+1F) (5.3)

multinec

forall z € O 4. Note that the left member and right member of the previous identity belong to

n n—1
Homy, ( Q)AL Q) Rt Brotra(zi+1) [=d] @ Fya(am) Broe(a)) [1])
1=1

i=1
We now recall how to compose d-pre-Calabi-Yau morphisms.
Definition 5.14. Let (A, sqy1Ma), (B, Sa+1Mp) and (C, sq41Mc) be d-pre-Calabi-Yau categories with
respective sets of objects O 4, Op and O¢ and let (Fy,F) : (A, sqr1Ma) — (B, sar1Mp) and (Go, G) :
(B, sa+1Mp) — (C, sa+1Mc) be d-pre-Calabi-Yau morphisms. The composition of sq1F and sq11G is
the pair
(Go o Fo, 5441 F Oy sd+1G)
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where
sq+1F oy sq+1G € Multi® (A[1], B[—d])clg“) [d+1]
P

is of degree 0 and is given by (sq+1G oy sar1F)" = > E(D) where the sum is over all filled diagrams D
_ p
of type & € O 4 of the form

(5.4)

and where we have omitted the bold arrow, meaning that it any of the outgoing arrows.

Proposition 5.15. For d € Z, d-pre-Calabi-Yau categories and d-pre-Calabi-Yau morphisms together with
the composition given in Definition 5.14 define a category, denoted as pCY 4. Given a graded quiver A with
set of objects O, the identity morphism Id : (A, sqr1Ma) — (A, Sax1Ma) is given by Id™ = id_ 4, for
v €Oand1d® " = 0 for (z',...,2") € O" such that n # 1 or n = 1 and lg(z') # 1.

Proof. We only have to check that the composition is associative and that the composition of any
two d-pre-Calabi-Yau morphisms F and G is a d-pre-Calabi-Yau morphism. The associativity of
the composition is clear. Now, consider two d-pre-Calabi-Yau morphisms F and G. Their compo-
sition is the sum of diagrams of the form (5.4). Therefore, the multinecklace composition of this
composition and the pre-Calabi-Yau structure sq;1.M 4 is a sum of diagrams of the form

(5.5)
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Given Z € O4, we have to sum over all diagrams of such type and we have several possibilities
for the type of the inner diagram, defined as the subdiagram consisting of the disc filled with M 4
together with all those discs directly connected to the one filled with M 4. Note that if we fix the
type of the outer diagram given as the complement of the inner diagram, the type of the inner
one is fixed. Moreover, changing the inner diagram for one of same type does not change the type
of the whole diagram. Therefore, taking the sum over all diagrams of type z € O4 is the same
as taking the sum over all the possible types for the outer diagram and for each of those, taking
the sum over all the suitable types for the inner one. This second sum allows us to use that F is a
pre-Calabi-Yau morphism to replace the inner diagram by one consisting of a discs filled with Mg
whose incoming arrows are connected with outgoing arrows of discs filled with F. Then, the sum
of all the diagrams of type Z of the form (5.5) is equal to the sum of all the diagrams of type Z of
the form

(5.6)

and we now define the inner diagram as filled diagram consisting of the disc filled with Mz and
of all the discs connected to it. The previous remarks on the types of the inner and outer diagrams
still hold. Thus, the sum over all possible types for the whole diagram is again the sum over all
the possible types for the outer diagram and for each of those, taking the sum over all the suitable
types for the inner one. G being a pre-Calabi-Yau morphism, one can again use (5.3) and say that
the sum of all the diagrams of type Z of the form (5.6) is now equal to the sum of all the diagrams
of type Z of the form

Therefore, s411G CC‘)Y sq+1F is a pre-Calabi-Yau morphism. O
p
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The following class of morphisms will be useful in the next subsection.

Definition 5.16. Given d-pre-Calabi-Yau categories (A, sqr1M4) and (B, sq11Mp) with respective sets
of objects O 4 and O 4 and a d-pre-Calabi-Yau morphism F' = (Fy,F) : (A, sqr1Ma) — (B, sa+1Mp),
we say that F' is good if Y~ E(D) = > E(D') where the sums are over all the filled diagrams & and D' of
type T of the form

O

respectively.
Note that this condition is not closed under the pre-Calabi-Yau composition. We thus restrict
this notion of good morphisms and give the following definition.

