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Abstract. Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codi-
mension, i.e., submanifolds of \BbbR d defined as the zero set of some multivariate multivalued smooth
function f : \BbbR d \rightarrow \BbbR d - n, where n is the intrinsic dimension of the manifold. A natural way to approx-
imate a smooth isomanifold \scrM = f - 1(0) is to consider its piecewise linear (PL) approximation \^\scrM 
based on a triangulation \scrT of the ambient space \BbbR d. In this paper, we describe a simple algorithm
to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n
and d, and any precision D. Our main result is that, when f (or \scrM ) has bounded complexity, the
complexity of the algorithm is polynomial in d and \delta = 1/D (and unavoidably exponential in n).
Since it is known that for \delta = \Omega (d2.5), \^\scrM is O(D2)-close and isotopic to \scrM , our algorithm produces
a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Com-
bining this algorithm with dimensionality reduction techniques, the dependency on d in the size of
\^M can be completely removed with high probability. We also show that the algorithm can handle

isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with
boundary has been implemented and experimental results are reported, showing that it is practical
and can handle cases that are far ahead of the state-of-the-art.

Key words. Coxeter triangulation, Freudenthal--Kuhn triangulation, permutahedron, PL-
approximations, isomanifolds/solution manifolds/isosurfacing
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1. Introduction. Given a surface represented in \BbbR 3 as the zero set of a function
f :\BbbR 3 \rightarrow \BbbR , with 0 regular value,1 the goal of isosurfacing is to find a piecewise linear
(PL) approximation of the surface. This question naturally extends to isomanifolds of
higher dimensions and codimensions defined as the zero set of multivariate multivalued
smooth functions f : \BbbR d \rightarrow \BbbR d - n. Isosurfaces play a crucial role in medical imaging,
computer graphics, and geometry processing [35]. Higher dimensional isomanifolds are
also of fundamental importance in many fields like statistics [15], dynamical systems
[40], econometrics, or mechanics [35].
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State-of-the-art. The most widely used algorithm to trace isomanifolds is the
Marching Cube (MC) algorithm and its numerous variants [28, 43]. The MC al-
gorithm uses a cubical grid to tessellate the ambient space. Extensions of the MC
algorithm to higher dimensions have been proposed [43]. A nice property of uniform
grids is that, due to their simple structure, they don't need to be represented ex-
plicitly. This is a major advantage since the combinatorial complexity of the grid
(restricted to the cube) is \Omega (\delta d), where \delta = 1/D and D is the diameter of a d-cell of
the grid. However, using a grid has other drawbacks and is not sufficient to break the
exponential barrier. The reason for this is that the number of configurations inside a
cubical cell grows exponentially with the dimension [43]. A natural way to circumvent
this difficulty is to use a triangulation of the ambient space instead of a grid, which led
to the development of a variant of the MC algorithm named the Marching Tetrahedra
algorithm. This is, however, not enough to circumvent the curse of dimensionality
and we need triangulations of the ambient space that can be represented implicitly
as it can be done with grids. This is impossible for general triangulations but doable
using highly regular triangulations to subdivide the ambient space \BbbR d. Some early
work along this direction has been published in applied mathematics [2, 24, 40], and a
slightly more recent paper by Dobkin et al. [22] attracted the interest of the computer
graphics community to the related Coxeter triangulations. Dobkin et al., however,
only considered the case of curves (n= 1). The most advanced work we are aware of is
due to Min [34]. Min's method uses the Freudenthal--Kuhn triangulation over a dyadic
grid of \BbbR d and applies to isomanifolds of any dimension and codimension. The time
complexity of Min's method is, with our notation, O(\delta n log \delta ), where \delta = 1/D and
D is the maximal diameter of the simplices. The ambient dimension d is a constant
hidden in the big O. The fact that the exponent of \delta is the intrinsic dimension n, and
not the ambient dimension d, is a clear improvement over earlier methods. However,
although not explicitly analyzed by Min, the complexity in d remains exponential, and
the method seems to be limited to small ambient dimensions. Experimental results
are only reported in 3 and 4 dimensions.

Contributions. This paper discusses an efficient algorithm to compute a PL-
approximation of isomanifolds. We extend the work of Dobkin et al. [22] and describe
a simple algorithm to trace an n-dimensional isomanifold \scrM of \BbbR d for arbitrary n and
d. Our algorithm uses any triangulation of a family of regular triangulations of \BbbR d

that includes the Coxeter and the Freudenthal--Kuhn triangulations. The properties
of this family of triangulations is discussed in Part I of this paper. Freudenthal--Kuhn
triangulations can (and have been) applied in many other contexts, see e.g., [24, 33,
40], and therefore Part I is of independent interest. Contrary to Min [34], our results
are obtained with a uniform triangulation leading to a very simple algorithm. Key to
our results is a data structure that can implicitly store the full facial structure of such
triangulations (section 2.3). The data structure is very compact and allows us to re-
trieve the faces or the cofaces of a simplex of any dimension in an output sensitive way.

Subsequently, in Part II of the paper (section 3), we show how to use this data
structure to trace a connected submanifold of \BbbR d, starting from a given initial point
on the manifold. Our algorithm produces a PL-approximation of size polynomial in d
and \delta = 1/D, and exponential in n. Here D is the diameter, that is, the length of the
longest edge in the ambient triangulation. The complexity of the algorithm is also
polynomial in d, and \delta , and exponential in n.

Moreover, by taking \delta large enough, the PL-approximation output by the algo-
rithm is a faithful approximation of the isomanifold. Specifically, as shown in [12] and
recalled in section 3.3, if we take \delta = \Omega (d2.5), the PL-approximation \^\scrM is O(D2)-
close and isotopic to the isomanifold. Here the constants in the O depend on f and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

7/
23

 to
 1

38
.9

6.
20

7.
63

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



454 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

its derivatives. Hence, our algorithm constructs geometrically close and topologically
correct PL-approximations of isomanifolds of bounded complexity in polynomial time.

Our algorithm can be extended in several directions. First, the dependency on
d in the size of \^\scrM can be completely removed by combining our algorithm with
dimensionality reduction (section 3.5). We can also extend the algorithm to the case
of isomanifolds with boundary and, more generally, to stratifolds (section 3.6).

The algorithm has been implemented. In Part III of the paper (section 4), we
report on experimental results which show that the algorithm is practical and can
handle cases that are far ahead of the state-of-the-art. We also present an application
of the tracing algorithm in algebraic geometry that was used to verify a conjecture on
projective varieties defined by polynomial equations in the complex projective plane.
Following numerous experiments on various projective varieties, the conjecture was
ultimately proved by Alvarez and Deroin [4].

The approximation of a manifold that is the zero set of a function is an example
of the more general question of how to triangulate a manifold which has a long history
in mathematics. In particular, Whitney [44] introduced a construction that has some
similarity to the present algorithm (see [10]). A major difference, though, is that
topological guarantees can only be obtained if some intricate perturbations of the
ambient triangulation are performed (section 5). These techniques are at the moment
incompatible with polynomial complexity.

2. Part I: Coxeter--Freudenthal--Kuhn triangulations.

2.1. Introduction and state-of-the-art. Subdivisions of Euclidean space are
a major tool to efficiently answer geometric queries, compute approximation of shapes,
or solve optimization problems. Among the most widely used subdivision schemes are
grids and triangulations. Both are subject to the curse of dimensionality, and their
combinatorial complexity depends exponentially on the dimension of the space. Trian-
gulations are most flexible since their vertex set can be any set of points. Differently,
uniform grids depend only on the space but not on a given data set. The rigidity of
the grid structure has a major advantage: the grid, although of exponential size, need
not be represented explicitly, and basic operations like locating a point or computing
faces or cofaces of a given cell in the grid can be done without storing an explicit
representation of the grid. In fact, the representation can be entirely implicit. This
is clearly impossible with general triangulations with arbitrary vertex sets.

The question of designing efficient data structure for triangulations and more gen-
eral simplicial complexes led to interesting developments recently. On one hand, one
can take advantage of the fact that special types of simplicial complexes allow compact
representations. Most notably, flag complexes (including the celebrated Vietoris--Rips
complex) can be represented by their 1-skeleton (or graph) and higher dimensional
faces can be retrieved by computing the cliques of the graph. One can also repre-
sent a simplicial complex by its blockers, i.e., the simplices that do not belong to the
complex but whose facets do [6].

On a different front, data structures have been proposed to efficiently store general
simplicial complexes such as the simplex tree [7] that uses a trie to store the faces
of all dimensions, or the Simplex Array List [11] that represents only the maximal
faces, which allows an exponential saving in storage since a simplex has exponential
complexity. Nevertheless, due to their generality and the fact that the represented
complexes don't have any prespecified symmetry, the data structures cannot compete
with grids in terms of size and efficiency.

The Coxeter--Freudenthal--Kuhn triangulations in this paper form a middle ground,
i.e., they form a special class of triangulations of \BbbR d that have a high regularity. The
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data structure to represent such triangulations is almost as compact as for grids and
allows for efficient face and coface computation.

The Coxeter--Freudenthal--Kuhn triangulations we consider combine two classes of
triangulations with different origins and names. The two foundational works are due to
Coxeter [21] and Freudenthal [27]. Coxeter triangulations derive from geometric group
theory, in particular affine Weyl groups, while Freudenthal triangulations (also called
Kuhn triangulations) are combinatorial in nature. Nevertheless, both triangulations
are the same up to a linear transformation, as remarked in [22] and fully proved in this
paper. This allows us to combine the nice geometric properties of Coxeter triangula-
tions of type \~Ad with the simple combinatorial definitions of the Freudenthal--Kuhn
triangulation and its connection to permutahedra. Coxeter triangulations of type \~Ad

are geometrically attractive because each simplex is very well shaped (large volume
compared to longest edge length), and all d-simplices are identical up to reflections.

Although these triangulations do not depend on a given data set, they proved to be
very useful in interpolating multivariate multivalued functions or in meshing geometric
shapes embedded in high dimensional spaces. Freudenthal--Kuhn triangulations have
been known in applied mathematics [2, 24, 40], and Coxeter triangulations have been
used by Dobkin et al. [22] to trace curves in high dimensions and are good candidates
to trace manifolds of any codimension [34]. They have also been used in the context
of topological data analysis [18].

In section 2.2, we study these triangulations. This section recalls and extends to
arbitrary dimensions several results that were disseminated in many different places
which are sometimes difficult to access and in different languages (see among others
[22, 24, 27, 33, 38, 40, 45]).

Based on these results, we introduce in section 2.3 a very compact data structure
that implicitly stores the full facial structure of such triangulations. The data struc-
ture allows us to locate a point in the triangulation and to retrieve the faces or the
cofaces of a simplex of any dimension in an output sensitive way.

The data structure has been implemented and fully tested. Section 4.2 reports on
experimental results and demonstrates that the data structure is remarkably efficient
and practical. It is especially useful in tracing low dimensional manifolds embedded in
high dimensional spaces as encountered in statistics, dynamical systems, econometrics,
or mechanics [15, 35, 40].

2.2. Definitions. Freudenthal--Kuhn triangulations are combinatorial structures
that come from a specific triangulation of the d-cube. Their connections to permuta-
hedra is at the heart of our data structure. Coxeter triangulations, to be introduced
in section 2.2.3, have a different flavor and come with very nice geometric properties.
Since both types of triangulations are the same up to an affine transformation, as first
noted by Dobkin et al. [22], they have the same combinatorial structure and our data
structure will be able to handle both of them.

Although most ideas in this section were known previously, we give full proofs of
the results that were not explicitly mentioned or not proved in full generality in the
literature.

