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Morphisms of pre-Calabi-Yau categories and
morphisms of cyclic A∞-categories

Marion Boucrot

Abstract

In this article we prove that there exists a relation between d-pre-Calabi-morphisms intro-
duced by M. Kontsevich, A. Takeda and Y. Vlassopoulos and cyclic A∞-morphisms, extending a
result proved by D. Fernández and E. Herscovich. This leads to a functor between the category
of d-pre-Calabi-Yau structures and the partial category ofA∞-categories of the form A⊕A∗[d−1]
with A a graded quiver and whose morphisms are the data of an A∞-structure on A⊕B∗[d− 1]
together with A∞-morphisms A[1]⊕ B∗[d] → A[1]⊕A∗[d] and A[1]⊕ B∗[d] → B[1]⊕ B∗[d].

Mathematics subject classification 2020: 16E45, 18G70, 14A22
Keywords: A∞-categories, pre-Calabi-Yau categories

1 Introduction

Pre-Calabi-Yau algebras were introduced by M. Kontsevich and Y. Vlassopoulos in the last decade.
These structures have also appeared under different names, such as V∞-algebras in [10], A∞-
algebras with boundary in [7], or weak Calabi-Yau structures in [3] for example. These references
show that pre-Calabi-Yau structures play an important role in homological algebra, symplectic
geometry, string topology, noncommutative geometry and even in Topological Quantum Field
Theory.

In the finite dimensional case, pre-Calabi-Yau algebras are strongly related to A∞-algebras.
Actually, for d ∈ Z, a d-pre-Calabi-Yau structure on a finite dimensional vector space A is equiva-
lent to a cyclic A∞-structure on A ⊕ A∗[d − 1] that restricts to A. The definition of pre-Calabi-Yau
morphisms first appeared in [5] and then in [6], in the properadic setting. A natural question is
then about the link between pre-Calabi-Yau morphisms and A∞-morphisms of the corresponding
boundary construction.

D. Fernández and E. Herscovich studied this link in [1] at the level of double Poisson dg al-
gebras and a restricted class of pre-Calabi-Yau algebras, when the multiplications mn vanish for
n ≥ 4. In this paper, we study the relation between A∞-morphisms and pre-Calabi-Yau mor-
phisms in a larger generality. The main result of this paper is the existence of a functor from the
category of d-pre-Calabi-Yau structures pCYd to the partial category Â∞d whose objects are A∞-
categories of the form A ⊕ A∗[d − 1] and whose morphisms are the data of an A∞-structure on
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A⊕ B∗[d− 1] together with a diagram of the form

A[1]⊕ B∗[d]

A[1]⊕A∗[d] B[1]⊕ B∗[d]

(1.1)

where each of the arrows are A∞-morphisms.
We also show that this functor restricts to a functor between a subcategory of pCYd and the

partial subcategory of Â∞d whose objects are those of Â∞d and whose morphisms are the data of
an almost cyclic A∞-structure on A ⊕ B∗[d − 1] together with a diagram of the form (1.1) where
the arrows are A∞-morphisms.

Let us briefly present the contents of the article. In Section 2, we fix the notations and conven-
tions we use in this paper and in Section 3, we recall the notions related to A∞-categories. Section
4 is devoted to present the notion of discs and diagrams as well as the notion of pre-Calabi-Yau
structures based on the necklace bracket introduced in [5], which is given as the commutator of
a necklace product, and their link with A∞-structures in the case of a Hom-finite graded quiver.
We incidentally show that the necklace product for a graded quiver A is in fact equivalent to the
usual Gerstenhaber circle product on A⊕A∗[d− 1] (see Proposition 4.29), which does not seem to
have been observed in the literature so far. In Section 5, we recall the definitions of pre-Calabi-Yau
morphisms and of the category pCYd given in [5].

Section 6 is the core of the article. In Subsection 6.1, we prove that given d-pre-Calabi-Yau
categories A and B and a strict d-pre-Calabi-Yau morphism A → B, we can produce a cyclic
A∞-structure on A⊕ B∗[d− 1] and a diagram of the form (1.1) whose arrows are cyclic strict A∞-
morphisms. We summarize these results in Corollary 6.14. In Subsection 6.2, we prove that given
d-pre-Calabi-Yau categories A and B and any d-pre-Calabi-Yau morphism A → B, we can produce
an A∞-structure on A ⊕ B∗[d − 1] and a diagram of the form (1.1) where the arrows are A∞-
morphisms. Moreover, with an additional assumption on the pre-Calabi-Yau morphism A → B,
the A∞-structure on A ⊕ B∗[d − 1] is almost cyclic. We summarize this in Corollary 6.20 in terms
of functors.

Acknowledgements. This work is supported by the French National Research Agency in the
framework of the “France 2030” program (ANR-15-IDEX-0002) and by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01).

2 Notations and conventions

In what follows k will be a field of characteristic 0 and to simplify we will denote ⊗ for ⊗k. We will
denote by N = {0, 1, 2, . . . } the set of natural numbers and we define N∗ = N \ {0}. For i, j ∈ N,
we define the interval of integers Ji, jK = {n ∈ N|i ≤ n ≤ j}.

Recall that if we have a (cohomologically) graded vector space V = ⊕i∈ZV
i, we define for n ∈ Z

the graded vector space V [n] given by V [n]i = V n+i for i ∈ Z and the map sV,n : V → V [n] whose
underlying set theoretic map is the identity. Moreover, if f : V → W is a morphism of graded
vector spaces, we define the map f [n] : V [n] → W [n] sending an element sV,n(v) to sW,n(f(v)) for
all v ∈ V . We will denote sV,n simply by sn when there is no possible confusion, and s1 just by s.
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We now recall the Koszul sign rules, that are the ones we use to determine the signs appearing
in this paper. If V,W are graded vector spaces, we have a map τV,W : V ⊗W →W ⊗ V defined as

τV,W (v ⊗ w) = (−1)|w||v|w ⊗ v

where v ∈ V is a homogeneous element of degree |v| and w ∈ W is a homogeneous element of
degree |w|. More generally, given graded vector spaces V1, . . . , Vn, we have a map

τV1,...,Vn : V1 ⊗ · · · ⊗ Vn → Vσ−1(1) ⊗ · · · ⊗ Vσ−1(n)

defined as
τV1,...,Vn(v1 ⊗ · · · ⊗ vn) = (−1)ϵ(vσ−1(1) ⊗ · · · ⊗ vσ−1(n))

with
ϵ =

∑
i>j

σ−1(i)<σ−1(j)

|vσ−1(i)||vσ−1(j)|

where vi ∈ Vi is a homogeneous element of degree |vi| for i ∈ J1, nK.
Throughout this paper, when we consider an element v of degree |v| in a graded vector space

V , we mean a homogeneous element v of V . Also, we will denote by id the identity map of every
space of morphisms, without specifying it. All the products in this paper will be products in the
category of graded vector spaces. Given graded vector spaces (Vi)i∈I , we thus have∏

i∈I

Vi =
⊕
n∈Z

∏
i∈I

V n
i

where the second product is the usual product of vector spaces.
Given graded vector spaces V,W we will denote by Homk(V,W ) the vector space of k-linear

maps f : V → W and by homd
k(V,W ) the vector space of homogeneous k-linear maps f : V → W

of degree d, i.e. f(v) ∈ Wn+d for all v ∈ V n. We assemble them in the graded vector space
Homk(V,W ) =

⊕
d∈Z hom

d
k(V,W ) ⊆ Homk(V,W ). We define the graded dual of a graded vector

space V =
⊕

n∈Z V
n as the graded vector space V ∗ = Homk(V,k). Moreover, given graded vector

spaces V , V ′, W , W ′ and homogeneous elements f ∈ Homk(V, V
′) and g ∈ Homk(W,W

′), we
have that

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w)

for homogeneous elements v ∈ V and w ∈ W . Recall that given graded vector spaces V1, . . . , Vn
and d ∈ Z we have a homogeneous linear isomorphism of degree 0

Hj : (

n⊗
i=1

Vi)[d] → V1 ⊗ · · · ⊗ Vj−1 ⊗ Vj [d]⊗ Vj+1 ⊗ · · · ⊗ Vn (2.1)

sending an element sd(v1 ⊗ · · · ⊗ vn) to (−1)d(|v1|+···+|vj−1|)v1 ⊗ · · · ⊗ vj−1 ⊗ sdvj ⊗ vj+1 ⊗ · · · ⊗ vn.
Moreover, given graded vector spaces V and W and an integer d ∈ Z, we have homogeneous
linear isomorphisms of degree 0

Homk(V,W )[d] → Homk(V,W [d]) (2.2)
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sending sdf ∈ Homk(V,W )[d] to the map sending v ∈ V to sd(f(v)) and

Homk(V,W )[d] → Homk(V [−d],W ) (2.3)

sending sdf ∈ Homk(V,W )[d] to the map sending s−dv ∈ V [−d] to (−1)d|f |f(v).
Recall that a graded quiver A consists of a set of objects O together with graded vector spaces

yAx for every x, y ∈ O. A dg quiver A is a graded quiver such that yAx is a dg vector space for
every x, y ∈ O. Given a quiver A, its enveloping graded quiver is the graded quiver Ae = Aop⊗A
whose set of objects is O × O and whose space of morphisms from an object (x, y) to an object
(x′, y′) is defined as the graded vector space (x′,y′)(Aop ⊗A)(x,y) = xAx′ ⊗ y′Ay . A graded quiver
A with set of objects O is said to be Hom-finite if yAx is finite dimensional for every x, y ∈ O.
Given graded quivers A and B with respective sets of objects OA and OB , a morphism of graded
quivers (Φ0,Φ) : A → B is the data of a map Φ0 : OA → OB between the sets of objects together
with a collection Φ = (yΦx)x,y∈OA of morphisms of graded vector spaces yΦx : yAx → Φ0(y)BΦ0(x)

for every x, y ∈ OA. In this paper we will only consider small graded quivers and small categories.
We will denote

Ō =
⊔

n∈N∗

On

and more generally, we will denote by ¯̄O the set formed by all finite tuples of elements of Ō, i.e.

¯̄O =
⊔

n∈N∗

Ōn =
⊔
n>0

⊔
(p1,...,pn)∈Tn

Op1 × · · · × Opn

where Tn = Nn for n > 1 and T1 = N∗. Given x̄ = (x1, . . . , xn) ∈ Ō we define its length as
lg(x̄) = n, its left term as lt(x̄) = x1 and right term as rt(x̄) = xn. For i ∈ J1, nK, we define
x̄≤i = (x1, . . . , xi), x̄≥i = (xi, . . . , xn) and for j > i, x̄Ji,jK = (xi, xi+1, . . . , xj). One can similarly
define x̄<i and x̄>i. Moreover, given ¯̄x = (x̄1, . . . , x̄n) ∈ ¯̄O we define its length as lg(¯̄x) = n, its left
term as lt(x̄) = x̄1 and its right term as rt(x̄) = x̄n. For x̄ = (x1, . . . , xn) ∈ Ō, we will denote

A⊗x̄ = x1
Ax2

⊗ x2
Ax3

⊗ · · · ⊗ xlg(x̄)−1
Axlg(x̄)

and we will often denote an element of A⊗x̄ as a1, a2, . . . , alg(x̄)−1 instead of a1⊗a2⊗· · ·⊗alg(x̄)−1

for ai ∈ xiAxi+1 , i ∈ J1, lg(x̄) − 1K. Moreover, given a tuple ¯̄x = (x̄1, . . . , x̄n) ∈ ¯̄O we will denote
A⊗¯̄x = A⊗x̄1 ⊗ A⊗x̄2 ⊗ · · · ⊗ A⊗x̄n

. Given tuples x̄ = (x1, . . . , xn), ȳ = (y1, . . . , ym) ∈ Ō, we
define their concatenation as x̄ ⊔ ȳ = (x1, . . . , xn, y1, . . . , ym). We also define the inverse of a tuple
x̄ = (x1, . . . , xn) ∈ Ō as x̄−1 = (xn, xn−1, . . . , x1). If σ ∈ Sn and x̄ = (x1, . . . , xn) ∈ On, we
define x̄ · σ = (xσ(1), xσ(2), . . . , xσ(n)). Moreover, given σ ∈ Sn and ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn, we
define ¯̄x · σ = (x̄σ(1), x̄σ(2), . . . , x̄σ(n)). We denote by Cn the subgroup of Sn generated by the cycle
σ = (12 . . . n) which sends i ∈ J1, n− 1K to i+ 1 and n to 1.

3 A∞-categories

In this section, we recall the notion of (cyclic) A∞-categories and (cyclic) A∞-morphisms as well
as the definition of the natural bilinear form associated to a graded quiver. We also introduce a
bilinear form on categories of the form A ⊕ B∗ where A and B are graded quivers related by a
morphism A → B. We refer the reader to [7] for the definitions of modules and bimodules over a
category.
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Definition 3.1. Given a graded quiver A with set of objects O, we define the graded vector space

C(A) =
∏
p≥1

∏
x̄∈Op

Homk(A[1]⊗x̄, lt(x̄)Art(x̄))

Given x̄ = (x1, . . . , xn) ∈ On and a map F x̄ : A[1]⊗x̄ → lt(x̄)Art(x̄), we associate to F x̄ a disc with
several incoming arrows and one outgoing arrow (see Figure 3.1).

x1
x2x3

x4

xn−1 xn

F

Figure 3.1: A disc representing a map F x̄ : A[1]⊗x̄ → lt(x̄)Art(x̄), where x̄ = (x1, . . . , xn)

To simplify, we will often omit the objects and assemble the incoming arrows in a big arrow (see Figure
3.2).

F

Figure 3.2: The representation of a homogeneous element in C(A)

Definition 3.2. The type of a disc representing a map F x̄ : A[1]⊗x̄ → lt(x̄)Art(x̄) is the tuple x̄ ∈ Ō.

Definition 3.3. Let A be a graded quiver. By the isomorphism (2.2), an element sF ∈ C(A)[1] induces
maps

A[1]⊗x̄ → lt(x̄)Art(x̄)[1]

sending an element (sa1, . . . , san−1) to s(F x̄(sa1, . . . , san−1)) for x̄ = (x1, . . . , xn) ∈ Ō, ai ∈ xi
Axi+1

,
i ∈ J1, n− 1K. To a homogeneous element sF ∈ C(A)[1], we thus associate disc with a bold outgoing arrow
(see Figure 3.3) to indicate that the output of sF is an element in A[1].

F

Figure 3.3: The representation of a homogeneous element in C(A)[1]
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Example 3.4. The diagram

x1

x2

xi

xi+1
xn−1

xn

F

xi−1

xi+2

ym

y1y2

y3

G

is the composition of a disc associated to a map

G(xi,y1,...,ym,xi+1) : A[1]⊗(xi,y1,...,ym,xi+1) → xi
Axi+1

[1]

with a disc associated to a map
F x̄ : A[1]⊗x̄ → x1

Axn
[1]

with x̄ = (x1, . . . , xn). The type of this diagram is x̄≤i ⊔ ȳ ⊔ x̄>i. This diagram is associated to the map
F x̄ ◦ (id⊗i−1 ⊗G(xi,y1,...,ym,xi+1) ⊗ id⊗n−i).

Definition 3.5. Given a dg bimodule M over a dg category A with set of objects O, its naturalization is
the chain complex Mnat = (

⊕
x∈O

xMx)/(fg − (−1)|g||f |gf) where f ∈ yAx and g ∈ xMy .

Definition 3.6. Given dg category A with differential dA and product µ, we define the dg bimodule Bar(A)
as Bar(A) = (x′ Bar(A)x)x,x′∈O, where

x′ Bar(A)x =
⊕
p≥0

⊕
(x0,...,xp)∈Op

x′Ax0
⊗ x0

Ax1
[1]⊗ ...⊗ xp−1

Axp
[1]⊗ xp

Ax

whose differential restricted to x′ Bar(A)x is given by
∑

x̄∈Ō d
x̄
0 + dx̄1 where

dx̄0(f0 ⊗ sf1 ⊗ ...⊗ sfn ⊗ fn+1) =

n+1∑
i=0

(−1)

i−1∑
j=0

(|fj |+1)

f0 ⊗ sf1 ⊗ ...⊗ s(dA(fi))⊗ ...⊗ sfn ⊗ fn+1

and

dx̄1(f0 ⊗ sf1 ⊗ ...⊗ sfn ⊗ fn+1) = (−1)ϵ1f0f1 ⊗ sf2 ⊗ ...⊗ sfn ⊗ fn+1

+

n−1∑
i=1

(−1)ϵif0 ⊗ sf1 ⊗ ...⊗ s(fifi+1)⊗ ...⊗ sfn ⊗ fn+1

+ (−1)ϵnf0 ⊗ sf1 ⊗ ...⊗ sfn−1 ⊗ fnfn+1

for all x̄ = (x0, x1, . . . , xn), f0 ∈ x′Ax0 , fn+1 ∈ xnAx and fi ∈ xi−1Axi , i ∈ J1, nK, with

ϵi = |f0|+
i−1∑
j=1

(|fj |+ 1)
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where we have written fifi+1 instead of µ(fi, fi+1) for i ∈ J0, nK to denote the composition of A.
The bimodule structure of Bar(A) is given by ρ = ((x′,y′)ρ(x,y))x,y,x′,y′∈O where

(x′,y′)ρ(x,y) : (x′,y′)Ae
(x,y) ⊗ y Bar(A)x → y′ Bar(A)x′

sends (f⊗g)⊗(a⊗sa0⊗sa1⊗· · ·⊗san⊗a′) to (−1)
|f |(|a|+|b|+

n∑
i=0

|sai|)
(ga⊗sa0⊗sa1⊗· · ·⊗san⊗a′f)

for all (f ⊗ g) ∈ (x′,y′)Ae
(x,y), (x0, . . . , xn+1) ∈ Ōn+1, a ∈ yAx0

, b ∈ xn+1
Ax and ai ∈ xi

Axi+1
for

i ∈ J0, nK. Moreover, in that case, we have a quasi-isomorphism of dg bimodules Bar(A) → A whose
restriction to Bar(A)p vanishes for p ≥ 1 and whose restriction to Bar(A)0 is µ.