Definition 5.17. Given d-pre-Calabi-Yau categories (A, sq+1Ma) and (B, sq+1Mp) with respective sets
of objects O 4 and O 4 and a d-pre-Calabi-Yau morphism F' = (Fy,F) : (A, sqr1Ma) — (B, sa+1Mp),
we say that F is nice if >, E(D) = > E(D’) where the sums are over all the filled diagrams D and D' of
type T of the form

Gfe -

respectively.

6 The relation between pre-Calabi-Yau morphisms and A, -mor-
phisms

Recall that given a Hom-finite graded quiver A, we have an equivalence between the data of a
d-pre-Calabi-Yau structure on A and a cyclic A-structure on A @& A*[d — 1] that restricts to A. In
this section, we study the relation between d-pre-Calabi-Yau morphisms and A.-morphisms.

6.1 The case of strict morphisms

In this subsection, we study the relation between strict d-pre-Calabi-Yau morphisms and A..-
morphisms. We first recall the notion of strict d-pre-Calabi-Yau morphism.
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Definition 6.1. Let (A, sqr1Ma), (B, sq+1Mg) be d-pre-Calabi-Yau categories with respective sets of
objects O 4 and Op. A d-pre-Calabi-Yau morphism ($o, @) : (A, sq41Ma) — (B, sq+1Mp) is strict if<I>’:C
vanishes for each T € O™ withn > 1 and 1g(z') # 2ifn = 1.

Equivalently, a strict d-pre-Calabi-Yau morphism between d-pre-Calabi-Yau categories (A, sq11M4)
and (B, sq+1Mpg) is the data of a map between their sets of objects ®( : O 4 — Op together with a collection
O = (%Y : A 1] = 2By[1])z,yeco., of maps of degree 0 that satisfies

((I)lt(acl),rt(;z?) ®- - .®(I)1t(§:“),rt(§:1)>osdHMil,m,i'" _ SdHMgl,---,i" o(q)@lg(fcl)—l@. . .®<1)®1g(9’6”)—1)
foreachn € N*, (z',...,z") € O%.
For simplicity, we will omit the elements when writing the map ®. We will denote
(I)Q(LI}) = (@0(3?1), ey CI)()(.’I,‘”))

forz = (z1,...,2,) € O and

forz = (z!,...,2") € O%.

Definition 6.2. We denote by SpCYy the subcategory of pCYy whose objects are d-pre-Calabi-Yau cate-
gories and whose morphisms are strict d-pre-Calabi-Yau morphisms.

Given d-pre-Calabi-Yau categories (A, sq+1M4) and (B, sq+1Mp) with respective sets of objects
O and Op and a strict d-pre-Calabi-Yau morphism (®o, ®) : (A, sqr1Ma) — (B, si11Mp), we
now construct an A-structure on A & B*[d — 1]. For z € Oy4, we denote by sm%g 4-_, 4 the
composition of jz-1 (sd+1Mf(l) and the canonical projection on A[1].

Similarly, we will denote by smgggz LB

—1
~1(sap1 My 2o(@) ) and the

canonical projection on B*[d].

Definition 6.3. We define smagp- € C(A®B*[d—1])[1] as the unique element such that the composition
of m A@Bf' with the canonical projection

16(z)Art(zn) D @0 (16(21)) Bao (rt(z7))[d — 1] = 16(21) Art@n)
is given by the map

n—1
MAGE A (A[1*" ® oo (et (@ +1) B [dla, e(zi))) @ AlL |® @ 16(z1)Art(zn)
=1
defined by
mA@B*iiA mA@AiA o (id® 81 go* 2id® 81 g ... 2id® BE" ) gp* gid®eF ) )