2.2.1. Permutahedra. We write [i] = \{ 1, . . . , i\} and [i, j] = \{ i, . . . , j\} .
Definition 2.1 (permutahedron). A d-permutahedron is a d-dimensional poly-

tope, which is the convex hull \scrP of all ((d + 1)!) points in \BbbR d+1, the coordinates of
which are permutations of [d+ 1]. Formally, this convex hull can be written as

\scrP = conv\{ (\sigma (1), . . . , \sigma (d+ 1))\in \BbbR d+1 | \sigma \in Sd+1\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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456 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

Fig. 1. The 2-permutahedron and the ordered partitions associated to its faces. The edges cor-
respond to ordered partitions of length 2 and the vertices to those of length 3, that is, permutations.

\scrP is at most d-dimensional since all its vertices lie on the hyperplane defined by
the equation

d+1\sum 
i=1

xi =
d(d+ 1)

2
,

where xi denotes the ith Euclidean coordinate. Moreover, it can be shown that there
are d+ 1 affinely independent vertices in \scrP , proving that \scrP is exactly d-dimensional
(see, for example, [33, Lemma 3.4]).

The following observation follows from duality (see the paragraph ``Duality"" in
section 2.3.1) and a result in section 2.2.2.

Remark 2.2. The d-permutahedron is a simple polytope.

The facial structure of \scrP is best described in terms of ordered partitions [45].
Refer to Figure 1.

Definition 2.3 (ordered partition). Let T be a finite nonempty set, | T | its
cardinality, and l \leq | T | a positive integer. An ordered partition of T in l parts is a
collection of l indexed subsets \omega = (\omega 1, . . . , \omega l), such that \omega i \subseteq T and \{ \omega 1, . . . , \omega l\} is a
partition of T . The \omega i are called the parts and are ordered by their index. We write
OPl[d+ 1] for the set of ordered partitions of [d+ 1] with l parts and just OP [d+ 1]
for the set of all ordered partitions of [d+ 1].

Definition 2.4 (refinement). Let \omega and \varpi be two ordered partitions of [d+ 1]
in l and p parts, respectively, with 1 \leq l \leq p \leq d+ 1. We say that \varpi is a refinement
of \omega if there exist positive integers a1, . . . , al, such that

\bullet (\varpi 1, . . . ,\varpi a1
) is an ordered partition of \omega 1 in a1 parts,

\bullet (\varpi a1+1, . . . ,\varpi a1+a2
) is an ordered partition of \omega 2 in a2 parts,

\bullet . . .,
\bullet (\varpi a1+\cdot \cdot \cdot +al - 1+1, . . . ,\varpi a1+\cdot \cdot \cdot +al

) is an ordered partition of \omega l in al parts.

We recall Theorem 3.6 of [33].

Lemma 2.5 (facial structure of the permutahedron). The faces of a d-permuta
hedron are in bijection with the ordered partitions of [d+1]. More precisely, the i-faces
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of \scrP correspond to ordered partitions of [d+1] into l= d+1 - i parts (\omega 1, . . . , \omega l). If \sigma 
and \tau are two faces of a d-permutahedron, \sigma is a subface of \tau (denoted \sigma \subseteq \tau ) if and
only if the ordered partition associated to \sigma is a refinement of the ordered partition
associated to \tau .

We also need the following result from [33, Corollary 3.15] and [38, Theorem 3].

Corollary 2.6. The number of (d - i)-dimensional faces in a d-permutahedron
is (i+ 1)!S(d+ 1, i+ 1), where S(\cdot , \cdot ) is the Stirling number of the second kind. It is
bounded by 22(d+1) log(i+1).

Corollaries 2.7, 2.9, and 2.10 in the following seem to be new.

Corollary 2.7. The number p0,i of vertices of an i-face of a d-permutahedron
is at most (i+ 1)! and at least 2min(i,d - i+1).

The proof of Corollary 2.7 is based on the following lemma.

Lemma 2.8 (Lemma 3.11 of [33]). The face of a permutahedron corresponding to
an ordered partition \omega = (\omega 1, . . . , \omega l+1) is combinatorially

\scrP (| \omega 1| )\times \cdot \cdot \cdot \times \scrP (| \omega l+1| ),

where | \omega p| denotes the size of the pth part of the ordered partition, and \scrP (n) the
permutahedron of dimension n - 1.

Proof of Corollary 2.7. Write l = d  - i. Since the number of vertices of the
product of two polytopes is the product of the numbers of their vertices, and an
(n - 1)-dimensional permutadedron has n! vertices, we see that the total number of
vertices of an i-face of a d-dimensional permutahedron corresponding to an ordered
partition \omega = (\omega 1, . . . , \omega l+1) is

l+1\prod 
p=1

(| \omega p| !).

Let 1 \leq j < k \leq d be integers such that j + k = d + 1. By definition j!k! <
(j  - 1)!(k + 1)!, and thus j!k! \leq 1!d!. Generalizing this, we see that the product of
the | \omega p| ! is maximal when all parts are singletons except the biggest part which has
d+ 1 - l elements. Therefore

l+1\prod 
p=1

(| \omega p| !)\leq (d - l+ 1)!.

Using the inverse argument, the lower bound is obtained when each part in the
ordered partition is as small as possible, that is, when all parts have almost equal
size. In this case, | \omega p| \geq \lfloor d+1

l+1 \rfloor , so that

l+1\prod 
p=1

(| \omega p| !)\geq 
\biggl( \biggl\lfloor 

d+ 1

l+ 1

\biggr\rfloor 
!

\biggr) l+1

.

More accurately, let r\prime be the remainder of d+1 after division by l+1, that is, r\prime = d+1
mod l+ 1; then
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458 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

l+1\prod 
p=1

(| \omega p| !)\geq 
\biggl( \biggl\lfloor 

d+ 1

l+ 1

\biggr\rfloor 
!

\biggr) l - r
\prime 
+1\biggl( \biggl( \biggl\lfloor 

d+ 1

l+ 1

\biggr\rfloor 
+ 1

\biggr) 
!

\biggr) r
\prime 

.

We now distinguish two cases:
\bullet If \lfloor d+1

l+1 \rfloor \geq 2,

l+1\prod 
p=1

(| \omega p| !)\geq 2l+1.

\bullet If \lfloor d+1
l+1 \rfloor = 1, we have r\prime = d - l. Hence

l+1\prod 
p=1

(| \omega p| !)\geq 2d - l.

In the first case, d+1
2 \geq l+1, or equivalently l+1\leq d - l. In the second case, r\prime = d - l

and thus d - l < l+ 1. Hence, in both cases, we have

l+1\prod 
p=1

(| \omega p| !)\geq 2min\{ l+1,d - l\} .

Corollary 2.9. The number of facets of an i-face \sigma of a d-permutahedron is at
most 2i+1  - 2.

Proof. Write l = d - i. We first recall a set of m > 2 objects can be subdivided
in two nonempty ordered subsets A and B in 2m  - 2 ways. This is not hard to see.
Because we choose for each element whether it will be put in A or B, there are 2m

possibilities. Excluding that A or B is empty gives 2m - 2. Let \omega = (\omega 1, . . . , \omega l) again
be an ordered partition. To find a refinement of \omega in l+1 parts, we need to first pick
a 1 \leq p \leq l, such that | \omega p| > 1, and then we need to break \omega p up into two (ordered)
parts, for which there are 2| \omega p|  - 2 possibilities as we have seen above. This means
that if I = \{ p | 1\leq p\leq l, | \omega p| > 1\} , the number of refinements is\sum 

p\in I

2| \omega p|  - 2.

Let now 1\leq s < t\leq d be integers such that s+ t= d+1. Then 2s +2t < 2s - 1 +2t+1.
Generalizing this, we see that the sum of the 2| \omega p|  - 2 is maximal when all | \omega p| = 1
except the biggest part which has d - l+ 1= i+ 1 elements.

Corollary 2.10. Let pi,j denote the number of i-faces of a j-face of the d-
permutahedron. We have

pi,j \leq 
1

2min\{ i,d - i+1\} 

\biggl( 
j

i

\biggr) 
(j + 1)!

Corollary 2.10 generalizes the previous two corollaries. For i = 0, the bound in
Corollary 2.10 is the same as the upper bound in Corollary 2.7. For i = j  - 1, the
bound is comparable but weaker than the bound in Corollary 2.9.

Proof of Corollary 2.10. Let \sigma be a j-face of the d-permutahedron. Write Fi,\sigma for
the set of i-faces of \sigma , and cv for the number of i-cofaces of a vertex v of \sigma , i.e., the
number of simplices of Fi,\sigma that contain v. For \tau \in Fi,\sigma , we write p\tau for the number of
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TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 459

vertices of \tau . By double counting the incidences between vertices, and i-faces inside
\sigma , we have \sum 

\tau \in Fi,\sigma 

p\tau =
\sum 

v\in F0,\sigma 

cv.

As we have seen in Remark 2.2 the d-permutahedron is a simple polytope. The
faces of simple polytopes are also simple polytopes, which implies that the vertices
of a j-face are incident to

\bigl( 
j
i

\bigr) 
faces of dimension i [13, Lemma 7.1.14]. Moreover,

| F0,\sigma | \leq (j + 1)! by Corollary 2.7. Hence\sum 
v\in F0,\sigma 

cv =

\biggl( 
j

i

\biggr) 
| F0,\sigma | \leq 

\biggl( 
j

i

\biggr) 
(j + 1)!.

In addition, by Corollary 2.7, we have\sum 
\tau \in Fi,\sigma 

p\tau \geq 2min\{ i,d - i+1\} | Fi,\sigma | .

The inequality follows since \sigma is any j-face of the d-permutahedron.

2.2.2. Freudenthal--Kuhn triangulation. The Freudenthal--Kuhn (FK) tri-
angulation is obtained from the d-grid, i.e., the unit cubical tessellation of \BbbR d that
consists of copies of the unit d-cube along the integer lattice \BbbZ d. By triangulating
each d-cube in the grid in an appropriate way to be described now, we obtain the
FK-triangulation of \BbbR d. The results and definitions below were known to Freudenthal
[27], Todd [40], or Eaves [24], mainly for top dimensional simplices and in different
guises. We combine these results and extend to simplices of arbitrary (co)dimension,
where necessary.

Definition 2.11. Let x \in \BbbR d, and write zi = xi  - \lfloor xi\rfloor . We denote by e1, . . . , ed
the basis vectors and introduce, for reasons that will be clear later, the extra vector

ed+1 = - 
d\sum 

i=1

ei.

We introduce the convention that zd+1 = 0. We associate to x the ordered partition
\omega = (\omega 1, . . . , \omega l+1) of [d+1], where the \omega i are obtained by sorting the zi in decreasing
order. Specifically, with \omega i = \{ \omega i(1), . . . , \omega i(mi)\} , we have (see Figure 2)

1> z\omega 1(1) = \cdot \cdot \cdot = z\omega 1(m1) > \cdot \cdot \cdot > z\omega l(1) = \cdot \cdot \cdot = z\omega l(ml)

> z\omega l+1(1) = \cdot \cdot \cdot = z\omega l+1(ml+1) = 0.(1)

We stress that by definition d+ 1\in \omega l+1.