Definition 3.7. Given a dg category A, the dual bimodule of the dg bimodule Bar(A) is given by
Bar(A)∨ =

∏
x,y∈O

y Bar(A)∨x , with

y Bar(A)∨x = Hom−Ae(y′ Bar(A)x′ , y′Ax ⊗ yAx′)

where the subscript −Ae of the Hom indicates that we consider the space of morphisms of right Ae-modules.
In particular, y Bar∨x is a right graded Ae-module for each x, y ∈ O for the left Ae-structure of Ae which is
the inner one.

More precisely, Bar(A) is a A-bimodule with the action given by ρ = ((x”,y”)ρ(x,y))x,y,x”,y”∈O where

(x”,y”)ρ(x,y) : (x”,y”)Ae
(x,y) ⊗ y Bar(A)∨x → y” Bar(A)∨x”

sends (f ⊗ g)⊗ y′

y Φx′

x to the map y′

y”Ψ
x′

x” : y” Bar(A)x” → y′Ax” ⊗ y”Ax′ defined by

y′

y”Ψ
x′

x”(a⊗ sa0 ⊗ sa1 ⊗ · · · ⊗ san ⊗ a′) = (−1)(|f |+|g|)|Φ(1)|Φ(1)f ⊗ gΦ(2)

where we have written y′

y Φx′

x (a ⊗ sa0 ⊗ sa1 ⊗ · · · ⊗ san ⊗ a′) as a tensor product Φ(1) ⊗ Φ(2), for all
(f ⊗ g) ∈ (x′,y′)Ae

(x,y), (x0, . . . , xn+1) ∈ Ōn+1, a ∈ yAx0
, a′ ∈ xn+1

Ax and ai ∈ xi
Axi+1

for i ∈ J0, nK.

Remark 3.8. If A is a dg category, we have a map

Bar(A)∨nat →
∏
p≥1

∏
x̄∈Op

Homk(A[1]⊗x̄, lt(x̄)Art(x̄))

sending z
yΦ

z
x ∈ Hom−Ae(z Bar(A)z, zAx ⊗ yAz) to the collection of k-linear maps

Ψ :
⊕
p≥0

⊕
(x0,...,xp)∈Op

x0
Ax1

[1]⊗ ...⊗ xp−1
Axp

[1] → x0
Axp

given by Ψ(sa0, . . . , sap−1) = µ(τ ◦ x0
x0
Φx0

xp
(1x0

, sa0, . . . , sap−1, 1x0
)) for ai ∈ xi

Axi+1
and where 1x0

is
the identity of x0

Ax0
. Moreover, this map is an isomorphism of graded vector spaces.

Definition 3.9. Given a graded quiver A with set of objects O, the Gerstenhaber product of elements
sF, sG ∈ C(A)[1] is defined as the element sF ◦

G
sG ∈ C(A)[1] given by

(sF ◦
G
sG)x̄ =

∑
1≤i<j≤lg(x̄)

sF x̄≤i⊔x̄≥j ◦
G,i,j

sGx̄Ji,jK
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for x̄ ∈ Ō where(
sF x̄≤i⊔x̄≥j ◦

G,i,j
sGx̄Ji,jK

)
(sa1, . . . , san−1)

= (−1)ϵisF x̄≤i⊔x̄≥j (sa1, . . . , sai−1, sG
x̄Ji,jK(sai, . . . , saj−1), saj , . . . , san−1)

for ai ∈ xi
Axi+1

, with ϵ = (|G|+ 1)
i−1∑
r=1

|sar|.

The map (sF ◦
G
sG)x̄ is by definition the sum of the maps associated to diagrams of type x̄ and of the

form

FG

Definition 3.10. Given a graded quiver A with set of objects O, the Gerstenhaber bracket is the graded
Lie bracket [−,−]G on C(A)[1] defined for elements sF, sG ∈ C(A)[1] as the element [sF, sG]G ∈ C(A)[1]
given by

[sF, sG]x̄G = (sF ◦
G
sG)x̄ − (−1)(|F|+1)(|G|+1)(sG ◦

G
sF)x̄

for x̄ ∈ Ō.

Definition 3.11. An A∞-structure on a graded quiver A is a homogeneous element smA ∈ C(A)[1] of
degree 1 satisfying the Maurer-Cartan equation [smA, smA]G = 0.

Remark 3.12. An A∞-structure on a graded quiver A is tantamount to the data of a homogeneous element
smA ∈ C(A)[1] satisfying the following identities∑

1≤i<j≤n

sm
x̄≤i⊔x̄≥j

A ◦ (id⊗x̄≤i ⊗smx̄Ji,jK
A ⊗ id⊗x̄≥j ) = 0 (SI)

for every n ∈ N∗ and x̄ ∈ On. These are called the Stasheff identities and were first introduced in [8] by
J. Stasheff.

Example 3.13. If A is a dg category with differential dA and product µ, it carries a natural A∞-structure
smA ∈ C(A)[1] with m1

A = dA, m2
A = µ and mn

A = 0 for n ≥ 3.

Definition 3.14. Given a graded quiver A with set of objects O its graded dual quiver is the quiver A∗

whose set of objects is O and for x, y ∈ O, the space of morphisms from x to y is defined as yA∗
x = (xAy)

∗.

Definition 3.15. A bilinear form of degree d on a graded quiver A is a collection Γ = (yΓx)x,y∈O of
homogeneous k-linear maps yΓx : yAx[1]⊗ xAy[1] → k of degree d+ 2.

Definition 3.16. A bilinear form Γ on a graded quiver A is nondegenerate if the induced map

yAx[1] → (yAx[1])
∗

sending an element sa ∈ yAx[1] to the map sending sb ∈ xAy[1] to yΓx(sa, sb) is an isomorphism.
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Example 3.17. Consider two graded quivers A and B and a morphism (Φ0,Φ) : A → B of graded quivers.
Define the bilinear form ΓΦ : (A[1]⊕ B∗[d])⊗2 → k of degree d+ 2 by

yΓ
Φ
x (tf, sa) = −(−1)|sa||tf |xΓ

Φ
y (sa, tf) = (−1)|tf |+1(f ◦ xΦy)(a)

for f ∈ Φ0(y)B∗
Φ0(x)

, a ∈ xAy , where t stands for the shift morphism B∗ → B∗[d] and

yΓ
Φ
x (tf, tg) = yΓ

Φ
x (sa, sb) = 0

for f ∈ Φ0(y)B∗
Φ0(x)

, g ∈ Φ0(x)B∗
Φ0(y)

, a ∈ yAx and b ∈ xAy . This bilinear form ΓΦ will be called the
Φ-mixed bilinear form.

Example 3.18. If B = A, the bilinear form Γid of the previous example is called the natural bilinear form
on A and will be denoted ΓA.

Remark 3.19. The natural bilinear form on a Hom-finite graded quiver A is nondegenerate, whereas the
Φ-mixed bilinear form is not in general.

Definition 3.20. An A∞-structure smA ∈ C(A)[1] on a graded quiver A is almost cyclic with respect
to a homogeneous bilinear form Γ : A[1]⊗2 → k if the following holds:

xnΓx1(sm
x̄
A(sa1, . . . , san−1), san)

= (−1)
|san|(

n−1∑
i=1

|sai|)
xn−1

Γxn
(smx̄·σ−1

A (san, sa1, . . . , san−2), san−1)

(3.1)

for each n ∈ N∗, x̄ = (x1, . . . , xn) ∈ Ō, σ = (12 . . . n) with ai ∈ xi
Axi+1

for i ∈ J1, n − 1K and
an ∈ xn

Ax1
. An almost cyclicA∞-category is anA∞-category whoseA∞-structure is almost cyclic with

respect to a fixed homogeneous bilinear form. An almost cyclicA∞-category with respect to a nondegenerate
bilinear form is called a cyclic A∞-category.

The following definition was first introduced by M. Sugawara in [9].

Definition 3.21. An A∞-morphism between A∞-categories (A, smA) and (B, smB) with respective
sets of objects OA and OB is a map F0 : OA → OB together with a collection F = (F x̄)x̄∈ŌA , where
F x̄ : A[1]⊗x̄ → F0(lt(x̄))BF0(rt(x̄))[1] is a map of degree 0, that satisfies∑

1≤i<j≤lg(x̄)

F x̄≤i⊔x̄≥j ◦ (id⊗x̄≤i ⊗smx̄Ji,jK
A ⊗ id⊗x̄≥j )

=
∑

1≤i1<···<in≤lg(x̄)

smȳ
B(F

x̄≤i1 ⊗ F x̄Ji1,i2K ⊗ · · · ⊗ F x̄Jin,lg(x̄)K)
(MI)

for every x̄ ∈ ŌA and with ȳ = (F0(x1), F0(xi1), . . . , F0(xlg(x̄))). Note that given x̄ ∈ OA the terms in
both sums are sums of maps associated with diagrams of type x̄ that are respectively of the form

F and mBmA

F

F

F

9



The following definition was introduced in [2] by H. Kajiura in the cyclic case.

Definition 3.22. AnA∞-morphism (F0,F) between almost cyclicA∞-categories (A, smA) and (B, smB)
with respect to bilinear forms γ and Γ is cyclic if

F0(y)ΓF0(x)(F
1(sa), F 1(sb)) = yγx(sa, sb)

for x, y ∈ O, a ∈ yAx and b ∈ xAy and for n ≥ 3∑
x̄∈Z
ȳ∈Z′

lt(z̄)Γrt(z̄)(F
x̄(sa1, . . . , sai), F

ȳ(sai+1, . . . , san)) = 0

for z̄ ∈ Ō, (sa1, . . . , sai) ∈ A[1]⊗x̄ and (sai+1, . . . , san) ∈ A[1]⊗ȳ where

Z = {x̄ ∈ Ō | lt(x̄) = lt(z̄), rt(x̄) = rt(z̄)} and Z ′ = {ȳ ∈ Ō | lt(ȳ) = rt(z̄), rt(ȳ) = lt(z̄)}

4 Pre-Calabi-Yau categories

In this section, we present the diagrammatic calculus and recall the definition of d-pre-Calabi-Yau
structures, d ∈ Z, appearing in [5] and [11] as well as their relation with A∞-structures when the
graded quiver considered is Hom-finite.

4.1 Diagrammatic calculus

In this subsection, we define discs and diagrams and we explain how to evaluate and compose
them.

Following [11] we define the following graded vector space.

Definition 4.1. Given a graded quiver A with set of objects O, we define the graded vector space

Multi•(Bar(A)[d]) =
∏
n∈N∗

Multin(Bar(A)[d]) =
∏
n∈N∗

∏
¯̄x∈Ōn

Multi
¯̄x(Bar(A)[d])

where Multi
¯̄x(Bar(A)[d]) is the graded vector space consisting of sums of homogeneous k-linear maps of

the form

F x̄1,...,x̄n

: A[1]⊗x̄1

⊗A[1]⊗x̄2

⊗· · ·⊗A[1]⊗x̄n

→ lt(x̄1)Art(x̄2)[−d]⊗ lt(x̄2)Art(x̄3)[−d]⊗· · ·⊗ lt(x̄n)Art(x̄1)[−d]

for ¯̄x = (x̄1, . . . , x̄n).
The action of τ = (τn)n∈N∗ ∈

∏
n∈N∗ Cn on an element F = (F ¯̄x)¯̄x∈ ¯̄O ∈ Multi•(Bar(A)[d]) is the

element τ · F ∈ Multi•(Bar(A)[d]) given by

(τ · F)¯̄x = τ−1

lt(x̄1)Art(x̄2)[−d],lt(x̄2)Art(x̄3)[−d],...,lt(x̄n)Art(x̄1)[−d] ◦ F
¯̄x·τ ◦ τA[1]⊗x̄1 ,A[1]⊗x̄2 ,...,A[1]⊗x̄n

for ¯̄x ∈ ¯̄O. We will denote by Multi•(Bar(A)[d])Clg(•) the space of elements of Multi•(Bar(A)[d]) that are
invariant under the action of

∏
n∈N∗ Cn.
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Remark 4.2. If A is a dg category, Multin(Bar(A)[d]) is the dg vector space

Hom(Ae)⊗n(Bar(A)[d], id(A⊗n)σ)

where id(A⊗n)σ denotes the A⊗n-bimodule A⊗n whose structure is given by

(y1,...,yn)(A
⊗n)(x1,...,xn) =

n⊗
i=1

yi
Axi+1

with the convention that xn+1 = x1.
The action on morphisms is given by

(g1⊗· · ·⊗gn)•ω • (f1⊗· · ·⊗fn) = (−1)|f1|(|f2|+···+|fn|)(g1⊗· · ·⊗gn) ·ω · (fn⊗f2⊗· · ·⊗fn−1⊗f1)

for objects xi, x′i, yi, y
′
i ∈ O, i ∈ J1, nK, ω ∈

n⊗
i=1

yiAxi+1 , fi ∈ xiAx′
i

and gi ∈ yiAx′
i

where · denotes the

usual bimodule structure of Hom(Ae)⊗n(Bar(A)[d],A⊗n).

Definition 4.3. A disc D is a circle with distinguished set of points which are either incoming or outgoing
points. An incoming (resp. outgoing) point will be pictured as an incoming (resp. outgoing) arrow (see
Figure 4.1). The size of the disc D is the number of outgoing arrows, and it will be denoted by |D|.

Figure 4.1: A disc of size 3

Definition 4.4. Given a graded quiver A with set of objects O, a decorated disc of size n is a disc of
size n together with a clockwise labeling of the outgoing arrows from 1 to n and a distinguished object of
O between any couple of consecutive arrows. Given an arrow α of the disc D, we will write it α = yαx

with x, y ∈ O to indicate that x clockwise precedes the arrow α in D and α clockwise precedes y in D. For
instance, the outgoing arrow labeled by 3 in Figure 4.2 might be denoted by x1

3
αx3

1
.

The type of the decorated disc is the tuple of the form (x̄1, . . . , x̄n) where x̄i is the tuple formed by objects
of O, read in counterclockwise order, between the outgoing arrows i− 1 and i, with the convention that the
arrow 0 is the arrow n (see Figure 4.2).
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x1
3

3

x1
2

x1
1

1
x2
4

x2
3

x2
2x2

1

x3
3

2

x3
2

x3
1

Figure 4.2: A decorated disc of type ¯̄x = (x̄1, x̄2, x̄3) where x̄1 = (x11, x
1
2, x

1
3), x̄2 = (x21, x

2
2, x

2
3, x

2
4)

and x̄3 = (x31, x
3
2, x

3
3)

Definition 4.5. Given ¯̄x ∈ ¯̄O we associate to a map F ¯̄x ∈ Multi
¯̄x(Bar(A[d])) the unique decorated

diagram of type ¯̄x.

Definition 4.6. A marked disc is a decorated disc with a bold arrow (see Figure 4.3).

x1
3

x1
2

x1
1

x2
4

x2
3

x2
2x2

1

x3
3

x3
2

x3
1

3

1

2

Figure 4.3: A marked disc

Definition 4.7. Consider sd+1F
¯̄x ∈ Multi

¯̄x(Bar(A)[d])[d + 1] with ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn. Given
(a, b) ∈ ({i} × J1, lg(x̄1) + · · · + lg(x̄n)K) ⊔ ({o} × J1, nK), by the isomorphisms (2.1), (2.2) and (2.3),
sd+1F

¯̄x induces a morphism of the form

A[1]⊗x̄1

⊗ · · · ⊗ A[1]⊗x̄j−1

⊗A[1]
⊗x̄

j

≤b′ ⊗
x
j

b′
A[−d]

x
j

b′+1

⊗A[1]
⊗x̄

j

>b′ ⊗A[1]⊗x̄n

→ lt(x̄1)Art(x̄2)[−d]⊗ · · · ⊗ lt(x̄n)Art(x̄1)[−d]
(4.1)

given by (−1)(d+1)|F ¯̄x|F ¯̄x◦(id⊗(lg(x̄1)+···+lg(x̄j−1)+b′−j) ⊗s−d−1⊗id⊗(lg(x̄j)−b′+lg(x̄j+1)+···+lg(x̄n)−n+j))
if a = i and b = lg(x̄1) + · · · + lg(x̄j) + b′ with j ∈ J1, nK, b′ ∈ J1, lg(x̄j) − 1K, and a morphism of the
form

A[1]⊗x̄1

⊗A[1]⊗x̄2

⊗ · · · ⊗ A[1]⊗x̄n

→ lt(x̄1)Art(x̄2)[−d]⊗ · · · ⊗ lt(x̄b−1)Art(x̄b)[−d]⊗ lt(x̄b)Art(x̄b+1)[1]⊗ · · · ⊗ lt(x̄n)Art(x̄1)[−d]
(4.2)

given by (id⊗(b−1) ⊗sd+1 ⊗ id⊗(n−b)) ◦ F ¯̄x if a = o. To sd+1F
¯̄x and (a, b) as before, we associate the

marked diagram which is decorated as the one of F ¯̄x, where the bold arrow is the b-th incoming arrow if
a = i and the b-th outgoing arrow if a = o where the incoming arrows are numbered in clockwise order, the
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first being the incoming arrow following the last outgoing one. Given a disc D of type ¯̄x, we will denote by
E(D, sd+1F

¯̄x) the map (4.1) if a = i and (4.2) if a = o.