.. Tl Zn . . . .
and the composition of m’, ;2" with the canonical projection

16z Art(zn) D @0 (16(21) Baog (rt(z))[d — 1] = @0 06(21)) By (rt(zn ) [d — 1]
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is given by the map
. . n—1 )
MoGE B - ®(A[1]®z ® ey (rt(@+1) B [y auzi) @ AT = 0 (6z1)) Bag (ro(any [d — 1

=1

defined by

miléélxls* _ mggégi’;g?‘)“”") o (@@1%(501)*1 ®id2d®EE)-1 g ... gid ®¢®lg(i”)fl)

Proposition 6.4. The element sm agp- € C(A@ B*[d— 1])[1] defines an A-structure on A& B*[d — 1]
that is almost cyclic with respect to the ®-mixed bilinear form T'®, defined in Example 3.17.

Proof. Using the Proposition 5.9, we have that the equality sm ag5- o sMAeB = 0 is tantamount
to sg+1MaeB- o2 Sa+1Magp- = 0 where sq41Magp- € Bo(A[1], B[—d])[d + 1] is uniquely deter-
nec

mined by . .
Mg = (007D ©id) o 841 M7 € BAAL], Bl—d])
and

Mj’é)}(BCE) _ sd+1M§O(y) O(¢® lg(i1)71®id ®CI>® lg(i")71®¢)®lg(a’:2)71 ®-- ®<I)® lg(inil)*l) c %g(A[l], B[*d])
forz = (z!,...,3") € O"and y = (z' U Z",7%,...,2" ). Moreover,
TA(Sa+1Maes- 0 e sar1Magps+ )" = ZE(%) + ZE(Q)')

where 7 4 is the canonical projection Be(A[1], B[—d])[d + 1] — BL(A[1], B[—d]) and where the
sums are over all the filled diagrams < and <’ of type z that are of the form

and

respectively. Now, note that the second diagram can be cut into two as follows.
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Using the morphism identity satisfied by ®, the diagram on the right can be replaced by one
with a disc filled with M 4 whose outgoing arrows are connected with the unique incoming arrow
of discs of size 1 filled with ®. We thus obtain that

TA(Sa+1Mags- 85d+1MA€aB* ) Zf +ZS(95/

where the sums are over all the filled diagrams & and @' of type Z that are of the form

respectively. Moreover, >~ (D) + > E(D’') = 0 since sq11M 4 is a d-pre-Calabi-Yau structure.
Thus, if we show that this structure satisfies the cyclicity condition (3.1), sm 4q5- satisfies the
Stasheff identities (SI).

Using the definition of I'? and smpgps- and since smpgs- is cyclic with respect to '3, we have
that

I’q)(smzlé'é;ilg*(s’al tft .. san et ,8a"), sb)
Po(x7),...,P T n— 2" =1/ —n
:FB(smBg;B*LB* P (8181 (g 1y L L Y, R E 1 (g B(sh))

= (=1)° FB( BG;B*E?O(£1)7¢O(E )»~-#I>o(ff”"1)((I)®1g(5c”)—1(8h7 ) ® B(sh) ® q)®1g(:c )— 1( ) tfl

tfn 2 ¢)®1g(m" H— 1(—n 1)),tfn_1)
= ()T TE(((f" 0 sa) ® - ® (f! 0 50) ®1d)

(Mg)o(fnil)v--@o(f")u‘bo(fl)(q>®lg(:i"_1)(s—an 1)7 o (I)®1g(a‘c")(s—an) ® ®(sh) ® (I)@)lg;(il)(s—al))7 tfnfl)
(6.1)

for sa; € A[1]®ii, tfi S <I>0(rt(i77+1))8*[d}im(lt(i"'))/ with € = (|Sﬁn| + |Sb|)( Z (|sa ‘ + |tf |) and

=1

n—1 n—2
= (|sa'| + |sb| + [sa" (D lsa’| + D _[tf D+ > |sa'l[tf| +dn
=1 1=1

2<i<j<n—2
+ > s@llsal[+ Y (e
2<i<j<n—1 1<i<j<n—2

Moreover, using that ¢ is a d-pre-Calabi-Yau morphism, we have that the last member of (6.1)

is
n_l ~ —n 1 =1 =1 ~
(—1)€+5FA((®(f” o) ®id) o sg My T YT (sa™ L, ..., sa?, 50" @ sb® sat), tfm ! o ®)
i=2