Lemma 2.12. Suppose that \omega = (\omega 1, . . . , \omega l+1) is an ordered partition of [d+ 1]
such that d+1\in \omega l+1, and let \sigma = \{ v0, . . . , vl\} be the l-simplex whose vertices are the
points

v0 = (\lfloor x1\rfloor , . . . , \lfloor xd\rfloor ), vi = vi - 1 +E\omega i
, i= 1, . . . , l,(2)

where E\omega i
=
\sum 

j\in \omega i
ej. Then x is a point in the relative interior of \sigma if and only if

zi = xi  - \lfloor xi\rfloor , i= 1, . . . , d+ 1 (with, as above, zd+1 = 0), satisfy (1).
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460 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

Fig. 2. The ordered partitions associated to the faces of the FK-triangulation of \BbbR 2 that have the
same minimal vertex v0 (circled). We go over some examples: First we consider a vertex, of which
there is only one, namely the circled one. Because the circled vertex has coordinates z1 = z2 = 0 and
by convention z3 = 0, it is associated to the ordered partition \{ \{ 1,2,3\} \} . Second, let us consider the
(interior of the) diagonal edge. Because for any point (z1, z2) in this edge we have 1 > z1 = z2 > 0,
the first part of the associated ordered partition is \{ 1,2\} . By convention z3 = 0 and therefore the
second part of the partition is \{ 3\} , so that the complete ordered partition is \{ \{ 1,2\} ,\{ 3\} \} . Finally
let's consider the lower triangle, where the points in the relative interior are given by 1 > z1 > z2 > 0.
Because z1 > z2, we have that \{ 1\} and \{ 2\} are in different parts of the partition and \{ 1\} precedes
\{ 2\} . Because z2 > 0 and again z3 = 0 by convention, we have that \{ 2\} and \{ 3\} are in different parts
of the partition and \{ 2\} precedes \{ 3\} . Therefore the complete ordered partition is \{ \{ 1\} ,\{ 2\} ,\{ 3\} \} .

Proof. Because the whole problem is translation invariant, we assume that v0 = 0
without loss of generality, so that the expressions are shorter. Using barycentric
coordinates, z \in \sigma can be written as

z =

l\sum 
i=0

\lambda ivi

=

l\sum 
i=0

\lambda i

i\sum 
k=1

E\omega k

=\lambda l E\omega l
+ (\lambda l + \lambda l - 1) E\omega l - 1

+ \cdot \cdot \cdot + (\lambda l + \cdot \cdot \cdot + \lambda 1)E\omega 1
,(3)

where the \lambda i > 0 (with i\in [0, l] and
\sum l

i=0 \lambda i = 1) are the barycentric coordinates of z
in \sigma . We define

\alpha \omega l(1) = \cdot \cdot \cdot = \alpha \omega l(ml) = \lambda l

...

\alpha \omega 1(1) = \cdot \cdot \cdot = \alpha \omega 1(m1) = \lambda l + \cdot \cdot \cdot + \lambda 1.(4)
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TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 461

With this definition (3) can be rewritten as

z = \alpha \omega l(1)e\omega l(1) + \cdot \cdot \cdot + \alpha \omega l(ml)e\omega l(ml)

+ \alpha \omega l - 1(1)e\omega l - 1(1) + \cdot \cdot \cdot + \alpha \omega l - 1(ml - 1)e\omega l - 1(ml - 1)

+ . . .

+ \alpha \omega 1(1)e\omega 1(1) + \cdot \cdot \cdot + \alpha \omega 1(m1)e\omega 1(m1).(5)

We therefore see that \alpha \omega i(j) is the \omega i(j)th coordinate of z, denoted by z\omega i(j), while
all coordinates z\omega l+1(1), . . . , z\omega l+1(ml+1) are zero, because e\omega l+1(i) does not occur in (5),
for all i. Moreover, because \lambda l + \cdot \cdot \cdot +\lambda i >\lambda l + \cdot \cdot \cdot +\lambda i - 1, we see that (1) is satisfied.

Conversely, given a point z such that its coordinates satisfy (1), we can read of
its barycentric coordinates with respect to the vi, as defined by (2), from (4).

Theorem 2.13. To each point x\in \BbbR d we can associate an element of \BbbZ d, namely
(\lfloor xi\rfloor ), and an ordered partition as defined in Definition 2.11. The equivalence relation
that identifies points in \BbbR d if they are associated to the same element in \BbbZ d and the
same ordered partition yields equivalence classes. Each equivalence class is a simplex
in a triangulation of \BbbR d. This triangulation is called the FK-triangulation.

In the next section we'll see that this triangulation can be viewed as a hyperplane
arrangement.

Proof of Theorem 2.13. Lemma 2.12 implies the following:
\bullet Any face of a simplex in the FK-triangulation also lies in the FK-triangulation.
\bullet The intersection of two simplices in the FK-triangulation also lies in the FK-

triangulation.
\bullet For any point x \in \BbbR d, there is a unique simplex \sigma such that x lies in the

relative interior of \sigma . Indeed, x has uniquely defined barycentric coordinates
with respect to the vertices of \sigma , and thus is mapped to a unique point in \sigma .

Hence the partition we have defined is a well-defined triangulation of \BbbR d.

Remark 2.14. We note that, by construction, v0 in Lemma 2.12 is the smallest
vertex of \sigma in the lexicographical order. The vertex v0 is therefore called the minimal
vertex of \sigma . Lemma 2.12 also implies an observation of Freudenthal [27]: all d-
simplices in the FK-triangulation can be described by monotone paths along the
edges of the cube from vertex (0, . . . ,0) + v0 to vertex (1, . . . ,1) + v0. By monotone
we mean that all the coordinates are nondecreasing. Conversely, any monotone path
along the edges of the cubes from (0, . . . ,0) + v0 to (1, . . . ,1) + v0 gives a simplex in
the FK-triangulation.

2.2.3. CFK-triangulations. Freudenthal--Kuhn triangulations are closely re-
lated to Coxeter triangulations of type \~Ad [17], and both are arrangements of hyper-
planes as demonstrated below.

Let E be a finite set of vectors of \BbbR d, and consider the set of hyperplanes HE =
\{ x \in \BbbR d | \langle x,u\rangle = k,u \in E,k \in \BbbZ \} . We call the set E the set of roots. This is to
conform to the terminology used in the theory of Coxeter triangulations.

These hyperplanes partition \BbbR d in a cell complex called the arrangement of the
hyperplanes. We denote it by \scrH E .

Lemma 2.15. The Freudenthal--Kuhn triangulation is the hyperplane arrange-
ment \scrH EFK

associated to the set of vectors EFK = \{ e1, . . . , ed\} \cup \{ ui,j = ej  - ei | 1\leq 
i < j \leq d\} .
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462 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

Proof. By Definition 2.11, Lemma 2.12 and Theorem 2.13, x \in \BbbR d lies in some
simplex \sigma given by v0 and \omega if and only if

1>x\omega 1(1)  - v
\omega 1(1)
0 = \cdot \cdot \cdot = x\omega 1(m1)  - v\omega 1(m1) > \cdot \cdot \cdot 

>x\omega l(1)  - v
\omega l(1)
0 = \cdot \cdot \cdot = x\omega l(ml)  - v

\omega l(ml)
0

>x\omega l+1(1)  - v
\omega l+1(1)
0 = \cdot \cdot \cdot = x\omega l+1(ml+1)  - v

\omega l+1(ml+1)
0 = 0,(6)

where the vj0 \in \BbbZ . We see that xi  - vi0 = xj  - vj0 rewrites into xi  - xj = \langle x,ui,j\rangle =
vi0 - vj0 \in \BbbZ and xi - vi0 = 0 rewrites into xi = \langle x, ei\rangle = vi0 \in \BbbZ . Similar statements hold
when the equalities are replaced by inequalities. Moreover, 1> xi  - vi0 = xj  - vj0 > 0
further translates into 1>xi - vi0 - (xj  - vj0) and thus vi0 - vj0+1>xi - xj = \langle x,ui,j\rangle .
Note that (6) contains as many (in)equalities as EFK hyperplanes if one also counts
nonconsecutive (in)equalities. This means that every simplex in an FK-triangulation
can be written as a cell in the hyperplane arrangement.

Conversely, let x be a point in the interior of a d-dimensional cell in the hyperplane
arrangement \scrH EFK

; then \langle x, ei\rangle /\in \BbbZ and \langle x,ui,j\rangle /\in \BbbZ . This implies that x lies in the
interior of a simplex in the FK-triangulation. If we walk from x in a direction s\in Sd - 1,
we leave the cell as soon as \langle x+ \lambda s, ei\rangle \in \BbbZ or \langle x+ \lambda s,ui,j\rangle \in \BbbZ . This point must lie
on a lower (at least d  - 1) dimensional face of the FK- triangulation. This implies
that a d-dimensional cell in the hyperplane arrangement coincides with a d-simplex
in the FK-triangulation. Because the lower dimensional cells and simplices are the
intersections of higher dimensional cells and simplices, the result follows.

Observe that the norms of the vectors in EFK are either 1 or
\surd 
2. By definition,

this implies that the distance between the two parallel hyperplanes \langle x,u\rangle = k and
\langle x,u\rangle = k+ 1, where u\in EFK , is either 1 or 1/

\surd 
2.

Let H be the hyperplane of \BbbR d+1 of the equation \langle x,1\rangle = 0, where 1 is the
vector of \BbbR d+1 whose coordinates are all 1. We now define a linear map \mu from
\BbbR d to H by showing how it acts on the basis of \BbbR d: \mu (ei) = r1,i =

\sum i
j=1 sj , where

si = ei - ei+1, i= 1, . . . , d. The vectors sj are called simple roots and play an important
role in algebra. We refer the reader to [17] for more information.

Lemma 2.16. \mu maps EFK bijectively onto the set EC defined as

EC =

\Biggl\{ 
ri,j =

j\sum 
l=i

sl = ei  - ej+1

\bigm| \bigm| \bigm| \bigm| \bigm| 1\leq i\leq j \leq d

\Biggr\} 
.

Proof. The vector \mu (ei) = r1,i lies in EC , by definition. For ui,j \in EFK , with
i < j, we see that

\mu (ui,j) = \mu (ej  - ei) = \mu (ej) - \mu (ei) = r1,j  - r1,i =

j\sum 
l=1

sl  - 
i\sum 

l=1

sl =

j\sum 
l=i+1

sl = ri+1,j .

Hence \mu (ui,j) lies in EC . By reading the previous calculation backwards, we see that
\mu  - 1 maps each r \in EC to a vector in EFK .

Observe that all vectors in EC have length
\surd 
2. By definition, this implies that

the distance between the two parallel hyperplanes \langle x,u\rangle = k and \langle x,u\rangle = k+1, where
u\in EC , is 1/

\surd 
2.

The image by \mu of the FK-triangulation is a triangulation of \BbbR d which is the
arrangement \scrH EC

associated to the set of vectors EC . This triangulation is called
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TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 463

Fig. 3. The Coxeter and Freudenthal--Kuhn triangulations in the plane.

the Coxeter triangulation of type \~Ad of \BbbR d. See Figure 3 for a depiction of the
Coxeter triangulation and the FK-triangulation of the plane. By definition, it has the
same combinatorial structure as the FK-triangulation. In addition, it has remarkable
geometric properties [22, 17]. First, it is a nondegenerate Delaunay triangulation, and
its dual complex is a Voronoi diagram. Moreover, its simplices have an exceptionally
large thickness (the ratio of the smallest altitude of a simplex over its diameter or
longest edge length).

We will call any triangulation of \BbbR d that is the image of an FK-triangulation
under a nondegenerate affine map a Coxeter--Freudenthal--Kuhn triangulation, or
CFK-triangulation for short. This includes the Coxeter triangulation of type \~Ad

(as embedded in \BbbR d).

2.3. Data structure. We introduce our data structure in this section. We first
consider the case of FK-triangulations in sections 2.3.1 and 2.3.2. The extension to
CFK-triangulations in section 2.3.3 is straightforward, since all these triangulations
have the same combinatorial structure.

2.3.1. Permutahedral representation of FK-triangulations.
Cycles and the permutahedron. In Remark 2.14 we have seen that simplices can

be described by monotone paths (increasing coordinates) along the edges of the cube.
As observed by Eaves [24], these monotone paths can be made into a cycle using the
extra vector ed+1 = - \sum d

i=1 ei because by construction

v0 = vl +E\omega l+1
,

with E\omega l+1
=
\sum 

i\in \omega l+1
ei as before, and \omega as in Definition 2.11. Until now, we took

d + 1 \in \omega l+1, but this will be changed in the following as discussed now. Because
the path is now thought of as a cycle, we can take any vertex of the cycle as a
starting point, which means that v0 no longer has a special role as a starting point
of a monotone edge walk. A cycle can now be represented by an ordered partition of
[d+1], for which it is no longer necessary that d+1 lies in \omega l+1, and by an (arbitrary)
starting point. We now formalize these general cyclical paths.