Example 4.8. Given the marked disc in Figure 4.3 and an element sd+1F ∈ Multi•(Bar(A)[d])[d+1], the
evaluation of E(D, sd+1F

¯̄x) at elements (s̄a1, s̄a2, s̄a3) is obtained by first compute F ¯̄x(s̄a1, s̄a2, s̄a3) =

lt(x̄1)F
−d
rt(x̄2) ⊗ lt(x̄2)F

−d
rt(x̄3) ⊗ lt(x̄3)F

−d
rt(x̄3), and then apply the shift sd+1 to the third tensor factor of the

result since the bold arrow is the third outgoing arrow of the disc. The result is then

(−1)ϵlt(x̄1)F
−d
rt(x̄2) ⊗ lt(x̄2)F

−d
rt(x̄3) ⊗ lt(x̄3)F

1
rt(x̄3)

with ϵ = (d+ 1)(|lt(x̄1)F
−d
rt(x̄2)|+ |lt(x̄2)F

−d
rt(x̄3)|).

To simplify, from now on we will omit the objects when drawing a marked disc as well as
the label of the outgoing arrows. By convention, if the bold arrow of the marked disc (of size n) is
outgoing, it denotes the n-th outgoing arrow, and if the bold arrow is incoming, then the clockwise
preceding outgoing arrow of the marked disc is the one labeled by n. Moreover, we will draw a
big incoming arrow instead of several consecutive incoming arrows (see Figure 4.4 and 4.5).

F

Figure 4.4: A disc representing a map of the form (4.2)

F

Figure 4.5: A disc representing a map of the form (4.1)

Now, we explain how to compose discs.

Definition 4.9. A diagram is roughly speaking a finite collection of decorated discs, each of which shares
at most an arrow with any other one (see Figure 4.6). More precisely, a diagram (D,R) is the data of a
collection D of discs {D1, . . . , Dn}, each of which having sets of arrows Ai for i ∈ J1, nK, together with a
subset R ⊆ (⊔n

i=1Ai)
2 satisfying that

(D.1) if (α, β) ∈ R ∩ (Ai ×Aj), then i ̸= j and α is an incoming arrow and β is an outgoing arrow;

(D.2) if (y′αx′ , yβx) ∈ R, then x′ = y and x = y′;

where we use the notation introduced in Definition 4.4. We will represent a pair (α, β) ∈ R∩ (Ai ×Aj) by
connecting the outgoing arrow β of Dj with the incoming arrow α of Di (see Figure 4.6), and we will say
that the disc Di shares an arrow with Dj or that α and β are connected.
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An incoming (resp. outgoing) arrow of the diagram (D,R) is an arrow α of one of the discs Di

such that there is no arrow β satisfying that (α, β) ∈ R (resp. (β, α) ∈ R). A diagram (D,R) has a
distinguished object of O between any couple of consecutive arrows of (D,R) given by the decoration of the
discs D1, . . . , Dn.

Figure 4.6: A diagram

Definition 4.10. We say that a diagram (D,R) is admissible if, roughly speaking, each of the discs in
D = {D1, . . . , Dn} is marked and if D is connected, with no cycles and if every couple of arrows in R
contains a unique bold arrow. More precisely, a diagram (D,R) is admissible if the following conditions are
satisfied

(A.1) ∀i ∈ J1, nK,∃ αi ∈ Di such that (αi, βj) ∈ R for some j ̸= i, βj ∈ Dj ;

(A.2) for (x, y) ∈ R, either x or y is a bold arrow, but not both;

(A.3) there is no family of arrows {x1, . . . , xk} such that (xi, xi+1) ∈ R for all i ∈ J1, kK and xk = x1.

Note that there is precisely one disc in D = {D1, . . . , Dn} whose bold arrow is also an incoming or
outgoing arrow of the diagram (D,R), i.e. an admissible diagram (D,R) always has either an incoming or
outgoing bold arrow.

The size of an admissible diagram (D = {D1, . . . , Dn}, R) is
∑n

i=1 |Di|−n+1, and it will be denoted
by |D|. We will relabel the outgoing arrows of (D,R) in clockwise direction from 1 to |D|, such that the
outgoing arrow labeled by |D| is precisely the bold arrow of (D,R) if the latter arrow is outgoing, and it
is the outgoing arrow preceding the bold arrow of (D,R) in clockwise sense if the bold arrow of (D,R) is
incoming.

Definition 4.11. The type of an admissible diagram (D = {D1, . . . , Dn}, R) is the tuple

¯̄x = (x̄1, . . . , x̄m) ∈ ¯̄O

where m = |D| and x̄i ∈ Ō is the tuple composed of the objects of (D,R), placed in counterclockwise order,
that we can read between the outgoing arrows i− 1 and i of (D,R).

Definition 4.12. A source (resp. sink) of an admissible diagram is a disc which shares none of its incoming
(resp. outgoing) arrows with another one.
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Remark 4.13. An admissible diagram has at least one source and one sink.

Given an admissible diagram (D = {D1, . . . , Dn}, R) and a tuple (sd+1F1, . . . , sd+1Fn) with
Fi ∈ Multi

¯̄xi(Bar(A)[d]) such that ¯̄xi is the type of Di for all i ∈ J1, nK, we will define a map
E((D,R), sd+1F1, . . . , sd+1Fn) ∈ Multi

¯̄x(Bar(A)[d])[d+ 1] where ¯̄x is the type of (D,R), as follows.
First, we suppose that the bold arrow is on a sink.

Definition 4.14. Let (D = {D1, . . . , Dn}, R) be a diagram and let (sd+1F1, . . . , sd+1Fn) be a tuple of
homogeneous elements with Fi ∈ Multi

¯̄xi(Bar(A)[d]) such that ¯̄xi is the type of Di for all i ∈ J1, nK. We
will define the evaluation of E((D,R), sd+1F1, . . . , sd+1Fn) at an element s̄a¯̄x of A[1]⊗¯̄x, where ¯̄x is the
type of (D,R) by induction on n as follows. We fix a source Ds of (D,R).

(E.1) We place each element saij ∈ xi
j
Axi

j+1
[1] in the incoming arrow xi

j
αxi

j+1
of (D,R) in counterclockwise

order beginning at the bold arrow. This will create a sign, as follows : if an element of degree m turn
around the source representing a map of degreem′, we add a sign (−1)mm′

and if an element of degree
ℓ pass through an element of degree ℓ′ to go to its place, we add a sign (−1)ℓℓ

′
. Here, turning around

the source means passing through all of its inputs.

(E.2) We evaluate E(Ds, sd+1Fs) at the elements saij ∈ xi
j
Axi

j+1
[1] corresponding to the incoming arrows

of Ds, to obtain an element of the form

(−1)(d+1)(|b1|+···+|b|Ds|−1|)b1 ⊗ · · · ⊗ b|Ds|−1 ⊗ sd+1b
|Ds| ∈ y′

1
Ay1 [−d]⊗ · · · ⊗ y′

|Ds|
Ay|Ds| [1]

(E.3) We add a Koszul sign coming from transposing b1 ⊗ · · · ⊗ b|Ds|−1 with all of the elements saij ∈
xi
j
Axi

j+1
[1] corresponding to the incoming arrows of (D,R) between the last outgoing arrow of (D,R)

and the bold arrow of Ds connected with an arrow of the rest of the diagram in the clockwise order.
Recall that the elements bi for i ∈ J1, |Ds| − 1K are labeled with an index from J1, |D|K coming from
the corresponding outgoing arrow of (D,R).

(E.4) We consider the diagram (D′, R′) given by removing the disc Ds from (D,R) and place sd+1b
|Ds| at

the incoming arrow of (D′, R′) that was previously connected to the bold outgoing arrow ofDs. By in-
duction we evaluate E((D′, R′), sd+1F1, . . . , sd+1F̌s, . . . , sd+1Fn) at the elements saij ∈ xi

j
Axi

j+1
[1]

corresponding to the incoming arrows of D′. This evaluation carries a sign

(−1)b
|Ds|(|s̄au|+|s̄av|)+|s̄au||s̄av|

where |s̄au| and |s̄av| are the tuples of objects corresponding to the incoming arrows ofD′ that precede
and follow the element b|Ds| without any outgoing arrow between them. Recall that the tensor factors
in the evaluation of E((D′, R′), sd+1F1, . . . , sd+1F̌s, . . . , sd+1Fn) at the elements saij ∈ xi

j
Axi

j+1
[1]

stated before are labeled with an index from J1, |D|K coming from the corresponding outgoing arrow
of (D,R).

(E.5) We reorder the tensor factors obtained in steps (E.4) and (E.5) according to the labeling of the outgoing
arrows of (D,R), and add the respective Koszul sign.

We illustrate the previous procedure with an admissible diagram D consisting of two discs, given as
follows
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D1 D2

In this case, the evaluation of E(D, sd+1G
¯̄y, sd+1F

¯̄x) at

(s̄a1, . . . , s̄ap−1, s̄b
1
, s̄ap>q, s̄b

2
. . . , s̄b

m−1
, s̄ap≤q, s̄b

m
, s̄ap+1 . . . , s̄an)

with s̄ai ∈ A[1]⊗x̄i

and s̄bi ∈ A[1]⊗ȳi

, where ¯̄x = (x̄1, . . . , x̄n) and ¯̄y = (ȳ1, . . . , ȳm) are the respective
types of D1 and D2, is detailed as follows.

First, we place each tensor factor saij and sbij of s̄ai and s̄bi in the corresponding incoming arrow, as

explained in (E.1), adding a sign (−1)(|G
¯̄y|+d+1)(|s̄a1|+···+|s̄ap−1|+|s̄ap

>q|). Also, we add a sign

(−1)|s̄b
1||s̄ap

>q|+|s̄bm||s̄ap
≤q

|

for the permutation of the corresponding elements. We picture this as follows

D1 D2

s̄a1

s̄an

s̄ap
>q

s̄b1

s̄ap
≤q

s̄bm

In step (E.2), we compute E(D1, sd+1G
¯̄y)(s̄b

1
, . . . , s̄b

m
) = (−1)(d+1)(|ϵ1|+···+|ϵm−1|)ϵ1⊗· · ·⊗sd+1ϵm.

After step (E.3) we have gained a total sign (−1)∆ with

∆ = (|G¯̄y|+d+1)(|s̄ap≤q|+ |s̄ap+1|+ · · ·+ |s̄an|)+(|G¯̄y|+ |s̄a1|+ · · ·+ |s̄ap>q|)(|ϵ1|+ · · ·+ |ϵj−i−1|),

multiplying the element ϵ1⊗· · ·⊗ϵj−i−1⊗E(D2, sd+1F
¯̄x)(s̄a1⊗· · ·⊗s̄ap>q⊗sd+1ϵj−i⊗s̄ap≤q⊗· · ·⊗s̄an).

In (E.4), we compute

E(D2, sd+1F
¯̄x)(s̄a1 ⊗ · · · ⊗ s̄ap≤q ⊗ sd+1ϵj−i ⊗ s̄ap>q ⊗ · · · ⊗ s̄an) = δ1 ⊗ · · · ⊗ δi−1 ⊗ δj ⊗ · · · ⊗ sd+1δn

and add a sign (−1)∆
′

to the final result, with

∆′ = |s̄ap>q|(d+1+|ϵj−i|+|s̄ap≤q|)+|s̄ap≤q|(d+1+|ϵj−i|)+(d+1)(|δ1|+· · ·+|δi−1|+|δj |+· · ·+|δn−1|)

In (E.5), we reorder the outputs with a sign, giving finally

E(D, sd+1G
¯̄y, sd+1F

¯̄x)(s̄a1, . . . , s̄an) = (−1)∆+∆′+∆ ′′
δ1⊗· · ·⊗δi−1⊗ϵ1⊗· · ·⊗ϵj−i−1⊗δj⊗· · ·⊗sd+1δn

where ∆ ′′ = (|δ1|+ . . . |δi−1|)(|ϵ1|+ · · ·+ |ϵj−i−1|).
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Now, supose that the bold arrow is on a source.

Definition 4.15. Let (D = {D1, . . . , Dn}, R) be a diagram and let (sd+1F1, . . . , sd+1Fn) be a tuple of
homogeneous elements with Fi ∈ Multi

¯̄xi(Bar(A)[d]) such that ¯̄xi is the type of Di for all i ∈ J1, nK. We
will define the evaluation E((D,R), sd+1F1, . . . , sd+1Fn) at an element s̄a¯̄x of A[1]⊗¯̄x, where ¯̄x is the type
of (D,R) by induction on n as follows. Suppose that the bold arrow is an arrow of the source Ds of (D,R)
and that the p-th outgoing arrow α of Ds is connected with another disc.

(F.1) We place each element saij ∈ xi
j
Axi

j+1
[1] in the incoming arrow xi

j
αxi

j+1
of (D,R) in counterclockwise

order beginning at the bold arrow. This will create a sign, as follows : if an element of degree m turn
around a source representing a map of degreem′, we add a sign (−1)mm′

and if an element of degree ℓ
pass through an element of degree ℓ′ to go to his place, we add a sign (−1)ℓℓ

′
. Again, turning around

a source means passing through all of its inputs.

(F.2) We transpose all the elements that do not correspond to incoming arrows of Ds with the elements
corresponding to incoming arrows of Ds between α and the bold arrow. We add the sign coming from
this transposition. We evaluate E(Ds, sd+1Fs) at the elements saij ∈ xi

j
Axi

j+1
[1] corresponding to

the incoming arrows of Ds, to obtain an element of the form

sd+1(b
1 ⊗ · · · ⊗ b|Ds|) ∈ (y′

1
Ay1

[−d]⊗ · · · ⊗ y′
|Ds|

Ay|Ds| [−d])[d+ 1]

(F.3) We add a Koszul sign coming from transposing bp+1 ⊗ · · ·⊗ b|Ds| with all of the elements that do not
correspond to an incoming arrow of Ds. Recall that the elements bi for i ∈ J1, |Ds|K \ {p} are labeled
with an index from J1, |D|K coming from the corresponding outgoing arrow of (D,R).

(F.4) We then consider the diagram (D′, R′) given by removing the disc Ds from (D,R). Its bold arrow is
the one previously connected to α. Note that the element bp is associated with this incoming arrow of
(D′, R′).

(F.5) We evaluate E((D′, R′), sd+1F1, . . . , sd+1F̌s, . . . , sd+1Fn) at the elements saij ∈ xi
j
Axi

j+1
[1] corre-

sponding to the incoming arrows of D′. Recall that the tensor factors in this evaluation are labeled
with an index from J1, |D|K coming from the corresponding outgoing arrow of (D,R).

We illustrate the previous procedure with an admissible diagram D consisting of two discs, given as
follows

D1 D2

In this case, the evaluation of E(D, sd+1F
¯̄x, sd+1G

¯̄y) at

(s̄a1, . . . , s̄ap−1, s̄b
1
≤q, s̄a

p, s̄b
2
. . . , s̄b

m
, s̄ap+1, s̄b

1
>q, s̄a

p+2 . . . , s̄an)
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with s̄ai ∈ A[1]⊗x̄i

and s̄bi ∈ A[1]⊗ȳi

, where ¯̄x = (x̄1, . . . , x̄n) and ¯̄y = (ȳ1, . . . , ȳm) are the respective
types of D1 and D2, is detailed as follows.

First, we place each tensor factor saij and sbij of s̄ai and s̄b
i in the corresponding incoming arrow,

as explained in (F.1), adding a sign (−1)|s̄b
1
≤q||s̄a

p|+|s̄b1>q||s̄a
p+1| for the permutation of the corresponding

elements.

D1 D2

s̄b1≤q

s̄ap

s̄b1>q

s̄ap+1

s̄a1

s̄an

In step (F.2), we place all the elements s̄bi after the others and multiply by a sign

(−1)(|s̄b
1|+···+|s̄bm|)(|s̄ap+1|+···+|s̄an|)

We then compute E(D1, sd+1F
¯̄x)(s̄a1, . . . , s̄an) = (−1)(d+1)(|ϵ1|+···+|ϵn−1|)ϵ1 ⊗ · · · ⊗ sd+1ϵn.