= (=1)T4(sm féleauj*i)t ’Tnil(s’a" @sb@ sal,tflo®, a2, ... tf" 2o d, su" ), tf o <i’)
6.2)
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where ® denotes the morphism ®[d — 1]. Thus, comparing (6.1) and (6.2) we get that

—n—l)

FB(snga(gfg"(fl)’%(fQ) ..... Q0 (z (q)®1g(i")—1(8—an) ® B(sb) ® q)®1g(fl)—1(8*a1)7 tfl, o

2 (D@lg(f"*l)—l(sbn—l)%tfn—l) (6.3)
= I‘A(smingjiia""jn_l (sa" @ sb® sa’,tf' o d,sa>,... tf" 20 d, sa" h,tf" 1o &))
Finally, we have that
(—l)eFA(smineaujiﬁa”’inil (sa™ @ sb® sat,tf o ®, sa®, ... tf" 2o d sa" 1), tf" o d)
— (—1) T (smi2 T (" @ sh @ sal tfY sa?, .t sa ) Y

Therefore, A® B*[d — 1] together with sm 4g5- is an A -category that is almost cyclic with respect
to ' O

Definition 6.5. Let (A, sq+1Ma), (B, sq+1Mg) be d-pre-Calabi-Yau categories with respective sets of ob-
jects O 4 and Op. Consider a strict d-pre-Calabi-Yau morphism (®g, @) : (A, sq+1Ma) — (B, sa+1Mp).
We define maps of graded vector spaces

0%+ 2 Allly @ 0y (@) B [y (y) — «(A[L] & A*[d]),

and
v5" e Ay @ wo(@) B [dlagw) = o) (B[ @ B [d])ay ()

given by ¢4Y (sa) = sa, pg?(sa) = ®Y(sa), o3’ (tf) = tf o ®¥=[d] and @3 (tf) = tf for z,y € Oy,
sa € xA[l]y and tf € @0(1)8*[(1]@0(31)-

Proposition 6.6. Let (A, sqr1Ma), (B, sqar1Mp) be d-pre-Calabi-Yau categories with respective sets of
objects O 4 and Op. Consider a strict d-pre-Calabi-Yau morphism (®g, D) : (A, sqr1Ma) — (B, sq+1Mp)
and the A.-category (A®B*[d—1], sm agp~) where sm agp- € C(A®B*[d—1])[1] is given in Definition
6.3. The maps p 4 and g defined in Definition 6.5 are cyclic A.-morphisms, in the sense of Definition
3.22.

Proof. We only check that ¢ 4 is a morphism since the case of ¢ is similar. We only have to verify
that

®lg(z?)—1

—n =1 —n A1y _
T,y T z Rlg(z )—1 ®90.A®SD_A

T, ®lg(z™)—1
PR 0 smYLE, 4 = smud At 40 (P4 Py sl#)=ty (6.4)

and

% ®lg(@')—1

=1 =1 =2 =1
T,y T, o T, ®lg(z")—1 ®lg(z")—1
PO SM UGB e = SMad A 4+ © (P4 By ) (65)

X pA Py

forz,y € Oq, (#!,...,2") € O such that1t(z") = z, rt(z!) = v.
First, note that

=1 =M
eV (smiapt, a(sa  tfY sa®, L sa" LT sa™)
=1 =n
= smiééf_)A(s_al,tfl, sa?,..., sa" 1 tf"t san)
=1 =1 — — —
= smiaia(sat, oaltfh), sa%, ... sa" T pa(tf" ), sa™)
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for su’ € A[1]®ii and tf% € g, (vo(zi+1)) B [d]o, (16(z1)), SO that (6.4) holds.
Moreover, we also have
e o smAéB’f;B* (sa',tf', sa?,... sa" 1 tf 1 sa™)
= smAléB';_)B* (sa',tf!, sa® csa" " tfmTl sa™) o TV

and given sb € ;A,, we have that
smiég;ﬁg*(s_al tfl sa?,. .., sa" " tfm Tt sa™) (DY (sb))
=r? (smAé‘é;_}B*(sa tfl sa?,... sa" 1 tf"L sa™), sb)