Definition 2.17 (permutahedral representation). Let (v0, \omega )\in \BbbZ d\times OPl+1[d+1].
To this pair we associate a simplex \sigma \omega = \{ v0 = v\omega 0 , v

\omega 
1 , . . . , v

\omega 
l \} with

v\omega i = v\omega i - 1 +E\omega i , i= 1, . . . , l.(7)

We say that (v0, \omega ) is the permutahedral representation of the simplex \sigma \omega . If
d+1\in \omega l+1, we say that (v0, \omega ) is the canonical permutahedral representation of \sigma \omega .
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464 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

In this case, \sigma \omega is a simplex in the FK-triangulation in the cube of which v0 is the
minimal vertex with respect to the lexicographical order, as we have seen above.

In Lemma 2.20, and Proposition 2.21, we will see that, more generally, \{ (v0, \omega ) | 
\omega \in OP [d+ 1]\} is the star of v0 in the FK-triangulation, where we identify simplices
with their permutahedral representations.

Definition 2.18 (cyclic shifts). Let (v0, \omega ) be a permutahedral representation.
We define the cyclic shift of (v0, \omega ) of length k to the left as (v0

\prime , \omega \prime ), where

v0
\prime = v0 +

k\sum 
j=1

\sum 
i\in \omega j

ei, \omega \prime 
j = \omega (j+k) mod (l+1).(8)

Here we use the convention that the sum from 1 to 0 is empty. We write (v0
\prime , \omega \prime ) =

(v0, \omega )\oplus k.

Lemma 2.19. The cyclic shift (v0
\prime , \omega \prime ) = (v0, \omega )\oplus k defines the same simplex as

(v0, \omega ).

Proof. The proof follows by inserting (8) in (7).

We now prove that all permutahedral representations for a fixed v0 form the star
of v0. This is a crucial property that will be used to efficiently compute faces and
cofaces and traverse the triangulation.

Lemma 2.20. The set \{ (v0, \omega ) | \omega \in OP [d + 1]\} , where OP [d + 1] is the set of
all ordered partitions of [d + 1], gives all the simplices in the star of v0 in the FK-
triangulation.

Proof. Let (v0, \omega ), with \omega \in OPl+1[d+1], be such that d+1\in \omega k. Let (v0
\prime , \omega \prime ) =

(v0, \omega )\oplus (l - k+1). By Definition 2.18, and Lemma 2.19, (v0, \omega ) and (v0
\prime , \omega \prime ) represent

the same simplex. Moreover, d+1\in \omega l+1
\prime , that is, (v0

\prime , \omega \prime ) is a canonical permutahe-
dral representation. This implies that (v0

\prime , \omega \prime ) lies in the FK-triangulation by Lemma
2.12 and Theorem 2.13.

Conversely, suppose that (v0
\prime , \omega \prime ) is the canonical permutahedral representation

of a simplex in the star of v0, that is, there is some k such that vk
\prime = v0, with vk

\prime as
in (2). Then (v0, \omega ) = (v0

\prime , \omega \prime )\oplus k is also a permutahedral representation of the same
simplex.

Faces. From (7) it is clear that merging two consecutive parts in the ordered parti-
tion \omega = (\omega 1, . . . , \omega l+1) corresponds to removing a vertex from the simplex. Hence the
resulting simplex is a facet of the original simplex. Here we stress that we are allowed
to merge \omega 1 and \omega l+1, but in that case we have to change the base point of the cycle to
v0+

\sum 
l\in \omega 1

el to obtain the canonical representation. Looking at the two-dimensional
example in Figure 4, we see that the red triangle, with permutahedral representa-
tion (y, (\{ 1\} ,\{ 2\} ,\{ 3\} )), has two edges that contain y, namely (y, (\{ 1,2\} ,\{ 3\} )) and
(y, (\{ 1\} ,\{ 2,3\} )). The (canonical) permutahedral representation of the third edge of
the red triangle is (y\prime , (\{ 2\} ,\{ 1,3\} )). Generally, given an ordered partition \omega in l+ 1
parts, all (l  - j)-faces can be found by j merges of two-consecutive-set parts in \omega 
(for example, merging \omega 1 with \omega 2, and \omega 3 with \omega 4). We allow \omega l+1 to merge with
\omega 1, but in this case we again need to change the base point to obtain the canonical
representation.

Duality. We recall that two complexes are dual if there is a bijection between the
faces that inverts the inclusion relationships (see, for example, [13, section 11.3]). We

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

7/
23

 to
 1

38
.9

6.
20

7.
63

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 465

Fig. 4. The permutahedral representation of the simplices in the stars of vertices y and y\prime .
The arrows indicate the steps in the edge walk; see Remark 2.14 and the paragraph ``Cycles and the
permutahedron."" (Color available online.)

can associate to a FK-triangulation \scrT its dual complex \scrT \ast . Since \scrT is a simplicial
complex, \scrT \ast is a simple complex, that is, a cell complex whose faces are all simple
polytopes [13].

We will now see that each d-dimensional cell of \scrT \ast is a d-permutahedron. Indeed,
Lemma 2.20 fully characterizes the facial structure of the star of a vertex in the FK-
triangulation in terms of ordered partitions. This result is reminiscent of Lemma 2.5
that characterizes the facial structure of a permutahedron. In fact, it is easy to see
that both structures are dual as claimed in the next proposition.

Proposition 2.21. The star of a vertex in a CFK-triangulation is combinatori-
ally dual to a permutahedron.

This proposition explains the nomenclature permutahedral representation.
The above proposition follows also from the following stronger and more geometric

result.

Proposition 2.22. The Voronoi cell of a Coxeter triangulation of type \~Ad is a
permutahedron.

This can be found in [20, Chapter 21, section 3.F]; see also [18] and Appendix A
for a new and more direct proof. We stress that the Coxeter triangulation of type \~Ad

is Delaunay,2 but this does not hold for all types of Coxeter triangulations [17]. As
we have seen in section 2.2.3, Coxeter triangulations of type \~Ad are combinatorially

2We recall that a triangulation of a finite set of points of Euclidean space is called Delaunay if
its simplices can be circumscribed by empty balls, i.e., balls whose interiors contain no point of the
set.
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466 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

equivalent to FK-triangulations. Hence, Proposition 2.21 follows from Proposition
2.22.

2.3.2. Basic operations on FK-triangulations. We now describe how to im-
plement some basic operations on an FK-triangulation whose simplices are represented
by their permutahedral representations. Notice that the permutahedral representa-
tion of any simplex requires O(d) space. From now on, we assume that the floor
function can be computed in constant time.

Point location. Given a point x\in \BbbR d, Lemma 2.12 tells us how to find the canon-
ical permutahedral representation of the simplex in which x is contained. The com-
plexity of point location is dominated by the sorting of the zi = xi - \lfloor xi\rfloor , which takes
O(d logd) time and requires O(d) space.

Face computation. Let \sigma be an l-simplex whose canonical permutahedral repre-
sentation is (v0, \omega ), where \omega is an ordered partition of [d+ 1] into l + 1 parts. The
computation of all k-faces of \sigma goes as follows. We use Ehrlich's subset generation
algorithm [26] to compute all the subsets of k + 1 elements from \{ v0, . . . , vl\} . Let
\tau = \{ vm0

, . . . , vmk
\} be such a subset. \tau is a k-face of \sigma . We then compute the

canonical permutahedral representation of all those k-faces \tau .
We first sort the mi in O(d) time so that m0 < \cdot \cdot \cdot < mk using counting sort.

Then, the canonical permutahedral representation (\~v\prime 0, \omega 
\prime ) of \tau is found by merging

consecutive parts of \omega so as to obtain k+ 1 parts as follows :

v\prime 0 = vm0 = v0 +
\sum 
j\in \omega 1

ej + \cdot \cdot \cdot +
\sum 

j\in \omega m0 - 1

ej ,

\omega \prime 
i = \omega mi - 1

\cup \cdot \cdot \cdot \cup \omega mi - 1 for i\in \{ 1, . . . , k\} ,
\omega \prime 

k+1 = (\omega 1 \cup \cdot \cdot \cdot \cup \omega m0 - 1)\cup (\omega mk
\cup \cdot \cdot \cdot \cup \omega l+1).

Ehrlich's algorithm takes a constant amount of time between successive subsets.
The overall complexity of computing all subsets of k+1 vertices of \sigma using Ehrlich's
algorithm is O(k+ s), where s=

\bigl( 
l+1
k+1

\bigr) 
is the number of subsets. Computing for each

such k-simplex its permutahedral representation takes O(d) time.

Lemma 2.23 (face computation). Let \sigma be an l-simplex in the FK-triangulation
of \BbbR d given by its canonical permutahedral representation. Computing the canonical
permutahedral representations of all its k-faces can be done in time O(ds), where
s=

\bigl( 
l+1
k+1

\bigr) 
is the number of k-faces of an l-simplex.

Coface computation. Computing the faces of a simplex \sigma consists in coarsifying
its ordered partition. The computation of cofaces is the reverse. Here we refine
the ordered partition. Specifically, if \sigma is a k-simplex represented by its canonical
permutahedral representation (v0, \omega ), and we want to compute its l-cofaces, we need
to compute all refinements of \omega into l+ 1 parts.

More precisely, we need to subdivide each \omega i into ai \leq | \omega i| subparts so that\sum k+1
i=1 ai = l + 1. This can be done in time proportional to the number k + 1 of the

generated subparts. We then need to consider all the permutations of these subparts
since we are interested in ordered partitions. Using known algorithms by Walsh [42]
and Ruskey and Savage [39], we can compute all the ordered partitions associated to
the l-cofaces of \sigma in time proportional to the number of such cofaces. We thus obtain
all the permutahedral representations (v0, \omega 

\prime ) of all the l-cofaces of \sigma .
It is important to notice that all cofaces of \sigma have v0 as a vertex. However, v0

is not necessarily the minimal vertex of some of the computed cofaces. We thus have
to identify the minimal vertex of each computed coface and use cyclic shifts (as in
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TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 467

Lemma 2.20) to obtain the canonical permutahedral representation of the coface. The
next lemma follows. The bound on the number s of cofaces follows, by duality (see
Proposition 2.21), from Corollary 2.10.

Lemma 2.24 (coface computation). Let \sigma be a k-simplex in the FK-triangulation
of \BbbR d given by its permutahedral representation. Computing the permutahedral rep-
resentations of all its l-cofaces can be done in time O(ds), where s = pd - l,d - k is the
number of l-cofaces of a k-simplex in the FK-triangulation.

As established in Corollary 2.10,

s= pd - l,d - k \leq 
1

2min(l,d - l)

\biggl( 
d - k

d - l

\biggr) 
(d - k+ 1)!.

A more straightforward and slightly better bound for the number of cofacets of a
k-simplex (i.e., l= k+1) is given by Corollary 2.9. If we write n= d - k, that is, n is
the codimension of the simplex, then we have the following.

Remark 2.25. The number of cofacets of a k-simplex, k= d - n, is upper bounded
by s= 2n+1.

We stress that this bound does not depend on d or k, but only on the codimension
n. This will be crucial for the triangulation and tracing algorithm in Part II.

2.3.3. Data structure for CFK-triangulations. We store a CFK-triangula-
tion as follows. The combinatorial structure of the triangulation is given through the
canonical permutahedral representation of its simplices and the algorithms from sec-
tion 2.2.2. The geometry of the triangulation is specified by the affine transformation
that maps the FK-triangulation of \BbbR d to the CFK-triangulation. The affine transfor-
mation is given by a d\times dmatrix \Lambda and a d-vector b. For the FK-triangulation, \Lambda is the
identity matrix and b= 0; therefore no storage is required. For the Coxeter triangula-
tion of type \~Ad, \Lambda is sparse, as can be seen by inspection of the proof of Lemma 2.16.