After (F.3), we end with

ϵ1 ⊗ · · · ⊗ ϵp−1 ⊗ (E , sd+1G
¯̄y)(ϵp ⊗ s̄b

1
≤q ⊗ · · · ⊗ s̄b

m ⊗ s̄b
1
>q)⊗ ϵp+1 ⊗ · · · ⊗ sd+1ϵn

preceded by a sign (−1)∆
′

with

∆′ = |s̄b1≤q||s̄ap|+ |s̄b1>q||s̄ap+1|+∆+ (|s̄b1≤q|+ · · ·+ |s̄bm|+ |s̄b1>q|)(|ϵp+1|+ · · ·+ |ϵn|+ d+ 1)

+ (|G¯̄y|+ d+ 1)(ϵ1 + · · ·+ ϵp−1)

In (F.5), we order the elements and compute E(D2, sd+1G
¯̄y)(s̄b

1
≤q ⊗ ϵp ⊗ s̄b

1
>q, s̄b

2
, . . . , s̄b

m
) and mul-

tiply the result by
(−1)|s̄b

1
>q|(|ϵi|+|s̄b2|+···+|s̄bm|)+(d+1)|G ¯̄y|

Finally, we get

E(D, sd+1F
¯̄x, sd+1G

¯̄y)(s̄a1, . . . , s̄an) = (−1)∆
′′
ϵ1⊗· · ·⊗ ϵp−1⊗ δ1⊗· · ·⊗ δm⊗ ϵp+1⊗· · ·⊗ sd+1ϵn

where ∆ ′′ = ∆′ + |s̄b1>q|(|ϵi|+ |s̄b2|+ · · ·+ |s̄bm|) + (d+ 1)|G¯̄y|.

Definition 4.16. A filled diagram is an admissible diagram (D = {D1, . . . , Dn}, R) together with ele-
ments sd+1Fi ∈ Multi•(Bar(A)[d])[d+ 1] for i ∈ J1, nK.

To each filled diagram D= {(D = {D1, . . . , Dn}, R), (sd+1Fi)i∈J1,nK} we associate the element

E(D) = E((D,R), sd+1F
¯̄x1 , . . . , sd+1F

¯̄xn) ∈ Multi
¯̄x(Bar(A)[d])[d+ 1]

where ¯̄x is the type of (D,R) and ¯̄xi is the type of Di for i ∈ J1, nK. We depict a filled diagram as a diagram
replacing the names of the discs by the corresponding maps (see Figure 4.7).
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F G

Figure 4.7: A filled diagram

Example 4.17. Consider the following filled diagram.

x1
1

x1
2

x1
p1−2

x1
p1−1

x1
p1

x3
<i

x3
≥i

x3
i

x3
i−1

y2
1

y2
q2

y2
q2−1

y1
1

y1
2 y1

q1

G F

It represents a map

sd+1F
¯̄x : A[1]⊗x̄1

⊗A[1]⊗x̄2

⊗A[1]⊗x̄3

→ x1
1
Ax2

p2
[−d]⊗ x2

1
Ax3

p3
[−d]⊗ x3

1
Ax1

p1
[1]

where ¯̄x = (x̄1, x̄2, x̄3) and x̄j = (xj1, . . . , x
j
lg(x̄i)) for j ∈ J1, 3K that takes as an input the last output of a

map
sd+1G

(ȳ1,ȳ2) : A[1]⊗ȳ1

⊗A[1]⊗ȳ2

→ y1
1
Ay2

m
[−d]⊗ x3

i−1
Ax3

i
[1]

with ȳ1 = (y11 , y
1
2 , . . . , y

1
n, x

3
i ), ȳ

2 = (x3i−1, y
2
1 , . . . , y

2
m).

The type of the diagram is (x̄1, x̄2, ȳ1 ⊔ x̄3≥i, x̄
3
<i ⊔ ȳ2), meaning that it represents a map that can be

evaluated at (s̄a1, s̄a2, s̄b1 ⊗ s̄a3≥i, s̄a
3
<i ⊗ s̄b

2
) where s̄ai ∈ A[1]⊗x̄i

and s̄bi ∈ A⊗ȳi

. This evaluation goes
in 5 steps.

1. We place the elements around the diagram, which creates a sign (−1)ϵ with

ϵ = |sd+1G
(ȳ1,ȳ2)|(|s̄a1|+ |s̄a2|+ |s̄a3≥i|) + |s̄a≥i||s̄b

1|+ |s̄b2||s̄a>i|

2. We evaluate E(D1, sd+1G
(ȳ1,ȳ2)) at (s̄b

1
, ¯sb2). The result of this evaluation is an element of the

shifted tensor product (y1
1
Ay2

m
[−d]⊗x3

i−1
Ax3

i
[−d])[d+1] that we will write sd+1(y1

1
G−d

y2
m
⊗x3

i−1
G−d

x3
i
).

We then use the isomorphism (2.1) to obtain the tensor product

(−1)
ϵ+(d+1)|

y1
1
G−d

y2
m

|
y1
1
G−d

y2
m
⊗ x3

i−1
G1

x3
i
∈ y1

1
Ay2

m
[−d]⊗ x3

i−1
Ax3

i
[1]
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3. We put the first output before and get

(−1)
ϵ+(d+1)|

y1
1
G−d

y2
m

|+ϵ′

y1
1
G−d

y2
m
⊗ E(D2, sd+1F

¯̄x(s̄a1, s̄a2, s̄a≥i, s̄a<i ⊗ x3
i−1
G1

x3
i
))

with ϵ′ = y1
1
G−d

y2
m
|(|F |+ d+ 1 + |s̄a1|+ |s̄a2|+ |s̄a≥i|)

4. We evaluate F ¯̄x at (s̄a1, s̄a2, s̄a<i ⊗ x3
i−1
G1

x3
i
⊗ s̄a≥i) which add a sign (−1)

|s̄a≥i|(|s̄a<i|+|
x3
i−1

G1

x3
i
|)

to the result for the transposition of the corresponding elements.

5. We order the outputs according to the labeling of their corresponding outgoing arrow and finally get

(−1)
ϵ+(d+1)|

y1
1
G−d

y2
m

|+ϵ′+ϵ ′′

x1
1
F−d
x2
p2

⊗ x1
2
F−d
x3
p3

⊗ y1
1
G−d

y2
m
⊗ x3

1
F 1
x1
p1

with ϵ ′′ = (−1)
(|

y1
1
G−d

y2
m

|+1)(|
x1
1
F−d

x2
p2

|+|
x2
1
F−d

x3
p3

|)+(d+1)(|
x1
1
F−d

x2
p2

|+···+|
x1
2
F−d

x3
p3

|+···+|
y1
1
G−d

y2
m

|)
.

4.2 The necklace graded Lie algebra

In order to recall what a pre-Calabi-Yau structure on A is, one first defines a graded Lie algebra,
called the necklace graded Lie algebra and appearing in [5]. As a graded vector space, this graded
Lie algebra is Multi•(Bar(A)[d])Clg(•) [d + 1]. In order to define a graded Lie bracket on this space,
we first define a new operation as follows.

Definition 4.18. Consider a graded quiver A with set of objects O as well as tuples of elements of Ō given by
¯̄x = (x̄1, ..., x̄n), ¯̄y = (ȳ1, ..., ȳm) ∈ ¯̄O such that rt(ȳ1) = xvj and lt(ȳm) = xvj−1 for some v ∈ J1, nK and
j ∈ J1, lg(x̄v)K. The inner necklace composition at v,j of elements sd+1F

¯̄x ∈ Multi
¯̄x(Bar(A)[d])[d+1]

and sd+1G
¯̄y ∈ Multi

¯̄y(Bar(A)[d])[d+ 1] is given by

sd+1F
¯̄x ◦
nec,v,j
inn

sd+1G
¯̄y = E(D) ∈ Multi

¯̄x ⊔
v,j,inn

¯̄y
(Bar(A)[d])[d+ 1]

with
¯̄x ⊔

v,j,inn
¯̄y = (x̄1, . . . , x̄v−1, ȳ1 ⊔ x̄v<j , ȳ

2, . . . , ȳm−1, x̄v>j−1 ⊔ ȳm, x̄v+1, . . . , x̄n)

and where D is the filled diagram of type ¯̄x ⊔
v,j,inn

¯̄y given by

x̄1
x̄v≥j

ȳ1

ȳm

x̄v<j

x̄v+1

G F
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Definition 4.19. Consider a graded quiver A with set of objects O as well as tuples of elements of Ō
given by ¯̄x = (x̄1, ..., x̄n), ¯̄y = (ȳ1, ..., ȳm) ∈ ¯̄O such that lt(ȳv) = x1j−1 and rt(ȳv+1) = x1j for
some v ∈ J1,mK and j ∈ J1, lg(x̄1)K. The outer necklace composition at v,j of elements sd+1F

¯̄x ∈
Multi

¯̄x(Bar(A)[d])[d+ 1] and sd+1G
¯̄y ∈ Multi

¯̄y(Bar(A)[d])[d+ 1] is given by

sd+1F
¯̄x ◦
nec,v,j
out

sd+1G
¯̄y = E(D) ∈ Multi

¯̄x ⊔
v,j,out

¯̄y
(Bar(A)[d])[d+ 1]

with
¯̄x ⊔

v,j,out
¯̄y = (ȳ1, . . . , ȳv−1, x̄1<j−1 ⊔ ȳv, x̄2, . . . , x̄n, ȳv+1 ⊔ x̄1>j , ȳ

v+2, . . . , ȳm)

and where D is the filled diagram of type ¯̄x ⊔
v,j,out

¯̄y given by

x̄n

x̄1≥j

ȳv+1

ȳv

x̄1<j

x̄v+1

G F

ȳm

ȳ1

Definition 4.20. Given a graded quiver A with set of objects O, the necklace product of elements
sd+1F, sd+1G ∈ Multi•(Bar(A)[d])Clg(•) [d+ 1] is the element

sd+1F ◦
nec

sd+1G ∈ Multi•(Bar(A)[d])[d+ 1]

given by

(sd+1F ◦
nec

sd+1G)
¯̄z =

∑
(¯̄x,¯̄y,v,j)∈Iinn

sd+1F
¯̄x ◦
nec,v,j
inn

sd+1G
¯̄y +

∑
(¯̄x,¯̄y,v,j)∈Iout

sd+1F
¯̄x ◦
nec,v,j
out

sd+1G
¯̄y

for all ¯̄z ∈ ¯̄O, where

Iinn = {(¯̄x, ¯̄y, v, j) ∈ ¯̄O × ¯̄O × J1, lg(¯̄x)K × J1, lg(x̄v)K|¯̄x ⊔
v,j,inn

¯̄y = ¯̄z}

Iout = {(¯̄x, ¯̄y, v, j) ∈ ¯̄O × ¯̄O × J1, lg(¯̄y)K × J1, lg(x̄1)K|¯̄x ⊔
v,j,out

¯̄y = ¯̄z}

Definition 4.21. Given a graded quiver A with set of objects O, the necklace bracket of two elements
sd+1F, sd+1G ∈ Multi•(Bar(A)[d])Clg(•) [d+ 1] is defined as the element

[sd+1F, sd+1G]nec ∈ Multi•(Bar(A)[d])[d+ 1]

where

[sd+1F, sd+1G]
¯̄z
nec = (sd+1F ◦

nec
sd+1G)

¯̄z − (−1)(|F|+d+1)(|G|+d+1)(sd+1G ◦
nec

sd+1F)
¯̄z

for every ¯̄z ∈ ¯̄O.
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Definition 4.22. Given a graded quiver A with set of objects O, we define the graded vector space C•(A) =∏
¯̄x∈ ¯̄O

C̄̄x(A), where

C̄̄x(A) = Homk

( n−1⊗
i=1

(A[1]⊗x̄n−i+1

⊗ rt(x̄n−i+1)A∗
lt(x̄n−i)[d])⊗A[1]⊗x̄1

, lt(x̄n)Art(x̄1)

)
for ¯̄x = (x̄1, . . . , x̄n) ∈ ¯̄O.

Lemma 4.23. Let A be a graded quiver with set of objects O. Then, we have an injective map

j : Multi•(Bar(A)[d])[d+ 1] → C•(A)[1]

given by the family j = (j¯̄x)¯̄x∈ ¯̄O where j¯̄x : Multi
¯̄x(Bar(A)[d])[d + 1] → C̄̄x(A)[1] is defined by

j¯̄x(sd+1ϕ) = sψ¯̄x with

ψ¯̄x(s̄a
n, tfn−1, s̄an−2, tfn−2, ..., s̄a2, tf2, s̄a1) = (−1)ϵ

( n−1⊗
i=1

(f i ◦ sd)⊗ sd
)(
ϕ(s̄a1, s̄a2, ..., s̄an)

)
for ϕ ∈ Multi

¯̄x(Bar(A)[d]), n = lg(¯̄x), s̄ai ∈ A[1]⊗x̄i

for i ∈ J1, nK and tf i ∈ rt(x̄i+1)A∗
lt(x̄i)[d] for

i ∈ J1, n− 1K with

ϵ =

n−1∑
i=1

|tf i|
n∑

j=i+1

|s̄aj |+ (|ϕ|+ d)

n−1∑
i=1

|tf i|+ d(n− 1) +
∑

1≤i<j≤n

|s̄ai||s̄aj |+
∑

1≤i<j≤n−1

|tf i||tf j |

We denote by Γ the natural bilinear form on the boundary quiver ∂d−1A = A ⊕ A∗[d − 1],
defined in Example 3.18.

Definition 4.24. Given a graded quiver A with set of objects O, the noncounitary cofree conilpotent
graded cocategory on A is defined as T̄ c(A[1]) =

⊕
x̄∈Ō A[1]⊗x̄ with coproduct given by deconcatenation

and the induced grading by the one of A.

Remark 4.25. We have that

T̄ c(∂d−1A[1]) =
⊕
¯̄x∈ ¯̄O

n−1⊗
i=1

(A[1]⊗x̄n−i+1

⊗ rt(x̄n−i+1)A∗
lt(x̄n−i)[d])⊗A[1]⊗x̄1

(4.3)

Definition 4.26. Given a graded cocategory A with coproduct ∆ given by maps y∆
z
x : yAx → yAz⊗ zAx

for x, y, z ∈ O, a homogeneous coderivation of degree d on A is a collection y(Bx)x,y∈O of k-linear
maps yBx : yAx → yAx of degree d such that

y∆
z
x ◦ yBx = (yBz ⊗ id+ id⊗zBx) ◦ y∆

z
x

for each x, y, z ∈ O.

We will denote by Coder(T̄ c(∂d−1A[1])) the graded vector space formed by sums of homoge-
neous coderivations of T̄ c(∂d−1A[1]).

If B ∈ Coder(T̄ c(∂d−1A[1])), we will denote by B ¯̄x the restriction of B to the tuple indexed by
¯̄x ∈ ¯̄O in (4.3), byB ¯̄x

A the composition ofB ¯̄x and the canonical projection T̄ c(∂d−1A[1]) → A[1] and
by B ¯̄x

A∗ the composition of B ¯̄x and the canonical projection T̄ c(∂d−1A[1]) → A∗[d].
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Definition 4.27. A coderivation B ∈ Coder(T̄ c(∂d−1A[1])) is cyclic with respect to the natural bilinear
form Γ if the following equations are satisfied

Γ(B
¯̄x
A(s̄a

n, tfn−1, ..., s̄a2, tf1, s̄a1), tfn) = (−1)ϵΓ(Bσ·¯̄x
A (s̄a1, tfn, s̄an, tfn−1, ..., s̄a2), tf1) (4.4)

and

Γ(B
¯̄x
A∗(s̄an, tfn−1, ..., s̄a2, tf1, s̄a1), sb) = (−1)ϵ

′
Γ(B

¯̄x′

A (s̄a1 ⊗ sb⊗ s̄an, tfn−1, ..., s̄a2), tf1) (4.5)

for ¯̄x = (x̄1, . . . , x̄n), σ = (12 . . . n) and ¯̄x′ = (x̄2, . . . , x̄1 ⊔ x̄n), where the arguments are s̄ai ∈ A[1]⊗x̄i

,
tf i ∈ rt(x̄i+1)A∗

lt(x̄i)[d] for i ∈ J1, nK, sb ∈ rt(x̄1)Alt(x̄n)[1] and

ϵ = (|s̄a1|+ |tfn|)(
n∑

i=2

|s̄ai|+
n−1∑
i=1

|tf i|) , ϵ′ = (|s̄a1|+ |sb|)(
n∑

i=2

|s̄ai|+
n−1∑
i=1

|tf i|)

We define Codercyc(T̄
c(∂d−1A[1])) as the graded vector subspace of Coder(T̄ c(∂d−1A[1])) con-

sisting of sums of homogeneous coderivations that are cyclic with respect to the natural bilin-
ear form Γ. We also define the graded vector subspace of Coder(T̄ c(∂d−1A[1])) which we denote
Codercyc,0(T̄

c(∂d−1A[1])) and which is formed by the elements of Codercyc(T̄ c(∂d−1A[1])) sending
T̄ c(A[1]) to itself.

Proposition 4.28. The linear map

R : Codercyc,0(T̄
c(∂d−1A[1])) → C•(A)[1]

of degree 0, sending a coderivation B to the collection (B ¯̄x
A)¯̄x∈ ¯̄O is an isomorphism of graded vector spaces.

Proof. We will construct the inverse R−1 of this map. Consider B ¯̄x
A ∈ Multi•(Bar(A)[d])Clg(•) . We

construct a collection (B ¯̄x
A∗)¯̄x∈ ¯̄O of maps

B
¯̄x
A∗ :

n−1⊗
i=1

(A[1]⊗x̄n−i+1

⊗ rt(x̄n−i+1)A∗
lt(x̄n−i)[d])⊗A[1]⊗x̄1

−→ lt(x̄n)A∗
rt(x̄1)[d]

given by

Γ(B
¯̄x
A∗(s̄an, tfn, ..., s̄a2, tf1, s̄a1), sb) = (−1)ϵ

′
Γ(B

¯̄x′

A (s̄a1 ⊗ sb⊗ s̄an, tfn−1, ..., s̄a2), tf1)

for each ¯̄x = (x̄1, . . . , x̄n) ∈ ¯̄O and elements s̄ai ∈ A[1]⊗x̄i

for i ∈ J1, nK, tf i ∈ rt(x̄i+1)A∗
lt(x̄i)[d] for

i ∈ J1, n− 1K and sb ∈ rt(x̄1)Alt(x̄n)[1], where ¯̄x′ = (x̄2, . . . , x̄1 ⊔ x̄n) and

ϵ′ = (|s̄a1|+ |sb|)(
n−1∑
i=1

|s̄ai|+
n−1∑
i=2

|tf i|)

One can easily check that the map that associates to B ¯̄x
A the coderivation given by (B ¯̄x

A, B
¯̄x
A∗)¯̄x is

the inverse of R.