On the other hand, we have

A 1 1 1
s i (0SB g0y @ pa(tf!) @ 95 F) T (sa2) - @ 5B (gam)) (sb)
z 1 _ 1 _ 1g(z") =1, —n
= TA(sm% ™ 4 (05 BT (sah) @ pa(tf) @ 93BT (5a?) - 0 5 BT (sam)), sb)
Using the identity (6.3), we thus get (6.5).

It remains to show that the morphisms are cyclic. To prove it, we note that

D@ (tf), 94" (sa)) = y TR (U(f 0 @), sa) = f(@7¥(sa)) = , T3 (L], sa)

as well as

L2 (05" (1), 05" (sa) = T3 (Lf, 27 (sa)) = f(2"¥(sa)) = L (L], sa)

for sa € ,A[l ]y, tf € o y)B [d]®,(z)- The second condition to be a cyclic morphism is obviously
satisfied since ¢% and ¢% vanish for z € O™ with n > 2. O

Definition 6.7. Let (A & A*[d — 1], smaga-), (B ® B*[d — 1], smpgp+) be Ax-categories. A hat
morphism from A & A*[d — 1] to B & B*[d — 1] is a triple (smaqs+, A, pB) Where smapp~ is an
Aco-structure on A ® B*[d — 1] and 4, pp are Aoo-morphisms

All] @ B*[d]

y m (6.6)

All] & A*[d] B[1] @ B*[d]

Definition 6.8. Let (A®A*[d—1], smag.a~), (BEB*[d—1], smpgp+) and (CHC*[d—1], smege-) be Ao
categories. Two hat morphisms (smagp«, pA, ¢B) : A® A*[d—1] = Bd B*[d—1], (smpac~, Vs, Yc) :
B & B*[d — 1] — C @ C*[d — 1] are composable if there exist a triple (smagc+, XA, Xc) Where x 4 :
A®C*d—1] - Ae B*[d—1]and x¢c : A®C*[d— 1] = B ® C*[d — 1] are A-morphisms and such
that @ o x 4 = ¥ o xc. The composition of (smagp~, A, PB) and (smpec~, VB, ¥e) is then given by
(smage+, A © XA, e © Xe)-

Definition 6.9. A partial category is an A..-pre-category as defined in [4] where the multiplications m.,,
vanish for n > 2.
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Definition 6.10. The A..-hat category is the partial category Aoy whose objects are Aoo-categories of
the form A & A*[d — 1] and whose morphisms are hat morphisms.

Definition 6.11. A functor between partial categories A and B with respective sets of objects O 4 and
Og is the data of a map Fy : O — Op together with a family F = (,F,), yeo, sending a morphism
f @ — ytoamorphism ,F,(f) : Fo(x) — Fo(y) such that if two morphisms f : @ — yand g 1 y — z
are composable, then ,F,(f) and ,F,(g) are composable and their composition is given by the morphism

sz(g) OyFw<f) = zF:v(go f)
Definition 6.12. We define the partial subcategory YcAney of Aoy whose objects are cyclic A-categories
of the form A @ A*[d — 1] and whose morphisms A ® A*[d — 1] — B @ B*[d — 1] are the data of an almost
cyclic Aoo-structure on A @ B*[d — 1] together with a diagram of the form (6.6) where p 4 and @p are
Aoo-morphisms.
Definition 6.13. We define the partial subcategory ScycAosy of cycAoo g whose objects are the ones of
cycA oo g and whose morphisms are strict cyclic morphisms of YcAoog.

We now summarize the results of Propositions 6.4 and 6.6.
Corollary 6.14. There exists a functor SpCYy — ScycAoog which sends a d-pre-Calabi-Yau category
(A, sqr1M4) to the Ax-category (A @ A*[d — 1], smag.a-) defined in Proposition 4.32 and a d-pre-
Calabi-Yau morphism (®g, ) : (A, sar1Ma) — (B, sa+1Mp) to the As-structure smaqp- defined in
Definition 6.3 together with cyclic A..-morphisms

All] @ B*[d]

All] © A*[d] Bl1] & B*[d]

given in Definition 6.5.