3. Part II: Tracing isomanifolds. In this section, we describe an algorithm
that computes a PL-approximation \^\scrM of an isomanifold \scrM . The algorithm has some
similarity with the Marching Cube algorithm [32] but departs from its basic version in
two fundamental ways. First, because of the curse of dimensionality, we cannot afford
to look at all the cells in the grid and need to limit the search to cells that are close
to \scrM . To circumvent this difficulty, we decompose the problem of computing \^\scrM into
two subproblems: locating the various components of \scrM (i.e., finding at least one
point in each connected component), and then tracing around each component, using
the fact that the components are connected. This decomposition is used by various
authors; see, for example, [22, 43]. In this paper, we focus on the tracing problem,
although we discuss very briefly (section 3.2) the problem of locating the components.
As pointed out by Dobkin et al., many applications supply their own starting points.

The second major difference compared to the original Marching Cube algorithm
is that we replace the usual cubical grid by a CFK-triangulation of the ambient
space. Taking a CFK-triangulation instead of a grid allows us to easily construct a
PL-approximation of \scrM , which is a major advantage in high dimensions that has
been recognized in the pioneering works of Allgower and Schmidt [3] and of Dobkin
et al. [22]; see also [34]. The novelty here is using the data structure of section 2.3 to
represent a CFK-triangulation. As a consequence, we will keep two main advantages
of using grids: very limited storage and fast basic operations.
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468 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

3.1. Isomanifolds. Let f : \BbbR d \rightarrow \BbbR d - n be a smooth (C2 suffices) function,
and suppose that 0 is a regular value of f , meaning that at every point x such
that f(x) = 0, the Jacobian of f is nondegenerate. Then the zero set of f is an
n-dimensional manifold as a direct consequence of the implicit function theorem; see,
for example, [23, section 3.5]. We further assume that f - 1(0) is compact. As in [1]
we consider a triangulation \scrT of the ambient space \BbbR d. The function \^f is the linear
interpolation of the values of f at the vertices if restricted to a single simplex \sigma \in \scrT ,
i.e.,

(9) \forall x\in \sigma : \^f(x) =
\sum 
v\in \sigma 

\lambda v(x)f(v),

where the \lambda v are the barycentric coordinates of x with respect to the vertices v of \sigma .
For any function g :\BbbR d \rightarrow \BbbR d - n we write gi, with i= 1, . . . , d - n, for the components
of g.

The PL-approximation is now defined as \^f - 1(0) = \^\scrM . Locally, \^f |  - 1
\sigma (0) is generi-

cally the intersection of an n-flat H\sigma with \sigma . More precisely we note that \^f |  - 1
\sigma (0) is

an n-flat if the gradients of \^f i| \sigma are linearly independent, which can be easily achieved
by perturbing f infinitesimally (or at least its values at the vertices). Let \tau d - n

j and

\tau d - n - 1
j be faces of \sigma of dimension d - n and d - n - 1. An infinitesimal perturbation

of f can prevent either \^f |  - 1
\sigma (0) from intersecting the faces \tau d - n - 1

j , or the gradients of
\^f i| \sigma and the normal spaces of \tau d - n

j (for each fixed j) from failing to span \BbbR d. More
precise statements on the geometric and topological stability of the triangulation un-
der perturbations of f can be found in [12, section 5]. Because \^f |  - 1

\sigma (0) is (generically)
the intersection of an n-flat (H\sigma ) and \sigma , it is an n-dimensional polytope denoted by
C\sigma . The PL-approximation or mesh \^\scrM of \scrM is the polytopal cell complex obtained
by gluing the polytopes C\sigma associated to all the simplices \sigma in \scrT .

3.2. Manifold tracing algorithm. We recall that the length of the longest
edge in the ambient triangulation \scrT , called the diameter of \scrT , is denoted by D.
Both n and d are known but arbitrary and will be considered as parameters in the
complexity analysis. We write k= d - n for the codimension of \scrM . The algorithm will
use for \scrT a CFK-triangulation stored using the data structure from section 2.2. We
assume that the manifold \^\scrM and the triangulation \scrT satisfy the following hypothesis.

Genericity Hypothesis 3.1. Suppose that \sigma is a d-simplex of \scrT that intersects H\sigma .
Then the following two statements hold:

\bullet No subface of \sigma of dimension less than k intersects H\sigma .
\bullet Any subface of \sigma of dimension k intersects H\sigma in at most one point and

transversally.

We note that this condition can be satisfied by an infinitesimal perturbation for
isomanifolds. This requires some explanation. We recall that the CFK-triangulation
is a hyperplane arrangement, and up to translation there are a finite number of k-
flats that contain all k-simplices in the CFK-triangulation. Genericity Hypothesis
3.1 is not satisfied if either the flat H\sigma is not linearly independent of these k-flats,
or if H\sigma does intersect some (k  - 1)-flat in the CFK-triangulation. In the previous
section, we have already seen that an infinitesimal perturbation ensures that H\sigma is
n-dimensional. Because two affine spaces whose dimensions do not add up to the
ambient dimension don't intersect generically and two affine spaces whose dimensions
add up to exactly the ambient dimension intersect in a single point, we see that gener-
icity can be achieved by perturbing f infinitesimally (alternatively one could perturb
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TRACING ISOMANIFOLDS IN \BbbR d IN TIME POLYNOMIAL IN d 469

the planes in the hyperplane arrangement by perturbing the matrix \Lambda ). We further
remark that, generically, any vertex of the PL-approximation \^\scrM is the intersection
point between a k-simplex \sigma of \scrT with the n-flat H\sigma that interpolates f inside \sigma .

Algorithm 1 Manifold tracing algorithm.
input : The permutahedral representation of a triangulation T of Rd,

the codimension of the isomanifold k = d− n,
a seed k-simplex τ0 that intersects M̂

oracle : Given a k-simplex σ of T , decide whether σ intersects Hσ and, in the
affirmative, report the corresponding vertex σ ∩Hσ = σ ∩ M̂

output: Set S of the simplices in T of dimension k that intersect M̂,
represented by their permutahedral representation, and the
corresponding set M̂0 of intersection points

1 Initialize the queue Q and the set S with τ0
2 while the queue Q is not empty do
3 Pop a k-dimensional simplex τ from Q
4 foreach cofacet φ of τ do
5 foreach facet σ of φ do

6 if σ does not lie in S and intersects M̂ (which can be decided using
the oracle) then

7 Insert σ into the queue Q
8 Insert σ into S together with the intersection point provided by

the oracle

The algorithm essentially computes the set \scrS of k-simplices of \scrT that intersect
\^\scrM . The elements of \scrS are in 1-1 correspondence with the vertices of \^\scrM thanks to
the Genericity Hypothesis 3.1. The so-called intersection oracle is a basic ingredient
of the algorithm.

Intersection oracle: Given a k-simplex \sigma of \scrT , decide whether \sigma intersects H\sigma ,
and, in the affirmative, report the corresponding vertex \sigma \cap H\sigma .

It is easy to see that the intersection oracle reduces to solving a linear system.
Indeed, generically, a vertex is the intersection of a k-simplex \sigma = [v0, . . . , vk] of \scrT 
with the n-flat H\sigma that interpolates f inside \sigma . One can compute the k+1 barycentric
coordinates \lambda i, i= 0, . . . , k, of x= \sigma \cap H\sigma by solving a linear system of k+1 equations,
namely

\sum 
\lambda i = 1 and

\sum 
i \lambda if(vi) = 0. It then remains to check whether the \lambda i are all

nonnegative (to ensure that the intersection point lies inside \sigma ). It follows that the
intersection oracle reduces to evaluating f at the k + 1 vertices of \sigma plus solving a
(k+ 1)\times (k+ 1) linear system.

In addition, we need to provide a set of k-simplices of \scrT to initialize the tracing.
These simplices must intersect all the connected components of the isomanifold and
are called seed simplices. If \scrM consists of multiple connected components, then a
seed simplex must be provided per each connected component and we proceed in the
same manner for each component. So we will assume for now that \scrM is connected.

The seed simplices are given as part of the input and we don't discuss in this paper
the problem of their construction. We simply observe that they can be obtained
by computing a critical point (e.g., a point with smallest x1-coordinate) on each
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470 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

connected component of the isomanifold, which reduces to finding a solution to a
system of equations, on which a large body of literature exists. See, for example, [22,
36, 37] and also the discussion in Wenger's book [43, section 8.4]. Once such a seed
point has been computed, we simply translate and rotate the triangulation \scrT so that
the seed point coincides with the barycenter of a k-simplex of \scrT and the intersection
with the manifold is transversal as demanded by the Genericity Hypothesis 3.1 (for
numerical stability it is convenient if the angle between the tangent space of the
manifold and the starting k-simplex is large, which is easy to ensure). If the distance
between \scrM and \^\scrM is small enough, then \^\scrM also intersects the same k simplex; see
section 3.3.

The algorithm is described as Algorithm 1. It takes as input the permutahedral
representation of an ambient CFK-triangulation \scrT and a seed k-simplex \tau 0 of \scrT .
We assume that \scrT satisfies the Genericity Hypothesis 3.1, which can be enforced by
infinitesimal perturbations of f as discussed in section 3.1.

The algorithm maintains the subset \scrS of the simplices in \scrT of dimension k that
intersect \^\scrM . \scrS is initialized with the seed simplex \tau 0 and stored as a hash table so
that we can decide in constant time whether a given k-simplex belongs to \scrS . Then,
starting from \tau 0, we look at all its cofacets and consider all the facets of those cofacets
that are not in \scrS (i.e., they have not been considered yet). This can be done using
a queue \scrQ of candidate k-simplices. Each of these simplices is queried with the
intersection oracle and, if it is found to intersect \^\scrM , it is added to \scrS if not already
present. Upon termination, \scrS contains the k-dimensional simplices of \scrT that have
been found to intersect \^\scrM . Each such intersection, which consists of a single point
(by the Genericity Hypothesis 3.1), is a vertex of \^\scrM .

Note that our algorithm essentially traverses the adjacency graph of the k and
(k+1)-simplices of \scrT that intersect \^\scrM . Since this graph is connected, the algorithm
identifies the set \^\scrM 0 of all the vertices of \^\scrM and also the edges joining two such
vertices (associated to the cofacets of the k-simplices in \scrS ). By simply reporting those
cofacets on the fly, the algorithm can output the 1-skeleton \^\scrM 1 of the n-dimensional
polytopal cell complex \^\scrM . The higher dimensional faces of \^\scrM are the polytopes
C\tau = \tau \cap H\tau for all the cofaces \tau of the k-simplices of \scrS . If needed, the full Hasse
diagram of \^\scrM can be computed from \^\scrM 0. This can be done in an output sensitive
manner by using the permutahedral representation of \scrT and the algorithm of section
2.2 to compute cofaces by increasing dimensions.

3.3. Topological guarantees for the PL-approximation of isomanifolds.
We first recall sufficient conditions under which the PL-approximation \^\scrM output by
the algorithm faithfully reproduces the original isomanifold. These conditions are
fully described in [12], and we simply state here the main results specialized to the
case of CFK-triangulations.