We will denote by R−1
A∗ (resp. R−1

A the composition of R−1 and the canonical projection
T̄ c(∂d−1A[1]) → A∗[d] (resp. T̄ c(∂d−1A[1]) → A[1]).

We have the following relation between the necklace product and the usual Gerstenhaber circle
product, which does not seem to have been observed in the literature so far.
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Proposition 4.29. Let F, G be elements in Multi•(Bar(A)[d])Clg(•) . Then, we have

j¯̄x ⊔
v,j,inn

¯̄y(sd+1F
¯̄x ◦
nec,v,j
inn

sd+1G
¯̄y) = j¯̄x(sd+1F

¯̄x) ◦
G,p,q

j¯̄y(sd+1G
¯̄y) (4.6)

for ¯̄x, ¯̄y ∈ ¯̄O, v ∈ J1, lg(¯̄x)K and j ∈ J1, lg(x̄v)K and

j¯̄x ⊔
v,j,out

¯̄y(sd+1F
¯̄x ◦
nec,v,j
out

sd+1G
¯̄y) = −(−1)(|F|+d+1)(|G|+d+1)j¯̄y(sd+1G

¯̄y) ◦
G,p,q

R−1
A∗(j¯̄x(sd+1F

¯̄x)) (4.7)

for v ∈ J1, lg(¯̄y)K and j ∈ J1, lg(x̄1)K, where p = lg(x̄1) + ...+ lg(x̄v) + j + 2 and q = p+
lg(¯̄y)∑
i=1

lg(ȳi).

Proof. We will first show the identity (4.6). Given ¯̄x = (x̄1, . . . , x̄n), ¯̄y = (ȳ1, . . . , ȳm) ∈ ¯̄O, both the
compositions

sd+1F
¯̄x ◦
nec,v,j
inn

sd+1G
¯̄y

and
j¯̄x(sd+1F

¯̄x) ◦
G,p,q

j¯̄y(sd+1G
¯̄y)

are zero if there are no u, v ∈ J1, nK and j ∈ J1, lg(x̄v)K such that lt(ȳu) = xvj and rt(ȳu+1) = xvj+1

with the convention that x̄n+1 = x̄1. We will thus assume that there exist such u, v ∈ J1, nK and
j ∈ J1, lg(x̄v)K. We can further suppose that u = n because of the invariance under the action of
Cn. To simplify the expressions, we will denote the result of applying F ¯̄x on any argument as a
tensor product lt(x̄1)F

−d
rt(x̄2) ⊗ · · · ⊗ lt(x̄n−1)F

−d
rt(x̄n) ⊗ lt(x̄n)F

−d
rt(x̄1), where we omit those arguments.

We have

j¯̄x ⊔
v,j,inn

¯̄y(sd+1F
¯̄x ◦

nec,v,j
inn

sd+1G
¯̄y)

(s̄an, tfn−1, . . . , s̄av+1, tfv, s̄av>j , s̄b
m
, tgm−1, . . . , s̄b

2
, tg1, s̄b

1
, s̄av≤j , tf

v−1, . . . , s̄a2, tf1, s̄a1)

= (−1)ϵ((f1 ◦ sd)⊗ · · · ⊗ (fv ◦ sd)⊗ (g1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ (fv+1 ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ id)

(sd+1F
¯̄x ◦

nec,v,j
inn

sd+1G
¯̄y)(s̄a1, s̄a2, . . . , s̄av−1, s̄av≤j , s̄b

1
, . . . , s̄b

m−1
, s̄b

m
, s̄av>j , . . . , s̄a

n−1, s̄an)

= (−1)ϵ+ϵ′

((f1 ◦ sd)⊗ · · · ⊗ (fv ◦ sd)⊗ (g1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ (fv+1 ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ id)

sd+1(lt(x̄1)F
−d
rt(x̄2), . . . lt(x̄v−1)F

−d
rt(x̄v), lt(ȳ1)G

−d
rt(ȳ2), ..., lt(ȳm−1)G

−d
rt(ȳm), lt(x̄v)F

−d
rt(x̄v+1)

. . . lt(x̄n)F
−d
rt(x̄1))

for elements s̄ai ∈ A[1]⊗x̄i

, s̄bi ∈ A[1]⊗ȳi

, tf i ∈ rt(x̄i+1)A∗
lt(x̄i)[d] and tgi ∈ rt(ȳi+1)A∗

lt(ȳi)[d], with

ϵ =

n−1∑
i=v

|tf i|
n∑

k=i+1

|s̄ak|+
m−1∑
i=1

|tgi|(
n∑

k=v+1

|s̄ak|+ |s̄av>j |+
m∑

k=i+1

|s̄bk|)

+

v−1∑
i=1

|tf i|(
n∑

k=v+1

|s̄ak|+ |s̄av>j |+
m∑

k=1

|s̄bk|+ |s̄av≤j |+
v−1∑

k=i+1

|s̄ak|) + d(n+m)

+ (|F|+ |G|+ 1)(

n−1∑
i=1

|tf i|+
m−1∑
i=1

|tgi|) +
n−1∑
i=1

|tf i|
m−1∑
i=1

|tgi|+
∑

1≤i<k≤n−1

|tf i||tfk|
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+
∑

1≤i<k≤m−1

|tgi||tgk|+
∑

1≤i<k≤n

|s̄ai||s̄ak|+ |s̄av>j ||s̄av≤j |+
∑

1≤i<k≤m

|s̄bi||s̄bk|+
n∑

i=1

|s̄ai|
m∑
i=1

|s̄bi|

ϵ′ = (|G|+ d+ 1)(

v−1∑
i=1

|s̄ai|+ |s̄av≤j |)

+

m−1∑
i=1

|lt(ȳi)G
−d
rt(ȳi+1)

|(|s̄av>j |+
n∑

i=v+1

|s̄ai|+
n∑

i=v

|lt(x̄i)F
−d
rt(x̄i+1)

|+ |lt(ȳm)G
1
rt(ȳ1)|+ d+ 1)

On the other hand, we have that

j¯̄x(sd+1F
¯̄x) ◦

G,p,q
j¯̄y(sd+1G

¯̄y)

(s̄an, tfn−1, . . . , s̄av+1, tfv, s̄av>j , s̄b
m
, tgm−1, . . . , s̄b

2
, tg1, s̄b

1
, s̄av≤j , tf

v−1, . . . , s̄a2, tf1, s̄a1)

= (−1)δj¯̄x(sd+1F
¯̄x)(s̄an, tfn−1, . . . , s̄av+1, tfv, s̄av>j , (

m−1⊗
i=1

(gi ◦ sd)⊗ id)sd+1G
¯̄y(s̄b

1
, . . . , s̄b

m
),

s̄av≤j , tf
v−1, . . . , s̄a2, tf1, s̄a1)

= (−1)δ+δ′((f1 ◦ sd)⊗ · · · ⊗ (fv−1 ◦ sd)⊗ (fv ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ id)

sd+1(lt(x̄1)F
−d
rt(x̄2), . . . lt(x̄v−1)F

−d
rt(x̄v), λG, lt(x̄v)F

−d
rt(x̄v+1) . . . lt(x̄n)F

−d
rt(x̄1))

where λG =
m−1⊗
i=1

(gi ◦ sd))(lt(ȳ1)G
−d
rt(ȳ2), ..., lt(ȳm−1)G

−d
rt(ȳm)) ∈ k and

δ = (|G|+ d+ 1)(

n∑
i=v+1

|s̄ai|+ |s̄av>j |+
n−1∑
i=v

|tf i|) +
m−1∑
i=1

|tgi|
m∑

k=i+1

|s̄bk|+ d(m− 1)

+ (|G|+ 1)

m−1∑
i=1

|tgi|+
∑

1≤i<k≤m−1

|tgi||tgk|+
∑

1≤i<k≤m

|s̄bi||s̄bk|

δ′ =
∑

1≤i<k≤n−1

|tf i||tfk|+
∑

1≤i<k≤n

|s̄ai||s̄ak|+ |s̄av≤j ||s̄av>j |+
n∑

i=1

|s̄ai||lt(ȳm)G
1
rt(ȳ1)|

+

v−1∑
i=1

|tf i|(
n∑

k=i+1

|s̄ak|+ |lt(ȳm)G
1
rt(ȳ1)|) +

n−1∑
i=v

|tf i|
n∑

k=i+1

|s̄ak|

+ |λG|(
v−1∑
i=1

|s̄ai|+ |s̄av≤j |+ |lt(ȳm)G
1
rt(ȳ1)|+

v−1∑
i=1

|tf i|+
n∑

i=v

lt(x̄i)F
−d
rt(x̄i+1)

|) + d(n− 1)

+ (|F|+ d)

n−1∑
i=1

|tf i|+ (d+ 1)

m−1∑
i=1

|lt(ȳi)G
−d
rt(ȳi+1)

|

Therefore, we have

j¯̄x(sd+1F
¯̄x) ◦

G,p,q
j¯̄y(sd+1G

¯̄y)

(s̄an, tfn−1, . . . , s̄av+1, tfv, s̄av>j , s̄b
m
, tgm−1, . . . , s̄b

2
, tg1, s̄b

1
, s̄av≤j , tf

v−1, . . . , s̄a2, tf1, s̄a1)

= (−1)δ+δ′+δ ′′
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((f1 ◦ sd)⊗ · · · ⊗ (fv ◦ sd)⊗ (g1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ (fv+1 ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ id)

sd+1(lt(x̄1)F
−d
rt(x̄2), . . . lt(x̄v−1)F

−d
rt(x̄v), lt(ȳ1)G

−d
rt(ȳ2), ..., lt(ȳm−1)G

−d
rt(ȳm), lt(x̄v)F

−d
rt(x̄v+1)

. . . lt(x̄n)F
−d
rt(x̄1))

with δ ′′ =
m−1∑
i=1

|tgi|(
n−1∑
i=v

|tf i|+
v−1∑
i=1

lt(x̄i)F
−d
rt(x̄i+1)). One can easily check that ϵ+ ϵ′ = δ + δ′ + δ ′′

mod2. Then, the first identity is proved.
We now prove the identity (4.7). Given ¯̄x = (x̄1, . . . , x̄n), ¯̄y = (ȳ1, . . . , ȳm) ∈ ¯̄O, both the

compositions
sd+1F

¯̄x ◦
nec,v,j
out

sd+1G
¯̄y

and
j¯̄y(sd+1G

¯̄y) ◦
G,p,q

R−1
A∗(j¯̄x(sd+1F

¯̄x))

are zero if there are no v ∈ J1,mK and j ∈ J1, lg(x̄1)K such that x̄1j−1 = lt(ȳv) and x̄1j = rt(ȳv+1). We
will thus assume that such v ∈ J1,mK and j ∈ J1, lg(x̄1)K exist. Then, we have

j¯̄x ⊔
v,j,out

¯̄y(sd+1F
¯̄x ◦
nec,v,j
out

sd+1G
¯̄y)

(s̄b
m
, tgm−1, . . . , s̄b

v+1
, s̄a1≥j , tf

n, s̄an, tfn−1, s̄an−1, . . . , tf1, s̄a1<j , s̄b
v
, tgv−1, . . . , s̄b

1
)

= (−1)ϵ

((g1 ◦ sd)⊗ · · · ⊗ (gv−1 ◦ sd)⊗ (f1 ◦ sd)⊗ · · · ⊗ (fn ◦ sd)⊗ (gv+1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ id)

(sd+1F
¯̄x ◦
nec,v,j
out

sd+1G
¯̄y)(s̄b

1
, . . . , s̄b

v
, s̄a1<j , . . . , s̄a

n, s̄a1≥j , s̄b
v+1

, . . . , s̄b
m
)

= (−1)ϵ+ϵ′

((g1 ◦ sd)⊗ · · · ⊗ (gv−1 ◦ sd)⊗ (f1 ◦ sd)⊗ · · · ⊗ (fn ◦ sd)⊗ (gv+1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ id)

sd+1(lt(ȳ1)G
−d
rt(ȳ2), . . . , lt(ȳv−1)G

−d
rt(ȳv), lt(x̄1)F

−d
rt(x̄2), . . . , lt(x̄n)F

−d
rt(x̄1), lt(ȳv+1)G

−d
rt(ȳv+2), . . . , lt(ȳm)G

−d
rt(ȳ1))

with

ϵ = (|F|+ |G|+ 1)(

m−1∑
i=1

|tgi|+
n∑

i=1

|tf i|) + d(n+m) +

m−1∑
i=v+1

|tgi|
m∑

k=i+1

|s̄bk|+ |s̄a1≥j ||s̄a1<j |

+
∑

1≤i<k≤n

|s̄ai||s̄ak|+
n∑

i=1

|tf i|(
n∑

k=i+1

|s̄ak|+ |s̄a1≥j |+
m∑

i=v+1

|s̄bi|) +
v−1∑
i=1

|tgi|(
n∑

i=1

|s̄ai|+
m∑

k=i+1

|s̄bk|)

+
∑

1≤i<k≤m

|s̄bi||s̄bk|+
∑

1≤i<k≤m−1

|tgi||tgk|+
∑

1≤i<k≤n

|tf i||tfk|+
m−1∑
i=1

|tgi|
n∑

i=1

|tf i|+
m∑
i=1

|s̄bi|
n∑

i=1

|s̄ai|

ϵ′ =

n∑
i=1

|s̄ai|(
m∑

i=v+1

|s̄bi|+
m∑

i=v+1

|lt(ȳi)G
−d
rt(ȳi+1)

|) + (|F|+ d+ 1)

v−1∑
i=1

|lt(ȳi)G
−d
rt(ȳi+1)

|

+ |s̄a1≥j |
n∑

i=2

|s̄ai|+ |s̄av<j ||lt(ȳv)G
1
rt(ȳv+1)|
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On the other hand, we have that

j¯̄y(sd+1G
¯̄y) ◦

G,p,q
R−1

A∗(j¯̄x(sd+1F
¯̄x))

(s̄b
m
, tgm−1, . . . , s̄b

v+1
, s̄a1≥j , tf

n, s̄an, tfn−1, s̄an−1, . . . , s̄a1<j , s̄b
v
, tgv−1, . . . , s̄b

1
)

= (−1)δj¯̄y(sd+1G
¯̄y)(s̄b

m
, tgm−1, . . . , s̄b

v+1
, tg, s̄b

v
, tgv−1, . . . , s̄b

1
)

where tg = R−1
A∗(j¯̄x(sd+1F

¯̄x))(s̄a1≥j , tf
n, s̄an, tfn−1, s̄an−1, . . . , s̄a1<j) ∈ A∗[d] and

δ = (|F|+ d+ 1)(

m∑
i=v+1

|s̄bi|+
m−1∑
i=v+1

|tgi|)

Therefore, we have that

j¯̄y(sd+1G
¯̄y) ◦

G,p,q
R−1

A∗(j¯̄x(sd+1F
¯̄x))

(s̄b
m
, tgm−1, . . . , s̄b

v+1
, tgv+1, s̄a1≥j , s̄a

n, tfn−1, s̄an−1, . . . , s̄a1<j , s̄b
v
, tgv−1, . . . , s̄b

1
)

= (−1)δ+δ′((g1 ◦ sd)⊗ · · · ⊗ (gv−1 ◦ sd)⊗ (g ◦ sd)⊗ (gv+1 ◦ sd)⊗ · · · ⊗ (gm ◦ sd)⊗ id)

sd+1(lt(ȳ1)G
−d
rt(ȳ2), . . . , lt(ȳv−1)G

−d
rt(ȳv), lt(ȳv)G

−d
rt(ȳv+1), . . . , lt(ȳm)G

−d
rt(ȳ1))

where

δ′ = |tg|
m∑

k=v+1

|s̄bk|+
m−1∑
i=1

|tgi|
m∑

k=i+1

|s̄bk|+
∑

1≤i<k≤m

|s̄bi||s̄bk|+
∑

1≤i<k≤m−1

|tgi||tgk|

+

m−1∑
i=1

|tgi||tg|+ (|G|+ 1)(

m−1∑
i=1

|tgi|+ |tg|) + d(m− 1)

Furthermore, by definition, we have that

g(lt(ȳv)Grt(ȳv+1))

= (−1)|tg|+1Γ(R−1
A∗(j¯̄x(sd+1F

¯̄x))(s̄a1≥j , tf
n, s̄an, tfn−1, s̄an−1, . . . , s̄a1<j), lt(ȳv−1)G

1
rt(ȳv))

= (−1)|tg|+1+∆Γ(j¯̄x(sd+1F¯̄x)(s̄a
n, tfn−1, s̄an−1, . . . , s̄a1<j ⊗ lt(ȳv−1)G

1
rt(ȳv) ⊗ s̄a1≥j), tf

n)

= (−1)|tg|+1+∆+∆′
Γ(((f1 ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ id)(lt(x̄1)F