6.2 General case

We now present the relation between not necessarily strict d-pre-Calabi-Yau morphisms and A..-
morphisms. Consider d-pre-Calabi-Yau categories (A, sq+1M.4), (B, s¢+1Mp) as well as a (g, D) :
(A, sqr1 M) — (B, sa+1Mp) a d-pre-Calabi-Yau morphism as defined in Definition 5.13. We first
construct an A..-structure on A & B*[d — 1].

Definition 6.15. We define M sqp+ .4 € B (A[L], B[—d]) by Mg 5., 4 = > E(D) where the sum is
over all the filled diagrams D of type T and of the form
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and Magp-—p € BE(A[L], B[—d]) by Migp-_ 5 = > E(D') where the sum is over all the filled
diagrams D' of type T and of the form

By Lemma 5.3, this defines an element sqi1Magn- € Beo(A[l], B[—d])[d + 1] and we thus define the
element sm agp € C(A@® B*[d— 1])[1] as sm%zp5- = 321 (Say1Mags+) € C(A® B*[d — 1])[1]. We
will denote by m aqp-— A (resp. magp-—5+) the composition of m agp+ with the canonical projection on
A (resp. on B*[d — 1]).

Proposition 6.16. The element sm aop~ € C(A&B*[d—1])[1] defines an A.-structure on A®B*[d—1].
Moreover, if the morphism ® is good, sm aqp~ satisfies the cyclicity condition (3.1).

Proof. Using Proposition 5.9, it suffices to show that sq11.Maes- <I>o . Sa+1Maep+ = 0. We have

ne

that m4(sg+1 Mags- 82 Sq+1Maep+) = 01is tantamount to Y E(D) + D E(D) +>.E(D") =0

where the sums are over all the filled diagrams @, @’ and @ " of type T of the form

Using that @ is a pre-Calabi-Yau morphism, the left side can be changed into a diagram consisting
of a disc filled with M 4 whose outgoing arrows are shared with discs filled with ®. We thus get
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that
DE@) =) E(B) - D E(D) (67)

where @ and @ are filled diagrams of the form

The minus in the identity (6.7) comes from the fact that the discs filled with M 4 change their
place, in the sense that the order of the labeling of their first outgoing arrow changes. Since
Sq+1M 4 is of degree 1, this create a minus sign. Moreover, > E(D') = > E(D2) so that it re-
mains to show that > E(D) + > E(D1) = 0. This is the case since sq+1M 4 is a pre-Calabi-Yau
structure. Indeed, the sum of these evaluations of diagrams is the composition of

Sar1 My o Say1Ma
with a tensor product composed of maps of the collection ® and of the identity map id in the last
tensor factor. Therefore, the element sm 445~ satisfies the Stasheff identities (SI).
It is clear that if the morphism ® is good, then the A..-structure on A & B*[d — 1] is cyclic.

Indeed, I'? o (smagp+ 4 ®ida-) = Y. £(D) where the sum is over all the filled diagrams (D) of
the form

I/

On the other hand, I'® o (smgp- 5 ® idg) = > E(D’) where the sum is over all the filled
diagrams £(2’) of the form
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which shows the cyclicity of sm agpz-. O
Now, we define two morphisms of A..-categories v 4 : A[l] @ B*[d] — A[l] @ A*[d] and ¢p :
A[l] ® B*[d] — B[1] @ B*[d] using the d-pre-Calabi-Yau morphism ®.