We say that f has bounded complexity if the following three quantities \gamma max, \lambda min,
and \alpha max are positive and bounded:

\gamma max =max
x\in \scrT 0

(max
i

| gradf i(x)| ),

\lambda min = min
x\in \scrT 0

\lambda min(x),

\alpha max =max
x\in \scrT 0

max
i

\| Hes(f i)(x)\| 2,

where
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\bullet \scrT 0 denotes the set of all \sigma \in \scrT , such that (f i) - 1(0)\cap \sigma \not = \emptyset for all i;
\bullet gradf i = (\partial jfi)j denotes the gradient of component f i for i\in [1, d - n];
\bullet Gram(\nabla f) denotes the Gram matrix whose elements are \nabla f i \cdot \nabla f j , where

\cdot stands for the dot product. \lambda min(x) is the smallest absolute value of the
eigenvalues of Gram(\nabla f(x));3

\bullet Hes(f) = (\partial k\partial lfi)k,l denotes the Hessian matrix of second order derivatives;
\bullet | \cdot | denotes the Euclidean norm of a vector and \| \cdot \| 2 the operator 2-norm of

a matrix.4

We can now restate the topological result of [12].

Theorem 3.2. Assume that the function f has bounded complexity. If the pre-
cision of the CFK-triangulation satisfies D=O(d - 5/2), where the constant in the big
O depends on \gamma max, \lambda min, and \alpha max, then \^\scrM is a manifold isotopic to the zero set
\scrM of f .

Moreover, we can bound the Fr\'echet distance between \scrM and \^\scrM . The Fr\'echet
distance is a quite strong notion of distance, and, in particular, it bounds the Hausdorff
distance.

Definition 3.3 (Fr\'echet distance for embedded manifolds). Let \scrM a and \scrM b be
two homeomorphic, compact submanifolds of \BbbR d. Write \scrH for the set of all homeo-
morphisms from \scrM a to \scrM b. The Fr\'echet distance between \scrM a and \scrM b is

dF (\scrM a,\scrM b) = inf
h\in \scrH 

sup
x\in \scrM a

d(x,h(x)),

where the distance d(\cdot , \cdot ) is the Euclidean one.

Theorem 3.4. Assume that the function f has bounded complexity. Then, we
have dF (\scrM , \^\scrM ) =O(D2) where the constant in the big O depends on \gamma max, \lambda min, and
\alpha max.

3.4. Complexity analysis. We can easily bound the complexity of the manifold
tracing algorithm as a function of the size of the output.

Proposition 3.5. The time complexity of the algorithm is O(k2nI| \scrS | ), where I
is the time complexity of one call of the intersection oracle, and | \scrS | is the number of
simplices of dimension k output by the algorithm. Recall that n is the dimension of
\scrM and k= d - n is its codimension.

Proof. The complexity of the initialization is O(d). The complexity of each itera-
tion of the while loop consists of computing the cofacets of the popped k-dimensional
simplex in the queue, computing facets of these cofacets, and applying the intersec-
tion oracle on each of these facets. An upper bound on the number of cofacets of a
k-simplex in a CFK-triangulation is O(2n). This is the bound from Remark 2.25. We
recall that by duality (see Proposition 2.21) a k-simplex in an FK-triangulation corre-
sponds to an n-face of the permutahedron where n= d - k. Moreover, the cofacets s in
the FK-triangulation correspond to facets in the permutahedron. The bound O(2n) is
given in Remark 2.25, which in turn is a consequence of Corollary 2.9. Each of these
cofacets has k+2 facets. Therefore, for each iteration of the while loop, the algorithm

3Because a Gram matrix is a symmetric square matrix, its eigenvalues are well defined and real.
4The operator norm is defined as \| A\| p = maxx\in \BbbR n

| Ax| p
| x| p

, with | \cdot | p the p-norm on \BbbR n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

7/
23

 to
 1

38
.9

6.
20

7.
63

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



472 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

applies the intersection oracle on O(k2n) simplices. By using this observation and the
complexities in Lemmas 2.23 and 2.24, the total time complexity of each iteration of
the while loop follows:

O(d2n) +O(dk2n) +O(k2nI) =O(k2n(d+ I)) =O(k2nI).

Since there are | \scrS | iterations of the while loop, the result follows.

Since the intersection oracle reduces to evaluating f at the k+1 vertices of \sigma plus
solving a (k+ 1)\times (k+ 1) linear system, we have I =O(k\omega ), where \omega \approx 2.375.

We will now express the size of the output in terms of quantities that depend on
the manifold, the ambient dimension d, and longest edge length D (or diameter) of
a simplex in the triangulation which bounds the density of the output sample, and
the Fr\'echet distance of the approximation. Our result holds for K-sparse manifolds,
i.e., submanifolds whose intersection with any k-flat consists of at most K points. In
practical situations, K is usually small and, in particular, K is a constant for algebraic
isomanifolds of bounded degree.

Proposition 3.6 (size of the output). Assume that \scrM is contained in the unit
cube Cd = [0,1]d, and that any k-flat intersects \scrM at most K times. Writing | \scrS | =NC

when \scrT is a Coxeter triangulation and | \scrS | =NFK for an FK-triangulation, we have

NC \leq K

n!
\times 
\Biggl( 
d(d+ 1)

\sqrt{} 
d(d+ 2)

2
\surd 
2D

\Biggr) n

and

NFK \leq K

n!
\times 
\biggl( 
d2(d+ 1)\surd 

2D

\biggr) n

,

where D is the diameter of a simplex of \scrT .

Proof. By the definition of CFK-triangulations in section 2.2, \scrT is an arrangement
of d(d + 1)/2 families Hu of hyperplanes, u \in E\scrT . Each family Hu consists of the
hyperplanes Hu,k, k \in \BbbZ , all orthogonal to u. Let L\scrT be the length of the longest
edge of a simplex in \scrT , and R\tau be the maximal norm of the vectors u. Note that the
distance between two consecutive hyperplanes in family Hu is 1/\| u\| \geq 1/R\tau .

We will rescale the arrangement of hyperplanes so that the maximal diameter of
the simplices is D. Hence the distance between two consecutive hyperplanes in Hu is
D/(L\scrT \| u\| ). It follows that at most

\surd 
dL\scrT \| u\| /D hyperplanes of family Hu intersect

the unit cube Cd that contains \scrM (which has diameter
\surd 
d). Consider any subset of n

families among the d(d+1)/2 families, and write I for the associated subset of indices,
I \subset [1, d(d + 1)/2], | I| = n. Now take n hyperplanes, one in each family Hui , i \in I.
Their common intersection is an affine space of dimension k= d - n. This affine space
intersects \scrM in at most K points under the general position assumption and the fact
that \scrM is K-sparse. The total number of intersection points N\scrT = \scrT k \cap \scrM is thus
bounded as follows:

N\scrT \leq K

\biggl( 
d(d+ 1)/2

n

\biggr) 
\times 
\prod 
i\in I

\surd 
dL\scrT \| ui\| 

D
\leq K

n!
\times 
\Biggl( 
d(d+ 1)

\surd 
dL\scrT R\scrT 

2D

\Biggr) n

.(10)

Here the binomial coefficient arises as the number of choices of n families of
hyperplanes.
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Consider now more specifically Coxeter triangulations of type \~Ad and FK -triangu-
lations. It follows from section 2.2 that RC = RFK =

\surd 
2. The longest edge LFK in

an FK-triangulation has length at most (in fact exactly)
\surd 
d since each simplex is

contained in a cubical cell of the d-dimensional unit grid. Furthermore, it is proved in
[17, section 6, point 6 of \~Ad] that the longest edge length in the Coxeter triangulation
of type \~Ad is

LC =

\Biggl\{ \surd 
d+1
2 if d is odd,

1
2

\sqrt{} 
d(d+2)
(d+1) if d is even,

(11)

and hence LC <
\surd 
d+2
2 . We then deduce from (10) that

NC \leq K

n!
\times 
\Biggl( 
d(d+ 1)

\sqrt{} 
d(d+ 2)

2
\surd 
2D

\Biggr) n

,

NFK \leq K

n!
\times 
\biggl( 
d2(d+ 1)\surd 

2D

\biggr) n

.

We see that Coxeter triangulations lead to smaller samples than FK -triangulations
by a factor of roughly 2n. This will be confirmed experimentally (see Figure 7).

As noticed in section 3.2, a simple variant of the algorithm can compute the full
Hasse diagram of \^\scrM in an output sensitive manner. The following lemma shows
that the combinatorial complexity of \^\scrM is of the same order as the combinatorial
complexity as \^\scrM 0.

Proposition 3.7. The combinatorial complexity of \^\scrM is | \scrS | \times ( 32 )
n(n+1)!, where

| \scrS | is bounded in Proposition 3.6. If n=O(1), the combinatorial complexity of \^\scrM is
polynomial in d, and \delta = 1/D.

Proof. Let \sigma be a k-simplex of a CFK-triangulation that intersects \^\scrM , and let
\sigma \ast be its dual cell. By definition, \sigma \ast is an n-dimensional face of \scrT \ast , the polytopal
cell complex dual to \scrT . The collection of all \sigma \ast associated to the k-simplices \sigma of \scrT 
that intersect \^\scrM form a cell complex \^\scrM \ast dual to \^\scrM . To bound the number of faces
of all dimensions of the PL-approximation \^\scrM , it is therefore sufficient to bound the
number of faces of \^\scrM \ast .

Each d-dimensional cell in \scrT \ast is a permutahedron (Proposition 2.21). Hence, \sigma \ast 

is an n-face of a d-permutahedron. The number of faces of \sigma \ast of dimensions 0 to n - 1
(or equivalently the number of cofaces of \sigma of dimensions n+ 1 to d) is

n - 1\sum 
i=0

pi,n \leq 
n - 1\sum 
i=0

1

2i

\biggl( 
n

i

\biggr) 
(n+ 1)! =

3n  - 1

2n
(n+ 1)!,

where pi,j denotes the number of i-faces of a j-face of the d-permutahedron and is
bounded in Corollary 2.10. The last equality can be easily verified using Mathematica.
The overall combinatorial complexity of \^\scrM is therefore

| \scrS | \times 3n  - 1

2n
(n+ 1)!,

where \scrS is bounded in Proposition 3.6.

We combine Propositions 3.5, 3.6, and 3.7 and Theorem 3.2 to obtain our main re-
sult that states that the tracing algorithm constructs geometrically close and
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474 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

topologically correct PL-approximations of isomanifolds of bounded complexity in
polynomial time.

Theorem 3.8. Assume that \scrM is contained in the unit cube [0,1]d and that any
affine k-flat intersects \scrM at most K times (K is usually small and is in particular
a constant for algebraic isomanifolds of bounded degree). In addition, let D be the
length of the longest edge in the ambient triangulation \scrT . The size of the output and
the time complexity of the tracing algorithm are polynomial in the ambient dimension
d and in \delta = 1/D, and exponential in the intrinsic dimension n. The same result
holds for the full PL-approximation \^\scrM of \scrM .

Moreover, if we take \delta = \Omega (d2.5), the PL-approximation \^\scrM is O(D2)-close and
isotopic to the isomanifold. Here the constants in the O depend on f and its deriva-
tives.

3.5. Dimensionality reduction. As seen from Proposition 3.6, the size | \scrS | of
the output of the algorithm, considered as a function of the resolution D of the trian-
gulation, depends exponentially on n (which is to be expected), and only polynomially
on d (which is fortunate). Nevertheless, the computing time of our algorithm and the
size of the output depend on d. Removing the dependency on d in the time complex-
ity is impossible since we need to evaluate a vector-valued function f at a number of
points of \BbbR d, which takes \Omega (d) time per evaluation. However, we will see that we can
reduce the size of the mesh produced by our algorithm.

Examples of samples of \scrM whose sizes depend on n but not on d and lead to good
approximations are known. Especially important are D-nets [9, 16]. A D-net consists
of a finite number of sample points of \scrM such that no point of \scrM is at distance
more than D from a sample point (density condition), and no two sample points are
closer than cD for some positive constant c (separation condition). A simple volume
argument shows that the size of a D-net of an n-dimensional smooth submanifold
is O(1/Dn) [8, Lemma 5.3]. The sample produced by our algorithm is D-dense on
the piecewise linear approximation. This implies that we have a sample that has a
Hausdorff distance of D+ dF (\scrM , \^\scrM ) to the manifold, where dF (\scrM , \^\scrM ) is bounded
in Theorem 3.4.