−d
rt(x̄2) . . . lt(x̄n)F

−d
rt(x̄1)), tf

n)

= (−1)|tg|+1+∆+∆′+∆”((f1 ◦ sd)⊗ · · · ⊗ (fn−1 ◦ sd)⊗ (fn ◦ sd))(lt(x̄1)F
−d
rt(x̄2) · · · ⊗ lt(x̄n)F

−d
rt(x̄1))

where

∆ = (|s̄a1≥j |+ |tfn|)(
n∑

i=2

|s̄ai|+ |s̄a1<j |+ |lt(ȳv)G
1
rt(ȳv+1)|+

n−1∑
i=1

|tf i|)

∆′ =
∑

1≤i<k≤n

|s̄ai||s̄ak|+ |lt(ȳv)G
1
rt(ȳv+1)|

n∑
i=2

|s̄ai|+
∑

1≤i<k≤n−1

|tf i||tfk|

+ d(n− 1) + (|F|+ d)

n−1∑
i=1

|tf i|+
n−1∑
i=1

|tf i|
n∑

j=i+1

|s̄ai|

∆” = |tfn|(1 +
n∑

i=1

|lt(x̄i)F
−d
rt(x̄i+1)

|)
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Finally, we have that

j¯̄y(sd+1G
¯̄y) ◦

G,p,q
R−1

A∗(j¯̄x(sd+1F
¯̄x))

(s̄b
m
, tgm−1, . . . , s̄b

v+1
, tgv+1, s̄a1≥j , tf

n, s̄an, tfn−1, s̄an−1, . . . , s̄a1<j , s̄b
v
, tgv−1, . . . , s̄b

1
)

= (−1)γ

((g1 ◦ sd)⊗ · · · ⊗ (gv−1 ◦ sd)⊗ (f1 ◦ sd)⊗ · · · ⊗ (fn ◦ sd)⊗ (gv+1 ◦ sd)⊗ · · · ⊗ (gm−1 ◦ sd)⊗ id)

sd+1(lt(ȳ1)G
−d
rt(ȳ2), . . . , lt(ȳv−1)G

−d
rt(ȳv), lt(x̄1)F

−d
rt(x̄2), . . . , lt(x̄n)F

−d
rt(x̄1), lt(ȳv+1)G

−d
rt(ȳv+2), . . . , lt(ȳm)G

−d
rt(ȳ1))

where

γ = δ + δ′ + |tg|(
m−1∑
i=v+1

|tgi|+ d+ 1 +

v−1∑
i=1

|lt(ȳi)G
−d
rt(ȳi+1)

|)

+ ∆+∆′ +∆” + |tg|+ 1 +

n∑
i=1

|tf i|(
v−1∑
i=1

|lt(ȳi)G
−d
rt(ȳi+1)

|+
m−1∑
i=v+1

|tgi|)

It is straightforward to check that ϵ+ ϵ′ + γ = 1 + (|F|+ d+ 1)(|G|+ d+ 1)mod 2.

Corollary 4.30. The necklace bracket [−,−]nec introduced in Definition 4.21 gives a graded Lie algebra
structure on Multi•(Bar(A)[d])Clg(•) [d+ 1].

Proof. For F,G ∈ Multi•(Bar(A)[d])Clg(•) , we have that

j([sd+1F, sd+1G]nec) = πA([j(sd+1F),j(sd+1G)]G)

where πA : A[1]⊕A∗[d] → A[1] is the canonical projection. Moreover, using that j is injective, we
have that [−,−]nec is a graded Lie bracket.

4.3 Pre-Calabi-Yau structures

Definition 4.31. A d-pre-Calabi-Yau structure on a graded quiver A is an element

sd+1MA ∈ Multi•(Bar(A)[d])Clg(•) [d+ 1]

of degree 1, solving the Maurer-Cartan equation

[sd+1MA, sd+1MA]nec = 0

Note that, since sd+1MA has degree 1, this is tantamount to requiring that sd+1MA ◦
nec

sd+1MA = 0.

We now recall the following result of [5] which states the link beteween a d-pre-Calabi-Yau
structure on a Hom-finite graded quiver A and a cyclic A∞-structure on A⊕A∗[d− 1].

Proposition 4.32. A d-pre-Calabi-Yau structure on a Hom-finite graded quiver A is equivalent to the data
of an A∞-structure on A⊕A∗[d− 1] that restricts to A and that satisfies the cyclic condition (3.1).
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Proof. Consider an element sd+1MA ∈ Multi•(Bar(A)[d])Clg(•) [d + 1] of degree 1. We then define
maps

mx̄1,...,x̄n

A⊕A∗→A :

n−1⊗
i=1

(A[1]⊗x̄i

⊗ rt(x̄i+1)A∗
lt(x̄i)[d])⊗A[1]⊗x̄n

→ lt(x̄1)Art(x̄n) (4.9)

and

mx̄1,...,x̄n

A⊕A∗→A∗ :

n−1⊗
i=1

(A[1]⊗x̄i

⊗ rt(x̄i+1)A∗
lt(x̄i)[d])⊗A[1]⊗x̄n

→ lt(x̄1)A∗
rt(x̄n)[d− 1] (4.10)

uniquely determined by smx̄1,...,x̄n

A⊕A∗→A = j¯̄x−1(sd+1M
x̄n,...,x̄1

A ) for ¯̄x = (x̄1, . . . , x̄n) and such that
the cyclicity conditions (4.4) and (4.5) hold. This is well-defined, since the bilinear form ΓA is
nondegenerate. By Proposition 4.29, sd+1MA defines a d-pre-Calabi-Yau structure if and only if
smA⊕A∗ defines a cyclic A∞-structure on A⊕A∗[d− 1]. If A is Hom-finite, the bijectivity of j tells
us that the collection of maps (4.9) and (4.10) are in correspondence with maps of the form MA,
which shows the equivalence.

5 Pre-Calabi-Yau morphisms

5.1 The mixed necklace graded Lie algebra

One can also define a “mixed” necklace bracket, which will be useful in the next section. As we
did for the necklace bracket, we first define the following graded vector space.

Definition 5.1. Given graded quivers A and B with respective sets of objects OA and OB and a map
Φ : OA → OB, consider the graded vector space

B•(A[1],B[−d])

=
∏
n∈N

∏
¯̄x∈Ōn

A

Homk

( n⊗
i=1

A[1]⊗x̄i

,

n−1⊗
i=1

Φ(lt(x̄i))BΦ(rt(x̄i+1))[−d]⊗ (lt(x̄n)A[−d]rt(x̄1) ⊕ Φ(lt(x̄n))B∗[−1]Φ(rt(x̄1)))

)

Definition 5.2. Consider sd+1F
¯̄x ∈ B¯̄x(A[1],B[−d])[d+1] with ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn. Then sd+1F

¯̄x

induces a morphism of the form

A[1]⊗x̄1

⊗ Φ(rt(x̄1))BΦ(lt(x̄n))[−d]⊗A[1]⊗x̄n

⊗ · · · ⊗ A[1]⊗x̄n−1

→
n−1⊗
i=1

Φ(lt(x̄i))BΦ(rt(x̄i+1))[−d] (5.1)

sending (s̄a1, s−db, s̄a
n, . . . , s̄an−1) to

(−1)ϵΦ(lt(x̄1))F
−d
Φ(rt(x̄2)) ⊗ · · · ⊗ Φ(lt(x̄n−1))F

−d
Φ(rt(x̄n)) ⊗ Φ(lt(x̄n))F

1
Φ(rt(x̄1))(sb)

where we have written

(id⊗(n−1) ⊗πB)
(
F x̄1,...,x̄n

(s̄a1, . . . , s̄an)
)

= Φ(rt(x̄1))F
−d
Φ(lt(x̄2)) ⊗ · · · ⊗ Φ(rt(x̄n−1))F

−d
Φ(lt(x̄n)) ⊗ Φ(rt(x̄n))F

1
Φ(lt(x̄1))
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where πB denotes the canonical projection

lt(x̄n)A[−d]rt(x̄1) ⊕ Φ(lt(x̄n))B∗[−1]Φ(rt(x̄1)) → Φ(lt(x̄n))B∗[−1]Φ(rt(x̄1))

for s̄ai ∈ A[1]⊗x̄i

with

ϵ = (d+ 1)(|s̄a1|+ |F ¯̄x|) + (|sb|+ |s̄an|)
n−1∑
i=2

|s̄ai|+ |sb||s̄an|+ (d+ 1)

n−1∑
i=1

|Φ(lt(x̄i))F
−d
Φ(rt(x̄i+1))|

and a morphism of the form

A[1]⊗x̄1

⊗A[1]⊗x̄2

⊗ · · · ⊗ A[1]⊗x̄n

→
n−1⊗
i=2

Φ(lt(x̄i))BΦ(rt(x̄i+1))[−d]⊗ lt(x̄n)A[1]rt(x̄1) (5.2)

given by
(
id⊗(n−1) ⊗(sd+1 ◦ πA)

)
◦ F x̄1,...,x̄n

where πA denotes the canonical projection

lt(x̄n)A[−d]rt(x̄1) ⊕ Φ(lt(x̄n))B∗[−1]Φ(rt(x̄1)) → lt(x̄n)A[−d]rt(x̄1)

Lemma 5.3. Given two graded quivers A and B with respective sets of objects OA and OB and a map
Φ : OA → OB, we have an isomorphism

B : B•(A[1],B[−d])[d+ 1]
≃−→ BA

• (A[1],B[−d])⊕BB
• (A[1],B[−d])

where

BA
• (A[1],B[−d]) =

∏
n∈N

∏
¯̄x∈Ōn

A

Homk

( n⊗
i=1

A[1]⊗x̄i

,

n−1⊗
i=1

Φ(lt(x̄i))BΦ(rt(x̄i+1))[−d]⊗ lt(x̄n)A[1]rt(x̄1)

)

and

BB
• (A[1],B[−d]) =

∏
n∈N

∏
¯̄x∈Ōn

A

Homk

(
A[1]⊗x̄1

⊗ Φ(rt(x̄1))B[−d]Φ(lt(x̄n)) ⊗A[1]⊗x̄n

⊗ · · · ⊗ A[1]⊗x̄n−1

,

n−1⊗
i=1

Φ(lt(x̄i))BΦ(rt(x̄i+1))[−d]
)

sending an element sd+1F ∈ B•(A[1],B[−d])[d+ 1] to the elements defined in (5.2) and (5.1).

Definition 5.4. Let A and B be graded quivers with respective sets of objects OA and OB and consider
a map Φ : OA → OB. We define the graded quiver QΦ whose set of objects is OA and whose spaces of
morphisms are y(QΦ)x = yAx ⊕ Φ(y)B∗

Φ(x)[d− 1] for x, y ∈ OA.

Definition 5.5. Let A and B be graded quivers with respective sets of objects OA and OB and consider a
map Φ : OA → OB. Given sd+1F, sd+1G ∈ B•(A[1],B[−d])[d + 1], we define their Φ-mixed necklace
product as the element sd+1F ◦

Φnec
sd+1G ∈ B•(A[1],B[−d])[d+ 1] given by

(sd+1F ◦
Φnec

sd+1G)
¯̄x =

∑
E(D) +

∑
E(D′) ∈ B•(A[1],B[−d])[d+ 1]

30



where the sums are over all the filled diagrams D and D′ of type ¯̄x and of the form

FG
D= D′ =

FG

More precisely, each of D and D′ can be pictured as two different filled diagrams by put in bold the
arrow corresponding to the last output of F which is either an element in A[1] or in B∗[d]. Thus, D is one
of the following

FG
D1 = D2 = FG

and D′ is one of the following

FG
D′

1 = D′
2 = FG

Remark 5.6. The diagrams of Definition 5.5 are filled with F and G seen as elements of Multi•(Bar(Q′
Φ)[d])

where Q′
Φ is the graded quiver whose set of objects is OA and whose spaces of morphisms are y(Q′

Φ)x =

yAx ⊕ Φ(y)BΦ(x).

Definition 5.7. Given graded quivers A and B with respective sets of objects OA and OB and a map
Φ : OA → OB, the Φ-mixed necklace bracket is the graded Lie bracket which is defined for elements
F,G ∈ B•(A[1],B[−d]) by

[sd+1F, sd+1G]Φnec = sd+1F ◦
Φnec

sd+1G− (−1)(|F|+d+1)(|G|+d+1)sd+1G ◦
Φnec

sd+1F

Lemma 5.8. Let A and B be graded quivers with respective sets of objects OA and OB and consider a map
Φ : OA → OB. Then, we have an injective map

jΦ : B•(A[1],B[−d])[d+ 1] → C(A⊕ B∗[d− 1])[1]

sending sd+1ϕ ∈ B¯̄x(A[1],B[−d])[d+ 1] to sψ¯̄x where

ψ¯̄x :

n−1⊗
i=1

(A[1]⊗x̄n−i+1

⊗Φ(rt(x̄n−i+1))B
∗[−d]Φ(lt(x̄n−i)))⊗A[1]⊗x̄1

→ lt(x̄n)A[−d]rt(x̄1)⊕Φ(lt(x̄n))B∗[−1]Φ(rt(x̄1))
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is given by

ψ¯̄x(s̄a
n, tfn−1, s̄an−2, tfn−2, ..., s̄a2, tf2, s̄a1) = (−1)ϵ

( n⊗
i=1

(f i ◦ sd)⊗ sd
)(
ϕ(s̄a1, s̄a2, ..., s̄an)

)
for n = lg(¯̄x), s̄ai ∈ A[1]⊗x̄i

and tf i ∈ Φ(rt(x̄i+1))B∗
Φ(lt(x̄i))[d] with

ϵ =
∑

1≤i≤j≤n−1

|s̄ai||tf j |+ (|ϕ|+ d)

n−1∑
i=1

|tf i|+ d(n− 1) +
∑

1≤i<j≤n

|s̄ai||s̄aj |+
∑

1≤i<j≤n−1

|tf i||tf j |

Proposition 5.9. Let A and B be graded quivers with respective sets of objects OA and OB and consider a
map Φ : OA → OB. Then, we have

jΦ([sd+1F, sd+1G]Φnec) = [jΦ(sd+1F),j
Φ(sd+1G)]G

for F,G ∈ B•(A[1],B[−d]).

5.2 Pre-Calabi-Yau morphisms (after M. Kontsevich, A. Takeda and Y. Vlas-
sopoulos)

Following the article [5], we recall the definition of the category of d-pre-Calabi-Yau categories.

Definition 5.10. Given graded quivers A and B with respective sets of objects OA and OB and a map
F0 : OA → OB, consider the graded vector space

Multi•(A[1],B[−d])

=
∏
n∈N

∏
¯̄x∈Ōn

A

Homk

( n⊗
i=1

A[1]⊗x̄i

,

n−1⊗
i=1

F0(lt(x̄i))BF0(rt(x̄i+1))[−d]⊗ F0(lt(x̄n))B[−d]F0(rt(x̄1)))

)

The action of τ = (τn)n∈N∗ ∈
∏

n∈N∗ Cn on an element F = (F ¯̄x)¯̄x∈ ¯̄O ∈ Multi•(A[1],B[−d]) is the
element τ · F ∈ Multi•(A[1],B[−d]) given by

(τ · F)¯̄x = τ−1

F0(lt(x̄1))BF0(rt(x̄2))[−d],...,F0(lt(x̄n))BF0(rt(x̄1))[−d] ◦ F
¯̄x·τ ◦ τA[1]⊗x̄1 ,A[1]⊗x̄2 ,...,A[1]⊗x̄n

for ¯̄x ∈ ¯̄O. We will denote by Multi•(A[1],B[−d])Clg(•) the space of elements of Multi•(A[1],B[−d]) that
are invariant under the action of Clg(•).

Definition 5.11. Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets
of objects OA and OB and an element sd+1F ∈ Multi•(A[1],B[−d])[d+1] of degree 0, the multinecklace
composition of sd+1MA and sd+1F is the element

sd+1F ◦
multinec

sd+1MA ∈ Multi•(A[1],B[−d])[d+ 1]

given by
(sd+1F ◦

multinec
sd+1MA)

¯̄x =
∑

E(D)

for ¯̄x ∈ OA, where the sum is over all the filled diagrams D of type ¯̄x of the form
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F

F

F

MA

and where we have omitted the bold arrow, meaning that it is any of the outgoing arrows.

Definition 5.12. Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets of
objects OA and OB and an element sd+1F ∈ Multi•(A[1],B[−d])[d+1] of degree 0, the pre composition
of sd+1F and sd+1MB is the element

sd+1MB ◦
pre

sd+1F ∈ Multi•(A[1],B[−d])[d+ 1]

given by
(sd+1MB ◦

pre
sd+1F)

¯̄x =
∑

E(D′)

for ¯̄x ∈ OA, where the sum is over all the filled diagrams D′ of type ¯̄x of the form

MB

F

F
F

and where we have omitted the bold arrow, meaning that it is any of the outgoing arrows.

Definition 5.13. Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets
of objects OA and OB a d-pre-Calabi-Yau morphism (F0,F) : (A, sd+1MA) → (B, sd+1MB) is a map
F0 : OA → OB together with an element sd+1F ∈ Multi•(A[1],B[−d])Clg(•) [d+ 1] of degree 0 satisfying
the following equation

(sd+1F ◦
multinec

MA)
¯̄x = (MB ◦

pre
sd+1F)

¯̄x (5.3)

for all ¯̄x ∈ ¯̄OA. Note that the left member and right member of the previous identity belong to

Homk

( n⊗
i=1

A[1]⊗x̄i

,

n−1⊗
i=1

F0(lt(x̄i))BF0(rt(x̄i+1))[−d]⊗ F0(lt(x̄n))BF0(rt(x̄1))[1]

)
We now recall how to compose d-pre-Calabi-Yau morphisms.