Lemma 6.17. Consider d-pre-Calabi-Yau categories (A, sqi1 M) and (B, sqr1Mp) as well as a d-pre-
Calabi-Yau morphism (®g, ®) : (A, sqr1Ma) — (B, sqr1Mp). Then, ® induces morphisms

n—1

%+ QAN @ g (re(ai+1)) B [dlag 1e(a))) @ AL = 1651 A [dlrezm)

=1

defined by
o (sat tft, . sam Tt sam) (s_ab) =

n—1 —n—2

T osa) @08 (o) (@I i @ b @ ')

for sa' € A[LJ®T, tf" € oy (e(ai+1) B [dlo, ey and sb € wyar) Allli(an) where

thfZI Z sal[+ D lsa'llsa’) o (S

Jj=i+1 1<i<j<n 1<i<j<n-—1
— . n—1 . n )
+d(n—1)+ Is*a”l(Z |sa’| + [sb) +d Y [tf]| 4+ (d+1) ) |sa’l
=1 =1 =1

and a morphism

n—1
5 QAL ® gy i@+ B [dleyaeiay) © AL = ap0u) Bllaorin))
=1
defined by
on(sat,tft, ..., sa™ L tf"L sa)

= (-1 ((fn_lOSd)®~-~®(f1osd)®id)(sd+1q>§7l(s’a",...,shl))

fOT’ sa' € A[1]®ii, tfi € <I>0(rt(ii+1))6* [d]fbo(lt(a’ci)) with

n—1
5*Z\tf| Z sa’l+ Y lsalllsa’] Y RIS Hdn—1)+d Y Jtf
i=1

Jj=i+1 1<i<j<n 1<i<j<n-—1

and for eachn € N*, z = (z!,...,z") € O%.
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Definition 6.18. Consider d-pre-Calabi-Yau categories (A, sqr1M ) and (B, sq41Mp) as well as a d-
pre-Calabi-Yau morphism (2o, ®) : (A, sq41Ma) — (B, sq+1Mp). We define maps of graded vec-
tor spaces pa : All] & B*[d] — A[l] & A*[d] and ¢p : A[l] & B*[d] — B[l] & B*[d] given by
¢V (sa) = sa, ¥ (sa) = ®"Y(sa) for sa € ,A[l], and Y (tf) = tf o ®VT[d], g (tf) = tf,
fortf € o,)B*[dlaogy), T,y € Oa,as well as

Taxq) © P4 = e, T © 9% =0
and _ _ -
T[] © PB = ¢B, TB=(d) © P =0
where T = (z',...,2") € O forn > Land 1g(z') > 2ifn = 1.
Proposition 6.19. The maps ¢ 4 and g are morphisms of A.-categories.
Proof. The part of the identity (MI) for ¢ 4 that takes place in

n—1

HO’ITLM@(A[I]EL & (bo(rt(fi+l))6* [d]@o(lt(fi))) & A[l]in , 1t(£1)A[1]rt(jn))

=1

is clearly satisfied. Moreover, by definition of the A -structure sm 4¢3+, the part of the identity
(MI) that takes place in

n—1

Hom]k(@(A[l]il ® @U(rt(fi+1))6* [d]@o(lt(fi))) & .A[l]in , ]t(fl)A* [d]rt(g—cn))

=1

is tantamount to Y (D) — > E(D2) = — > £(D3) where the sums are over all the filled diagrams
D1, Do and D3 of type x of the form

respectively. Using that @ is a pre-Calabi-Yau morphism, we thus have that ¢ 4 is an A..-morphism.
The case of yp is similar. O

We now summarize the results of Propositions 6.16 and 6.19.
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Corollary 6.20. There is a functor pCYyq — Aoy sending a d-pre-Calabi-Yau category (A, sqy1M4) to
the Aso-category (A @ A*[d — 1], sm ag a+) defined in Proposition 4.32 and a d-pre-Calabi-Yau morphism
D : (A, s4+1Ma) — (B, sqr1Mp) to the Ao-structure sm agp- defined in Definition 6.15 together with
the Ao-morphisms

All] @ B*[d]

All] & A*[d] Bl1] & B*[d]

defined in Definition 6.18. Moreover, this functor restricts to a functor NpCYy — cycA ooy where NpCYy
is the subcategory of pCYy whose objects are d-pre-Calabi-Yau categories and whose morphisms are nice
d-pre-Calabi-Yau morphisms defined in Definition 5.17.
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