Since its cardinality depends on d, it is not well separated and, in particular, not
a D-net of \scrM . If we are mostly interested in the output sample, we can easily sparsify
it to obtain a 2D-net.5 However, by doing so, we will lose the combinatorial structure
of the mesh.

We now show how to compute a sample of \scrM whose one-sided Hausdorff distance
to the manifold is D of size independent of d, together with a mesh. Specifically, we
will reduce dimensionality using a variant of the celebrated Johnson--Lindenstrauss
lemma for manifolds. Doing so, we depart from our previous worst-case analysis by
allowing some approximation factor \varepsilon and tolerate a guarantee that holds only with
high probability.

Theorem 3.9 (Johnson--Lindenstrauss lemma for manifolds [19, 41]). Pick any
\varepsilon , \eta > 0, and let d\prime = \Omega ( n

\varepsilon 2 log 1
\varepsilon + 1

\varepsilon 2 log \Gamma 
\eta ), where \Gamma is a quantity that depends only

on intrinsic properties of \scrM . Let \Phi be the projection on a random affine subspace of

dimension d\prime . Then, with probability > 1 - \eta , for all x, y \in \scrM , we have (1 - \varepsilon )

\sqrt{} 
d
\prime 
d \leq 

\| \Phi x - \Phi y\| 
\| x - y\| \leq (1 + \varepsilon )

\sqrt{} 
d
\prime 
d .

5Consider each point of the original set in turn for inclusion in the sparsified set. A point is
inserted only if it is at distance larger than D from all the already inserted points.
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Let \Psi =
\sqrt{} 

d

d
\prime \Phi . By the theorem, the image \Psi (\scrM ) of \scrM is a submanifold of

dimension n embedded in \BbbR d
\prime 
. One can now run the manifold tracing algorithm in

\BbbR d
\prime 
to sample and mesh \Psi (\scrM ). The algorithm works as described before except that

we need another oracle that, given a (d\prime  - n)-simplex \sigma of the CFK-triangulation of

\BbbR d
\prime 
, decides whether its inverse image \Psi  - 1(\sigma ) intersects \scrM or not. Note that \Psi  - 1(\sigma )

is a (d - d\prime )-dimensional flat strip (that is, the product of a face and an affine subspace)
in \BbbR d, and that the complexity of this new oracle is the same as the complexity of the
basic intersection oracle, i.e., polynomial in d.

Due to the scaling factor
\sqrt{} 
d/d\prime , the resolution of the triangulation in the low

dimensional space \BbbR d
\prime 
has to be scaled by the same factor if one wants to satisfy a

given sampling density on \scrM . Since the geometry of the manifold is also scaled in
the same way [25], the analysis of the algorithm will be unchanged. Proposition 3.6
then shows that the size of the output sample does not depend on d but only on n
and D for fixed \varepsilon and \eta . Moreover, since the complexities of the projection and of the
new oracle are polynomial in d, Proposition 3.5 implies that the overall complexity is
still polynomial in d (and d\prime ). Note that we assume that d\prime < d and therefore d\prime can
be safely absorbed.

3.6. Isomanifolds with boundary, and isostratifolds. The case of isomani-
folds with boundary and, more generally, of isostratifolds can be handled in very much
the same way. By an isomanifold of dimension n with boundary, we mean that, on
top of a function f : \BbbR d \rightarrow \BbbR d - n, we are given another function f\partial : \BbbR d \rightarrow \BbbR , and the
set we consider is \scrM = f - 1(0)\cap f - 1

\partial ([0,\infty )). We note that \partial \scrM = f - 1(0)\cap f - 1
\partial (0).

Similarly to (9), we also define \^f\partial | \tau (x) =
\sum 

v\in \sigma \lambda v(x)f\partial (v). We write \^f for the

(global) piecewise linear function that coincides with \^f | \tau on each \tau of \scrT , and \^f\partial for
the (global) piecewise linear function that coincides with \^f\partial | \tau on each \tau of \scrT . We
note that the piecewise linear approximation of the boundary \^f - 1

\partial (0) \cap \^f - 1(0) is a

subset of \^f - 1(0), i.e., the piecewise linear approximation of the manifold ignoring
the boundary. The piecewise linear approximation \^\scrM of the manifold with boundary
consists of the following cells:

\bullet For each \tau of \scrT , such that \^f\partial | \tau is positive on \tau and ( \^f | \tau ) - 1(0) \cap \tau \not = \emptyset , we
add ( \^f | \tau ) - 1(0)\cap \tau .

\bullet For each \tau of \scrT , such that ( \^f | \tau ) - 1(0)\cap \tau \not = \emptyset and ( \^f\partial | \tau ) - 1(0)\cap \tau \not = \emptyset , we add
( \^f | \tau ) - 1(0)\cap ( \^f\partial | \tau ) - 1([0,\infty ))\cap \tau .

Because \partial \scrM is itself a manifold without boundary, \widehat \partial \scrM is as defined before. We
will assume that the Genericity Hypothesis 3.1 holds for both \^\scrM and \widehat \partial \scrM .

We can now adapt the algorithm of section 3.2 as follows. In addition to reporting
the set Sk of k-faces of the triangulation \scrT that intersect \^\scrM , the algorithm will also
report the set Sk+1 of (k + 1)-faces of the triangulation \scrT that intersect \widehat \partial \scrM . The
computation of Sk+1 is done by the following simple modification of Algorithm 1: if
the k-dimensional facet \sigma of \tau intersects \^f - 1(0) at a point x such that \^f\partial | \tau (x) < 0
(i.e., x is not in \^\scrM ), we then compute the intersection point of \tau with \^f - 1

\partial (0) and
put \tau in Sk+1.

As for the case of manifolds without boundary (see the discussion at the end
of section 3.2), the algorithm traverses (and therefore computes) the 1-skeleton of
\^\scrM . Under the Genericity Hypothesis 3.1, the vertices of \^\scrM 1 are in bijection with
the simplices of Sk \cup Sk+1. The edges are obtained by applying the following rules
(we identify a simplex in Sk (resp., Sk+1) and the intersection point Sk \cap \^\scrM (resp.,

Sk+1 \cap \widehat \partial \scrM ):
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476 BOISSONNAT, KACHANOVICH, AND WINTRAECKEN

1. Two simplices \sigma 1 and \sigma 2 of Sk are joined by an edge in \^\scrM 1 if and only if
there exists a simplex in \scrT k+1 with faces \sigma 1 and \sigma 2.

2. Two simplices \tau 1 and \tau 2 of Sk+1 are joined by an edge in \widehat \partial \scrM 1 if and only if
there exists a simplex in \scrT k+2 with faces \tau 1 and \tau 2.

3. A simplex \sigma of Sk and a simplex \tau of Sk+1 are joined by an edge in \widehat \partial \scrM 1 if
and only if \sigma is a facet of \tau .

The three rules above together with the permutahedral representation of \scrT pro-
vide a way to construct the 1-skeleton of \^\scrM on the fly. The total cost is output
sensitive. If needed, the entire combinatorial structure of \^\scrM can be computed by
traversing the full triangulation \scrT .

The above construction generalizes easily to arbitrary isostratifolds. Isostratifolds
are stratified spaces that are defined by equations and inequalities. An example of such
a stratifold is an octant of the sphere in \BbbR 3 that can be defined as x2+y2+z2 - 1 = 0,
x \geq 0, y \geq 0, and z \geq 0. We compute the 1-skeleton of \^\scrM and construct a graph
whose nodes are the simplices of dimensions k, k+1, . . . , d that intersect the strata of
dimension n,n - 1, . . . ,0.

4. Part III: Experiments and applications. In sections 4.1 and 4.2 we dis-
cuss the experimental results on the data structure and tracing algorithm, respectively.
Section 4.3 concerns an application in algebraic geometry.

4.1. Experimental results for the data structure. The data structure and
the basic operations have been implemented in C++ and have been integrated in
the GUDHI library [29]. We report on the execution time of the face and coface
generation algorithms for the FK-triangulations.

In Tables 1--4, we consider an ambient space of moderate dimension d = 30 and
compute the higher dimensional faces of various high dimensional simplices, of dimen-
sions ranging from 22 to 30.

Each entry in Table 1 corresponds to the total time in milliseconds of computing
all the k-dimensional faces of a set of l-dimensional simplices in \BbbR 30. The l-dimensional
simplices are picked at random in the triangulation and the results are averaged over
1,000 simplices. Note that the time 11,904.7ms is the time of computing all 5,852,925
faces of dimension 22 of a simplex of dimension 30.

Table 2 shows the same running times per computed face. As we can see, except
for the case l= k, the running time per computed face is around 2\mu s.

Table 1
Total running time of the face generation algorithm (in milliseconds).
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Table 1
Total running time of the face generation algorithm (in milliseconds).

Face
dimension k

22 23 24 25 26 27 28 29

S
im

p
le

x
d

im
en

si
o
n
l 22 0.006

23 0.042 0.006
24 0.503 0.05 0.008
25 4.88 0.645 0.058 0.008
26 33.76 5.697 0.697 0.062 0.008
27 162.114 35.108 6.824 0.758 0.064 0.008
28 885.293 190.441 40.856 6.906 0.739 0.058 0.006
29 3420.99 973.455 246.88 49.896 6.657 0.735 0.058 0.006
30 11904.7 4175.92 1247.97 275.776 50.932 7.348 0.778 0.058

Table 2
Running time of the face generation algorithm per computed face (in milliseconds).

Face
dimension k

22 23 24 25 26 27 28 29

S
im

p
le

x
d

im
en

si
o
n
l 22 0.006

23 0.0018 0.006
24 0.0017 0.002 0.008
25 0.0019 0.002 0.0022 0.008
26 0.0019 0.0019 0.002 0.0023 0.008
27 0.0016 0.0017 0.0021 0.002 0.0023 0.006
28 0.0019 0.0016 0.0017 0.0019 0.0018 0.002 0.006
29 0.0017 0.0016 0.0017 0.0018 0.0016 0.0017 0.0019 0.006
30 0.0015 0.0016 0.0017 0.0016 0.0016 0.0016 0.0017 0.0019

the GUDHI library [29]. We report on the execution time of the face and coface
generation algorithms for the FK-triangulations.

In Tables 1-4, we consider an ambient space of moderate dimension d = 30 and
compute the higher dimensional faces of various high dimensional simplices, of dimen-
sions ranging from 22 to 30.

Each entry in Table 1 corresponds to the total time in milliseconds of computing
all the k-dimensional faces of a set of l-dimensional simplices in R30. The l-dimensional
simplices are picked at random in the triangulation and the results are averaged over
1 000 simplices. Note that the time 11 904.7ms is the time of computing all 5 852 925
faces of dimension 22 of a simplex of dimension 30.

Table 2 shows the same running times per computed face. As we can see, except
for the case l = k, the running time per computed face is around 2µs.

In Tables 3 and 4, we present analogous tables for the coface computation algo-
rithm. Similarly, the running time per computed coface in Table 4 is around 2µs with
the exception of when k is close to l.

The next results are motivated by the problem of tracing a manifold of low di-
mension m embedded in Rd for high d. The crucial operations in this context consist
in computing the facets and cofacets of simplices of codimension m in a triangulation
of Rd, as is clear from Algorithm 1 .

In Table 5, we present the execution time of the facet generation algorithm applied
to simplices of low codimension m, ranging from 1 to 7, in the FK-triangulations of
high dimensions d (up to d = 400). In Table 6, we present the execution time of the
cofacet generation algorithm under the same circumstances.

A graphical display of the results of Tables 5 and 6 is shown in Figure 5.
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Table 2
Running time of the face generation algorithm per computed face (in milliseconds).
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Table 1
Total running time of the face generation algorithm (in milliseconds).