Definition 5.14. Let (A, sd+1MA), (B, sd+1MB) and (C, sd+1MC) be d-pre-Calabi-Yau categories with
respective sets of objects OA, OB and OC and let (F0,F) : (A, sd+1MA) → (B, sd+1MB) and (G0,G) :
(B, sd+1MB) → (C, sd+1MC) be d-pre-Calabi-Yau morphisms. The composition of sd+1F and sd+1G is
the pair

(G0 ◦ F0, sd+1F ◦
pCY

sd+1G)
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where
sd+1F ◦

pCY
sd+1G ∈ Multi•(A[1],B[−d])Clg(•) [d+ 1]

is of degree 0 and is given by (sd+1G ◦
pCY

sd+1F )
¯̄x =

∑
E(D) where the sum is over all filled diagrams D

of type ¯̄x ∈ ¯̄OA of the form

G
F

F
F

G
F

G

F

(5.4)

and where we have omitted the bold arrow, meaning that it any of the outgoing arrows.

Proposition 5.15. For d ∈ Z, d-pre-Calabi-Yau categories and d-pre-Calabi-Yau morphisms together with
the composition given in Definition 5.14 define a category, denoted as pCYd. Given a graded quiver A with
set of objects O, the identity morphism Id : (A, sd+1MA) → (A, sd+1MA) is given by Idx = idxAx for
x ∈ O and Idx̄

1,...,x̄n

= 0 for (x̄1, . . . , x̄n) ∈ Ōn such that n ̸= 1 or n = 1 and lg(x̄1) ̸= 1.

Proof. We only have to check that the composition is associative and that the composition of any
two d-pre-Calabi-Yau morphisms F and G is a d-pre-Calabi-Yau morphism. The associativity of
the composition is clear. Now, consider two d-pre-Calabi-Yau morphisms F and G. Their compo-
sition is the sum of diagrams of the form (5.4). Therefore, the multinecklace composition of this
composition and the pre-Calabi-Yau structure sd+1MA is a sum of diagrams of the form

MA

F

F

G
F

G

F

F

G

G
F

F

(5.5)
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Given ¯̄x ∈ ¯̄OA, we have to sum over all diagrams of such type and we have several possibilities
for the type of the inner diagram, defined as the subdiagram consisting of the disc filled with MA
together with all those discs directly connected to the one filled with MA. Note that if we fix the
type of the outer diagram given as the complement of the inner diagram, the type of the inner
one is fixed. Moreover, changing the inner diagram for one of same type does not change the type
of the whole diagram. Therefore, taking the sum over all diagrams of type ¯̄x ∈ ¯̄OA is the same
as taking the sum over all the possible types for the outer diagram and for each of those, taking
the sum over all the suitable types for the inner one. This second sum allows us to use that F is a
pre-Calabi-Yau morphism to replace the inner diagram by one consisting of a discs filled with MB
whose incoming arrows are connected with outgoing arrows of discs filled with F. Then, the sum
of all the diagrams of type ¯̄x of the form (5.5) is equal to the sum of all the diagrams of type ¯̄x of
the form

G
F

G

F

G

GF

F

MB

F

F

(5.6)

and we now define the inner diagram as filled diagram consisting of the disc filled with MB and
of all the discs connected to it. The previous remarks on the types of the inner and outer diagrams
still hold. Thus, the sum over all possible types for the whole diagram is again the sum over all
the possible types for the outer diagram and for each of those, taking the sum over all the suitable
types for the inner one. G being a pre-Calabi-Yau morphism, one can again use (5.3) and say that
the sum of all the diagrams of type ¯̄x of the form (5.6) is now equal to the sum of all the diagrams
of type ¯̄x of the form

G

F

F

F

G

MC

G

Therefore, sd+1G ◦
pCY

sd+1F is a pre-Calabi-Yau morphism.
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The following class of morphisms will be useful in the next subsection.

Definition 5.16. Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets
of objects OA and OA and a d-pre-Calabi-Yau morphism F = (F0,F) : (A, sd+1MA) → (B, sd+1MB),
we say that F is good if

∑
E(D) =

∑
E(D′) where the sums are over all the filled diagrams D and D′ of

type ¯̄x of the form

MA

F

F

F and MB

F

F
F F

respectively.

Note that this condition is not closed under the pre-Calabi-Yau composition. We thus restrict
this notion of good morphisms and give the following definition.

Definition 5.17. Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets
of objects OA and OA and a d-pre-Calabi-Yau morphism F = (F0,F) : (A, sd+1MA) → (B, sd+1MB),
we say that F is nice if

∑
E(D) =

∑
E(D′) where the sums are over all the filled diagrams D and D′ of

type ¯̄x of the form

MA

F

F

F and MB

F

F

F

respectively.

6 The relation between pre-Calabi-Yau morphisms and A∞-mor-
phisms

Recall that given a Hom-finite graded quiver A, we have an equivalence between the data of a
d-pre-Calabi-Yau structure on A and a cyclic A∞-structure on A⊕A∗[d− 1] that restricts to A. In
this section, we study the relation between d-pre-Calabi-Yau morphisms and A∞-morphisms.

6.1 The case of strict morphisms

In this subsection, we study the relation between strict d-pre-Calabi-Yau morphisms and A∞-
morphisms. We first recall the notion of strict d-pre-Calabi-Yau morphism.
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Definition 6.1. Let (A, sd+1MA), (B, sd+1MB) be d-pre-Calabi-Yau categories with respective sets of
objects OA and OB. A d-pre-Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB) is strict if Φ¯̄x

vanishes for each ¯̄x ∈ Ōn
A with n > 1 and lg(x̄1) ̸= 2 if n = 1.

Equivalently, a strict d-pre-Calabi-Yau morphism between d-pre-Calabi-Yau categories (A, sd+1MA)
and (B, sd+1MB) is the data of a map between their sets of objects Φ0 : OA → OB together with a collection
Φ = (Φx,y : xAy[1] → xBy[1])x,y∈OA of maps of degree 0 that satisfies

(Φlt(x̄1),rt(x̄2)⊗· · ·⊗Φlt(x̄n),rt(x̄1))◦sd+1M
x̄1,...,x̄n

A = sd+1M
x̄1,...,x̄n

B ◦(Φ⊗ lg(x̄1)−1⊗· · ·⊗Φ⊗ lg(x̄n)−1)

for each n ∈ N∗, (x̄1, . . . , x̄n) ∈ Ōn
A.

For simplicity, we will omit the elements when writing the map Φ. We will denote

Φ0(x) = (Φ0(x1), . . . ,Φ0(xn))

for x̄ = (x1, . . . , xn) ∈ On
A and

Φ0(x) = (Φ0(x̄
1), . . . ,Φ0(x̄

n))

for ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn
A.

Definition 6.2. We denote by SpCYd the subcategory of pCYd whose objects are d-pre-Calabi-Yau cate-
gories and whose morphisms are strict d-pre-Calabi-Yau morphisms.

Given d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) with respective sets of objects
OA and OB and a strict d-pre-Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB), we
now construct an A∞-structure on A ⊕ B∗[d − 1]. For ¯̄x ∈ ¯̄OA, we denote by sm¯̄x

A⊕A∗→A the
composition of j¯̄x−1(sd+1M

¯̄x−1

A ) and the canonical projection on A[1].

Similarly, we will denote by sm
Φ0(x)
B⊕B∗→B∗ the composition of j

Φ0(x)
−1(sd+1M

Φ0(x)
−1

B ) and the

canonical projection on B∗[d].

Definition 6.3. We define smA⊕B∗ ∈ C(A⊕B∗[d−1])[1] as the unique element such that the composition
of mx̄1,...,x̄n

A⊕B∗ with the canonical projection

lt(x̄1)Art(x̄n) ⊕ Φ0(lt(x̄1))B∗
Φ0(rt(x̄n))[d− 1] → lt(x̄1)Art(x̄n)

is given by the map

mx̄1,...,x̄n

A⊕B∗→A :

n−1⊗
i=1

(A[1]⊗x̄i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]⊗x̄n

→ lt(x̄1)Art(x̄n)

defined by

mx̄1,...,x̄n

A⊕B∗→A = mx̄1,...,x̄n

A⊕A∗→A ◦ (id⊗ lg(x̄1)−1 ⊗Φ∗⊗ id⊗ lg(x̄2)−1 ⊗ · · ·⊗ id⊗ lg(x̄n−1)−1 ⊗Φ∗⊗ id⊗ lg(x̄n)−1)

and the composition of mx̄1,...,x̄n

A⊕B∗ with the canonical projection

lt(x̄1)Art(x̄n) ⊕ Φ0(lt(x̄1))B∗
Φ0(rt(x̄n))[d− 1] → Φ0(lt(x̄1))B∗

Φ0(rt(x̄n))[d− 1]
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is given by the map

mx̄1,...,x̄n

A⊕B∗→B∗ :

n−1⊗
i=1

(A[1]⊗x̄i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]⊗x̄n

→ Φ0(lt(x̄1))B∗
Φ0(rt(x̄n))[d− 1]

defined by

mx̄1,...,x̄n

A⊕B∗→B∗ = m
Φ0(x̄

1),...,Φ0(x̄
n)

B⊕B∗→B∗ ◦ (Φ⊗ lg(x̄1)−1 ⊗ id⊗Φ⊗ lg(x̄2)−1 ⊗ · · · ⊗ id⊗Φ⊗ lg(x̄n)−1)

Proposition 6.4. The element smA⊕B∗ ∈ C(A⊕B∗[d− 1])[1] defines an A∞-structure on A⊕B∗[d− 1]
that is almost cyclic with respect to the Φ-mixed bilinear form ΓΦ, defined in Example 3.17.

Proof. Using the Proposition 5.9, we have that the equality smA⊕B∗ ◦
G
smA⊕B∗ = 0 is tantamount

to sd+1MA⊕B∗ ◦
Φnec

sd+1MA⊕B∗ = 0 where sd+1MA⊕B∗ ∈ B•(A[1],B[−d])[d+ 1] is uniquely deter-

mined by
M

¯̄x
A⊕B∗ = (Φ⊗(n−1) ⊗ id) ◦ sd+1M

¯̄x
A ∈ BA

¯̄x (A[1],B[−d])
and

M
Φ0(x)
A⊕B∗ = sd+1M

Φ0(y)
B ◦(Φ⊗ lg(x̄1)−1⊗ id⊗Φ⊗ lg(x̄n)−1⊗Φ⊗ lg(x̄2)−1⊗· · ·⊗Φ⊗ lg(x̄n−1)−1) ∈ B

B
¯̄x (A[1],B[−d])

for ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn and ¯̄y = (x̄1 ⊔ x̄n, x̄2, . . . , x̄n−1). Moreover,

πA(sd+1MA⊕B∗ ◦
Φnec

sd+1MA⊕B∗)
¯̄x =

∑
E(D) +

∑
E(D′)

where πA is the canonical projection B•(A[1],B[−d])[d + 1] → BA
• (A[1],B[−d]) and where the

sums are over all the filled diagrams D and D′ of type ¯̄x that are of the form

MAMA

Φ

Φ

Φ

Φ
Φ

and MA Φ

Φ

Φ

Φ

MB

respectively. Now, note that the second diagram can be cut into two as follows.

MA Φ

Φ

Φ

Φ

MB
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Using the morphism identity satisfied by Φ, the diagram on the right can be replaced by one
with a disc filled with MA whose outgoing arrows are connected with the unique incoming arrow
of discs of size 1 filled with Φ. We thus obtain that

πA(sd+1MA⊕B∗ ◦
G
sd+1MA⊕B∗)

¯̄x =
∑

E(D) +
∑

E(D′)

where the sums are over all the filled diagrams D and D′ of type ¯̄x that are of the form

MAMA

Φ

Φ

Φ
Φ

Φ

and MAMA

Φ

Φ

Φ

Φ
Φ

respectively. Moreover,
∑

E(D) +
∑

E(D′) = 0 since sd+1MA is a d-pre-Calabi-Yau structure.
Thus, if we show that this structure satisfies the cyclicity condition (3.1), smA⊕B∗ satisfies the
Stasheff identities (SI).

Using the definition of ΓΦ and smB⊕B∗ and since smB⊕B∗ is cyclic with respect to ΓB, we have
that

ΓΦ(smx̄1,...,x̄n

A⊕B∗→B∗(s̄a
1, tf1, . . . , s̄an−1, tfn−1, s̄an), sb)

= ΓB(sm
Φ0(x̄

1),...,Φ0(x̄
n)

B⊕B∗→B∗ (Φ⊗ lg(x̄1)−1(s̄a1), tf1, . . . , tfn−1,Φ⊗ lg(x̄n)−1(s̄an)),Φ(sb))

= (−1)ϵΓB(sm
Φ0(x̄

n)⊔Φ0(x̄
1),Φ0(x̄

2),...,Φ0(x̄
n−1)

B⊕B∗→B
(
Φ⊗ lg(x̄n)−1(s̄an)⊗ Φ(sb)⊗ Φ⊗ lg(x̄1)−1(s̄a1), tf1, . . . ,

tfn−2,Φ⊗ lg(x̄n−1)−1(s̄an−1)
)
, tfn−1)

= (−1)ϵ+δΓB(((fn−2 ◦ sd)⊗ · · · ⊗ (f1 ◦ sd)⊗ id)

(M
Φ0(x̄

n−1),...Φ0(x̄
n)⊔Φ0(x̄

1)
B (Φ⊗ lg(x̄n−1)(s̄an−1), . . . ,Φ⊗ lg(x̄n)(s̄an)⊗ Φ(sb)⊗ Φ⊗ lg(x̄1)(s̄a1)), tfn−1

)
(6.1)

for ¯sai ∈ A[1]⊗x̄i

, tf i ∈ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)), with ϵ = (|s̄an|+ |sb|)(
n−1∑
i=1

(|s̄ai|+ |tf i|) and

δ = (|s̄a1|+ |sb|+ |s̄an|)(
n−1∑
i=1

|s̄ai|+
n−2∑
i=1

|tf i|) +
∑

2≤i≤j≤n−2

|s̄ai||tf j |+ dn

+
∑

2≤i<j≤n−1

|s̄ai||s̄aj |+
∑

1≤i<j≤n−2

|tf i||tf j |

Moreover, using that Φ is a d-pre-Calabi-Yau morphism, we have that the last member of (6.1)
is

(−1)ϵ+δΓA((n−1⊗
i=2

(fn−i ◦ Φ̃)⊗ id) ◦ sd+1M
x̄n−1,...,x̄n⊔x̄1

A (s̄an−1, . . . , s̄a2, s̄an ⊗ sb⊗ s̄a1), tfn−1 ◦ Φ̃
)

= (−1)ϵΓA(smx̄n⊔x̄1,x̄2,...,x̄n−1

A⊕A∗→A (s̄an ⊗ sb⊗ s̄a1, tf1 ◦ Φ̃, s̄a2, . . . , tfn−2 ◦ Φ̃, s̄an−1), tfn−1 ◦ Φ̃
)

(6.2)
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where Φ̃ denotes the morphism Φ[d− 1]. Thus, comparing (6.1) and (6.2) we get that

ΓB(sm
Φ0(x̄

n)⊔Φ0(x̄
1),Φ0(x̄

2),...,Φ0(x̄
n−1)

B⊕B∗→B
(
Φ⊗ lg(x̄n)−1(s̄an)⊗ Φ(sb)⊗ Φ⊗ lg(x̄1)−1(s̄a1), tf1, . . . ,

tfn−2,Φ⊗ lg(x̄n−1)−1(s̄an−1)
)
, tfn−1)

= ΓA(smx̄n⊔x̄1,x̄2,...,x̄n−1

A⊕A∗→A (s̄an ⊗ sb⊗ s̄a1, tf1 ◦ Φ̃, s̄a2, . . . , tfn−2 ◦ Φ̃, s̄an−1), tfn−1 ◦ Φ̃)

(6.3)

Finally, we have that

(−1)ϵΓA(smx̄n⊔x̄1,x̄2,...,x̄n−1

A⊕A∗→A (s̄an ⊗ sb⊗ s̄a1, tf1 ◦ Φ̃, s̄a2, . . . , tfn−2 ◦ Φ̃, s̄an−1), tfn−1 ◦ Φ̃)

= (−1)ϵΓΦ(smx̄n⊔x̄1,x̄2,...,x̄n−1

A⊕B∗→A (s̄an ⊗ sb⊗ s̄a1, tf1, s̄a2, . . . , tfn−2, s̄an−1), tfn−1)

Therefore, A⊕B∗[d−1] together with smA⊕B∗ is an A∞-category that is almost cyclic with respect
to ΓΦ.

Definition 6.5. Let (A, sd+1MA), (B, sd+1MB) be d-pre-Calabi-Yau categories with respective sets of ob-
jects OA and OB. Consider a strict d-pre-Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB).
We define maps of graded vector spaces

φx,y
A : xA[1]y ⊕ Φ0(x)B

∗[d]Φ0(y) → x(A[1]⊕A∗[d])y

and
φx,y
B : xA[1]y ⊕ Φ0(x)B

∗[d]Φ0(y) → Φ0(x)(B[1]⊕ B∗[d])Φ0(y)

given by φx,y
A (sa) = sa, φx,y

B (sa) = Φx,y(sa), φx,y
A (tf) = tf ◦ Φy,x[d] and φx,y

B (tf) = tf for x, y ∈ OA,
sa ∈ xA[1]y and tf ∈ Φ0(x)B∗[d]Φ0(y).

Proposition 6.6. Let (A, sd+1MA), (B, sd+1MB) be d-pre-Calabi-Yau categories with respective sets of
objects OA and OB. Consider a strict d-pre-Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB)
and theA∞-category (A⊕B∗[d−1], smA⊕B∗) where smA⊕B∗ ∈ C(A⊕B∗[d−1])[1] is given in Definition
6.3. The maps φA and φB defined in Definition 6.5 are cyclic A∞-morphisms, in the sense of Definition
3.22.

Proof. We only check that φA is a morphism since the case of φB is similar. We only have to verify
that

φx,y
A ◦ smx̄1,...,x̄n

A⊕B∗→A = smx̄1,...,x̄n

A⊕A∗→A ◦ (φ⊗ lg(x̄1)−1
A ⊗ φA ⊗ φ

⊗ lg(x̄2)−1
A · · · ⊗ φ

⊗ lg(x̄n)−1
A ) (6.4)

and

φx,y
A ◦ smx̄1,...,x̄n

A⊕B∗→B∗ = smx̄1,...,x̄n

A⊕A∗→A∗ ◦ (φ⊗ lg(x̄1)−1
A ⊗ φA ⊗ φ

⊗ lg(x̄2)−1
A · · · ⊗ φ

⊗ lg(x̄n)−1
A ) (6.5)

for x, y ∈ OA, (x̄1, . . . , x̄n) ∈ Ōn
A such that lt(x̄n) = x, rt(x̄1) = y.

First, note that

φx,y
A (smx̄1,...,x̄n

A⊕B∗→A(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an))

= smx̄1,...,x̄n

A⊕B∗→A(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an)

= smx̄1,...,x̄n

A⊕A∗→A(s̄a
1, φA(tf

1), s̄a2, . . . , s̄an−1, φA(tf
n−1), s̄an)
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for s̄ai ∈ A[1]⊗x̄i

and tf i ∈ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)), so that (6.4) holds.
Moreover, we also have

φx,y
A ◦ smx̄1,...,x̄n

A⊕B∗→B∗(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an)

= smx̄1,...,x̄n

A⊕B∗→B∗(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an) ◦ Φx,y

and given sb ∈ xAy , we have that

smx̄1,...,x̄n

A⊕B∗→B∗(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an)(Φx,y(sb))

= ΓΦ(smx̄1,...,x̄n

A⊕B∗→B∗(s̄a
1, tf1, s̄a2, . . . , s̄an−1, tfn−1, s̄an), sb)

On the other hand, we have

smx̄1,...,x̄n

A⊕A∗→A∗(φ
⊗ lg(x̄1)−1
A (s̄a1)⊗ φA(tf

1)⊗ φ
⊗ lg(x̄2)−1
A (s̄a2) · · · ⊗ φ

⊗ lg(x̄n)−1
A (s̄an))(sb)

= ΓA(smx̄1,...,x̄n

A⊕A∗→A∗(φ
⊗ lg(x̄1)−1
A (s̄a1)⊗ φA(tf

1)⊗ φ
⊗ lg(x̄2)−1
A (s̄a2) · · · ⊗ φ

⊗ lg(x̄n)−1
A (s̄an)), sb)

Using the identity (6.3), we thus get (6.5).
It remains to show that the morphisms are cyclic. To prove it, we note that

yΓ
A
x (φ

y,x
A (tf), φx,y

A (sa)) = yΓ
A
x (t(f ◦ Φx,y), sa) = f(Φx,y(sa)) = yΓ

Φ
x (tf, sa)

as well as

yΓ
B
x (φ

y,x
B (tf), φx,y

B (sa)) = yΓ
B
x (tf,Φ

x,y(sa)) = f(Φx,y(sa)) = yΓ
Φ
x (tf, sa)

for sa ∈ xA[1]y , tf ∈ Φ0(y)B∗[d]Φ0(x). The second condition to be a cyclic morphism is obviously
satisfied since φx̄

A and φx̄
B vanish for x̄ ∈ On with n > 2.

Definition 6.7. Let (A ⊕ A∗[d − 1], smA⊕A∗), (B ⊕ B∗[d − 1], smB⊕B∗) be A∞-categories. A hat
morphism from A ⊕ A∗[d − 1] to B ⊕ B∗[d − 1] is a triple (smA⊕B∗ , φA, φB) where smA⊕B∗ is an
A∞-structure on A⊕ B∗[d− 1] and φA, φB are A∞-morphisms

A[1]⊕ B∗[d]

A[1]⊕A∗[d] B[1]⊕ B∗[d]

φA

φB
(6.6)

Definition 6.8. Let (A⊕A∗[d−1], smA⊕A∗), (B⊕B∗[d−1], smB⊕B∗) and (C⊕C∗[d−1], smC⊕C∗) beA∞-
categories. Two hat morphisms (smA⊕B∗ , φA, φB) : A⊕A∗[d− 1] → B⊕B∗[d− 1], (smB⊕C∗ , ψB, ψC) :
B ⊕ B∗[d − 1] → C ⊕ C∗[d − 1] are composable if there exist a triple (smA⊕C∗ , χA, χC) where χA :
A⊕ C∗[d − 1] → A⊕ B∗[d − 1] and χC : A⊕ C∗[d − 1] → B ⊕ C∗[d − 1] are A∞-morphisms and such
that φB ◦ χA = ψB ◦ χC . The composition of (smA⊕B∗ , φA, φB) and (smB⊕C∗ , ψB, ψC) is then given by
(smA⊕C∗ , φA ◦ χA, ψC ◦ χC).

Definition 6.9. A partial category is an A∞-pre-category as defined in [4] where the multiplications mn

vanish for n > 2.
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Definition 6.10. The A∞-hat category is the partial category Â∞d whose objects are A∞-categories of
the form A⊕A∗[d− 1] and whose morphisms are hat morphisms.

Definition 6.11. A functor between partial categories A and B with respective sets of objects OA and
OB is the data of a map F0 : OA → OB together with a family F = (yFx)x,y∈OA sending a morphism
f : x → y to a morphism yFx(f) : F0(x) → F0(y) such that if two morphisms f : x → y and g : y → z
are composable, then yFx(f) and zFy(g) are composable and their composition is given by the morphism
zFy(g) ◦ yFx(f) = zFx(g ◦ f).

Definition 6.12. We define the partial subcategory cycÂ∞d of Â∞d whose objects are cyclicA∞-categories
of the form A⊕A∗[d− 1] and whose morphisms A⊕A∗[d− 1] → B⊕B∗[d− 1] are the data of an almost
cyclic A∞-structure on A ⊕ B∗[d − 1] together with a diagram of the form (6.6) where φA and φB are
A∞-morphisms.

Definition 6.13. We define the partial subcategory ScycÂ∞d of cycÂ∞d whose objects are the ones of
cycÂ∞d and whose morphisms are strict cyclic morphisms of cycÂ∞d.

We now summarize the results of Propositions 6.4 and 6.6.

Corollary 6.14. There exists a functor SpCYd → ScycÂ∞d which sends a d-pre-Calabi-Yau category
(A, sd+1MA) to the A∞-category (A ⊕ A∗[d − 1], smA⊕A∗) defined in Proposition 4.32 and a d-pre-
Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB) to the A∞-structure smA⊕B∗ defined in
Definition 6.3 together with cyclic A∞-morphisms

A[1]⊕ B∗[d]

A[1]⊕A∗[d] B[1]⊕ B∗[d]

φA

φB

given in Definition 6.5.

6.2 General case

We now present the relation between not necessarily strict d-pre-Calabi-Yau morphisms and A∞-
morphisms. Consider d-pre-Calabi-Yau categories (A, sd+1MA), (B, sd+1MB) as well as a (Φ0,Φ) :
(A, sd+1MA) → (B, sd+1MB) a d-pre-Calabi-Yau morphism as defined in Definition 5.13. We first
construct an A∞-structure on A⊕ B∗[d− 1].

Definition 6.15. We define MA⊕B∗→A ∈ BA
• (A[1],B[−d]) by M ¯̄x

A⊕B∗→A =
∑

E(D) where the sum is
over all the filled diagrams D of type ¯̄x and of the form

MA

Φ

Φ
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and MA⊕B∗→B∗ ∈ BB
• (A[1],B[−d]) by M ¯̄x

A⊕B∗→B∗ =
∑

E(D′) where the sum is over all the filled
diagrams D′ of type ¯̄x and of the form

MB

Φ

Φ

By Lemma 5.3, this defines an element sd+1MA⊕B∗ ∈ B•(A[1],B[−d])[d + 1] and we thus define the
element smA⊕B∗ ∈ C(A⊕ B∗[d− 1])[1] as sm¯̄x

A⊕B∗ = jΦ
¯̄x−1(sd+1MA⊕B∗) ∈ C(A⊕ B∗[d− 1])[1]. We

will denote by mA⊕B∗→A (resp. mA⊕B∗→B∗ ) the composition of mA⊕B∗ with the canonical projection on
A (resp. on B∗[d− 1]).

Proposition 6.16. The element smA⊕B∗ ∈ C(A⊕B∗[d−1])[1] defines anA∞-structure on A⊕B∗[d−1].
Moreover, if the morphism Φ is good, smA⊕B∗ satisfies the cyclicity condition (3.1).

Proof. Using Proposition 5.9, it suffices to show that sd+1MA⊕B∗ ◦
Φnec

sd+1MA⊕B∗ = 0. We have

that πA(sd+1MA⊕B∗ ◦
Φnec

sd+1MA⊕B∗) = 0 is tantamount to
∑

E(D) +
∑

E(D′) +
∑

E(D ′′) = 0

where the sums are over all the filled diagrams D, D′ and D ′′ of type ¯̄x of the form

MA

Φ

Φ

MA

Φ

,

MA

Φ

Φ

MA

Φ

and MB

Φ

Φ

Φ

Φ

MA

respectively. The third diagram can be cut into two as follows

MB

Φ

Φ

Φ

Φ

MA

Using that Φ is a pre-Calabi-Yau morphism, the left side can be changed into a diagram consisting
of a disc filled with MA whose outgoing arrows are shared with discs filled with Φ. We thus get
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that ∑
E(D ′′) =

∑
E(D1)−

∑
E(D2) (6.7)

where D1 and D2 are filled diagrams of the form

MA

Φ

Φ

MA

Φ and
MA

Φ

Φ

MA

Φ

The minus in the identity (6.7) comes from the fact that the discs filled with MA change their
place, in the sense that the order of the labeling of their first outgoing arrow changes. Since
sd+1MA is of degree 1, this create a minus sign. Moreover,

∑
E(D′) =

∑
E(D2) so that it re-

mains to show that
∑

E(D) +
∑

E(D1) = 0. This is the case since sd+1MA is a pre-Calabi-Yau
structure. Indeed, the sum of these evaluations of diagrams is the composition of

sd+1MA ◦
nec

sd+1MA

with a tensor product composed of maps of the collection Φ and of the identity map id in the last
tensor factor. Therefore, the element smA⊕B∗ satisfies the Stasheff identities (SI).

It is clear that if the morphism Φ is good, then the A∞-structure on A ⊕ B∗[d − 1] is cyclic.
Indeed, ΓΦ ◦ (smA⊕B∗→A ⊗ idA∗) =

∑
E(D) where the sum is over all the filled diagrams E(D) of

the form

MA

F

F

F

On the other hand, ΓΦ ◦ (smA⊕B∗→B∗ ⊗ idB) =
∑

E(D′) where the sum is over all the filled
diagrams E(D′) of the form
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MB

F

F

F F

which shows the cyclicity of smA⊕B∗ .

Now, we define two morphisms of A∞-categories φA : A[1] ⊕ B∗[d] → A[1] ⊕ A∗[d] and φB :
A[1]⊕ B∗[d] → B[1]⊕ B∗[d] using the d-pre-Calabi-Yau morphism Φ.

Lemma 6.17. Consider d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) as well as a d-pre-
Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB). Then, Φ induces morphisms

ϕ
¯̄x
A∗ :

n−1⊗
i=1

(A[1]x̄
i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]x̄
n

→ lt(x̄1)A∗[d]rt(x̄n)

defined by

ϕ
¯̄x
A∗(s̄a1, tf1, . . . , s̄an−1, tfn−1, s̄an)(s−db) =

(−1)ϵ((fn−1 ◦ sd)⊗ · · · ⊗ (f1 ◦ sd))(Φx̄n−1,x̄n−2,...,x̄n⊔x̄1

(s̄an−1, . . . , s̄an ⊗ sb⊗ s̄a1))

for s̄ai ∈ A[1]⊗x̄i

, tf i ∈ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)) and sb ∈ rt(x̄1)A[1]lt(x̄n) where

ϵ =

n−1∑
i=1

|tf i|
n∑

j=i+1

|s̄ai|+
∑

1≤i<j≤n

|s̄ai||s̄aj |
∑

1≤i<j≤n−1

|tf i||tf j |

+ d(n− 1) + |s̄an|(
n−1∑
i=1

|s̄ai|+ |sb|) + d

n−1∑
i=1

|tf i|+ (d+ 1)

n∑
i=1

|s̄ai|

and a morphism

ϕ
¯̄x
B :

n−1⊗
i=1

(A[1]x̄
i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]x̄
n

→ Φ0(lt(x̄1))B[1]Φ0(rt(x̄n))

defined by

ϕ
¯̄x
B(s̄a

1, tf1, . . . , s̄an−1, tfn−1, s̄an)

= (−1)δ((fn−1 ◦ sd)⊗ · · · ⊗ (f1 ◦ sd)⊗ id)(sd+1Φ
¯̄x−1

(s̄an, . . . , s̄a1))

for s̄ai ∈ A[1]⊗x̄i

, tf i ∈ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)) with

δ =

n−1∑
i=1

|tf i|
n∑

j=i+1

|s̄ai|+
∑

1≤i<j≤n

|s̄ai||s̄aj |
∑

1≤i<j≤n−1

|tf i||tf j |+ d(n− 1) + d

n−1∑
i=1

|tf i|

and for each n ∈ N∗, ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn
A.
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Definition 6.18. Consider d-pre-Calabi-Yau categories (A, sd+1MA) and (B, sd+1MB) as well as a d-
pre-Calabi-Yau morphism (Φ0,Φ) : (A, sd+1MA) → (B, sd+1MB). We define maps of graded vec-
tor spaces φA : A[1] ⊕ B∗[d] → A[1] ⊕ A∗[d] and φB : A[1] ⊕ B∗[d] → B[1] ⊕ B∗[d] given by
φx,y
A (sa) = sa, φx,y

B (sa) = Φx,y(sa) for sa ∈ xA[1]y and φx,y
A (tf) = tf ◦ Φy,x[d], φx,y

B (tf) = tf ,
for tf ∈ Φ0(x)B∗[d]Φ0(y), x, y ∈ OA, as well as

πA∗[d] ◦ φ
¯̄x
A = ϕ

¯̄x
A∗ , πA[1] ◦ φ

¯̄x
A = 0

and
πB[1] ◦ φ

¯̄x
B = ϕ

¯̄x
B, πB∗[d] ◦ φ

¯̄x
B = 0

where ¯̄x = (x̄1, . . . , x̄n) ∈ Ōn
A for n > 1 and lg(x̄1) > 2 if n = 1.

Proposition 6.19. The maps φA and φB are morphisms of A∞-categories.

Proof. The part of the identity (MI) for φA that takes place in

Homk(

n−1⊗
i=1

(A[1]x̄
i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]x̄
n

, lt(x̄1)A[1]rt(x̄n))

is clearly satisfied. Moreover, by definition of the A∞-structure smA⊕B∗ , the part of the identity
(MI) that takes place in

Homk(

n−1⊗
i=1

(A[1]x̄
i

⊗ Φ0(rt(x̄i+1))B∗[d]Φ0(lt(x̄i)))⊗A[1]x̄
n

, lt(x̄1)A∗[d]rt(x̄n))

is tantamount to
∑

E(D1)−
∑

E(D2) = −
∑

E(D3) where the sums are over all the filled diagrams
D1,D2 and D3 of type ¯̄x of the form

MA Φ ,

Φ

Φ

MBΦ

Φ Φ

Φ

MA Φ

Φ

Φ

and

respectively. Using that Φ is a pre-Calabi-Yau morphism, we thus have thatφA is anA∞-morphism.
The case of φB is similar.

We now summarize the results of Propositions 6.16 and 6.19.
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Corollary 6.20. There is a functor pCYd → Â∞d sending a d-pre-Calabi-Yau category (A, sd+1MA) to
the A∞-category (A⊕A∗[d− 1], smA⊕A∗) defined in Proposition 4.32 and a d-pre-Calabi-Yau morphism
Φ : (A, sd+1MA) → (B, sd+1MB) to the A∞-structure smA⊕B∗ defined in Definition 6.15 together with
the A∞-morphisms

A[1]⊕ B∗[d]

A[1]⊕A∗[d] B[1]⊕ B∗[d]

φA

φB

defined in Definition 6.18. Moreover, this functor restricts to a functor NpCYd → cycÂ∞d where NpCYd
is the subcategory of pCYd whose objects are d-pre-Calabi-Yau categories and whose morphisms are nice
d-pre-Calabi-Yau morphisms defined in Definition 5.17.
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