Face
dimension k

22 23 24 25 26 27 28 29

S
im

p
le

x
d

im
en

si
o
n
l 22 0.006

23 0.042 0.006
24 0.503 0.05 0.008
25 4.88 0.645 0.058 0.008
26 33.76 5.697 0.697 0.062 0.008
27 162.114 35.108 6.824 0.758 0.064 0.008
28 885.293 190.441 40.856 6.906 0.739 0.058 0.006
29 3420.99 973.455 246.88 49.896 6.657 0.735 0.058 0.006
30 11904.7 4175.92 1247.97 275.776 50.932 7.348 0.778 0.058

Table 2
Running time of the face generation algorithm per computed face (in milliseconds).

Face
dimension k

22 23 24 25 26 27 28 29

S
im

p
le

x
d

im
en

si
o
n
l 22 0.006

23 0.0018 0.006
24 0.0017 0.002 0.008
25 0.0019 0.002 0.0022 0.008
26 0.0019 0.0019 0.002 0.0023 0.008
27 0.0016 0.0017 0.0021 0.002 0.0023 0.006
28 0.0019 0.0016 0.0017 0.0019 0.0018 0.002 0.006
29 0.0017 0.0016 0.0017 0.0018 0.0016 0.0017 0.0019 0.006
30 0.0015 0.0016 0.0017 0.0016 0.0016 0.0016 0.0017 0.0019

the GUDHI library [29]. We report on the execution time of the face and coface
generation algorithms for the FK-triangulations.

In Tables 1-4, we consider an ambient space of moderate dimension d = 30 and
compute the higher dimensional faces of various high dimensional simplices, of dimen-
sions ranging from 22 to 30.

Each entry in Table 1 corresponds to the total time in milliseconds of computing
all the k-dimensional faces of a set of l-dimensional simplices in R30. The l-dimensional
simplices are picked at random in the triangulation and the results are averaged over
1 000 simplices. Note that the time 11 904.7ms is the time of computing all 5 852 925
faces of dimension 22 of a simplex of dimension 30.

Table 2 shows the same running times per computed face. As we can see, except
for the case l = k, the running time per computed face is around 2µs.

In Tables 3 and 4, we present analogous tables for the coface computation algo-
rithm. Similarly, the running time per computed coface in Table 4 is around 2µs with
the exception of when k is close to l.

The next results are motivated by the problem of tracing a manifold of low di-
mension m embedded in Rd for high d. The crucial operations in this context consist
in computing the facets and cofacets of simplices of codimension m in a triangulation
of Rd, as is clear from Algorithm 1 .

In Table 5, we present the execution time of the facet generation algorithm applied
to simplices of low codimension m, ranging from 1 to 7, in the FK-triangulations of
high dimensions d (up to d = 400). In Table 6, we present the execution time of the
cofacet generation algorithm under the same circumstances.

A graphical display of the results of Tables 5 and 6 is shown in Figure 5.

Table 3
Total running time of the coface generation algorithm (in milliseconds).
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Table 3
Total running time of the coface generation algorithm (in milliseconds).

Coface
dimension l

23 24 25 26 27 28 29 30

S
im

p
le

x
d

im
en

si
o
n
k 22 0.11 1.274 9.577 43.848 86.699 96.407 59.935 15.487

23 0.043 0.114 0.729 3.499 9.337 13.523 10.058 3.049
24 0.047 0.1 0.381 1.183 2.132 1.871 0.653
25 0.046 0.097 0.23 0.423 0.426 0.193
26 0.047 0.076 0.128 0.15 0.093
27 0.049 0.069 0.081 0.063
28 0.047 0.061 0.054
29 0.05 0.053
30 0.05

Table 4
Running time of the coface generation algorithm per computed face (in milliseconds).

Coface
dimension l

23 24 25 26 27 28 29 30

S
im

p
le

x
d

im
en

si
o
n
k 22 0.002 0.0013 0.0013 0.0015 0.0016 0.0016 0.0016 0.0017

23 0.042 0.003 0.0017 0.0016 0.0016 0.0016 0.0016 0.0017
24 0.045 0.004 0.0019 0.0017 0.0017 0.0017 0.0018
25 0.045 0.0053 0.0025 0.002 0.0019 0.0022
26 0.047 0.0073 0.0035 0.0028 0.0036
27 0.048 0.0103 0.0058 0.0068
28 0.048 0.0145 0.0133
29 0.05 0.026
30 0.05

Table 5
Average running times in milliseconds of the facet generation algorithm.

Ambient
dimension d

50 100 150 200 250 300 350 400

F
a
ce

co
d

im
en

si
o
n

m

1 0.166 0.612 1.438 2.862 5.376 8.69 12.184 15.924
2 0.166 0.643 1.417 2.858 5.607 8.375 11.806 16.261
3 0.168 0.607 1.395 2.888 5.866 8.232 12.008 16.527
4 0.162 0.589 1.373 2.864 5.491 8.447 11.936 16.08
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In Tables 3 and 4, we present analogous tables for the coface computation algo-
rithm. Similarly, the running time per computed coface in Table 4 is around 2\mu s with
the exception of when k is close to l.

The next results are motivated by the problem of tracing a manifold of low di-
mension m embedded in \BbbR d for high d. The crucial operations in this context consist
in computing the facets and cofacets of simplices of codimension m in a triangulation
of \BbbR d, as is clear from Algorithm 1.

In Table 5, we present the execution time of the facet generation algorithm applied
to simplices of low codimension m, ranging from 1 to 7, in the FK-triangulations of
high dimensions d (up to d= 400). In Table 6, we present the execution time of the
cofacet generation algorithm under the same circumstances.
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Fig. 5. Graphical display of the results of Tables 5 and 6.A graphical display of the results of Tables 5 and 6 is shown in Figure 5.

4.2. Experimental results for the tracing algorithm. The data structure
of section 2.2 and the algorithm of section 3 have been implemented in C++. The
code is robust and fast and has been released in the GUDHI library [29]. Full detail
on the implementation, including the implementation of the oracle, can be found in
[31].

In this section, we explore the dependency of our C++ implementation of our
data structure and of the manifold tracing algorithm. We will compare the running
time of our code for the Coxeter (Ad) triangulation with the running time for the
Freudenthal--Kuhn triangulation. We discuss the results of our algorithm on several
examples, such as the ``Chair"" and (possibly clipped) Clifford torus.

4.2.1. Performance of the tracing algorithm. We show the performance of
our implementation of the manifold tracing algorithm for various ambient and intrinsic
dimensions in Figure 6. In Figure 7, we can see that using Coxeter triangulation is
beneficial in practice as it produces a smaller output in less time (see Proposition 3.6).

In Figure 8, we present a PL-approximation of a two-dimensional Clifford torus
without boundary embedded in \BbbR 10 built by the manifold tracing algorithm. The
torus has been rotated and translated in \BbbR 10 so that the coordinate axes do not play
any special role. Note that there is no C2 isometric embedding of the Clifford torus
in \BbbR 3.

4.2.2. Manifolds with boundary. The algorithm has been adapted to handle
submanifolds with boundary and surfaces with a piecewise smooth boundary; see
section 3.6. In Figure 9, we present the mesh obtained by our algorithm on a portion
of a flat torus embedded in \BbbR 4 and cut by a hypersphere. The torus has been rotated
and translated in \BbbR 4 so that the coordinate axes do not play any special role.
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Fig. 5. Graphical display of the results of Tables 5 and 6.

4.3. An application in algebraic geometry. We also applied our algorithm
to a more complicated example of interest in algebraic geometry [4] where an active
field of research is to understand the geometry and topology of various projective
varieties. Projective varieties are isomanifolds defined by polynomial equations in the
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Fig. 6. The effect of the ambient dimension d and of the intrinsic dimension n on the com-
putation time of the manifold tracing algorithm. The reconstructed manifold in the tests is the
n-dimensional sphere embedded in \BbbR d. The ambient triangulation used is a Coxeter triangulation
of type \~Ad. The diameter of the full simplices is fixed for all d.

Fig. 7. Comparison of the size of the output of the manifold tracing algorithm using two types
of ambient triangulations: a Coxeter triangulation of type \~Ad (in blue) and the FK-triangulation of

\BbbR d (in red) with the same diameter 0.07
\surd 
d of d-dimensional simplices. The reconstructed manifold

is the two-dimensional implicit surface ``Chair"" embedded in \BbbR d given by the equations (x2
1 + x2

2 +
x2
3  - 0.8)2  - 0.4((x3  - 1)2  - 2x2

1)((x3 + 1)2  - 2x2
2) = 0 and xi = 0 for i > 3. (Color available online.)

complex projective space \BbbC \BbbP d = (\BbbC d+1 \setminus 0)/\BbbC \ast of complex dimension d. One such
example is the complex one-dimensional curve (that is, a real dimensional surface)
given by the equation z21 \=z2 + z22 \=z3 + z23 \=z1 = 0 in \BbbC \BbbP 2, where \=z denotes the conjugate
of the complex number z.

To be able to apply our algorithm, we first need to pass from homogenous coor-
dinates [z1 : . . . : zd+1] on \BbbC \BbbP d to affine coordinates [z1

\prime : \cdot \cdot \cdot : zi - 1
\prime : 1 : zi+1

\prime : \cdot \cdot \cdot : zd+1
\prime ]

by picking the ith coordinate to be equal to 1, that is, zj
\prime = zj/zi. Given some ho-

mogenous coordinates [z1 : . . . : zd+1], we can choose the ith coordinate to be set to 1
to be the coordinate whose absolute value is the largest, so that \BbbC \BbbP d can be written
as the union of the d+1 sets \{ [z1\prime : \cdot \cdot \cdot : zi - 1

\prime : 1 : zi+1
\prime : \cdot \cdot \cdot : zd+1

\prime ] | | zj \prime | \leq 1\} , with the
boundaries of these sets identified. Writing zj

\prime = xj + iyj , these sets are (seen as real
sets) identical to the domain of \BbbR 2d,

Di = \{ (x1, y1, . . . , xi - 1, yi - 1, xi+1, yi+1, . . . , xd+1, yd+1) | x2
j + y2j \leq 1\} .
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Fig. 8. The piecewise-linear approximation of a flat torus embedded in \BbbR 10 defined by the equa-
tions x2

1 +x2
2 = 1, and x2

3 +x2
4 = 1, and xi = 0 for i > 4, projected to \BbbR 3. The ambient triangulation

used is a Coxeter triangulation of type \~A10 with the diameter of the full-dimensional simplices 0.23.
The output size | \scrS | is 509,952. The execution time of the algorithm is 231s. The torus has been
rotated and translated in \BbbR 10 so that the coordinate axes do not play any special role.

Let f be a homogenous polynomial in d+1 complex variables and their complex
conjugates. For each i, we can fix the ith coordinate to be 1. Writing each variable
in terms of its real and imaginary part yields a real inhomogeneous polynomial in
2d (real) variables on the domain Di. Taking the real and imaginary parts of the
function yields two real functions fR,i and f\frakI ,i on Di. As real sets, the projective
variety f = 0 on \BbbC \BbbP d and the intersection of the sets fR,i = 0 and f\frakI ,i = 0 on Di

for each i (with the boundaries identified) are the same. We can therefore apply the
tracing algorithm to each isomanifold (fR,i = 0, f\frakI ,i = 0) of Di independently. Since
their boundaries coincide, we can then glue these isomanifolds along their boundary
to obtain a PL-approximation of the projective variety f = 0. This, for example,
allows us to recover the Euler characteristic of f = 0 on \BbbC \BbbP d.

This principle generalizes to varieties of higher codimension, that is, to varieties
defined by a number of homogenous polynomials f1, . . . , fd - m.

We illustrate the above construction on the equation z21 \=z2+z22 \=z3+z23 \=z1 = 0 in \BbbC \BbbP 2.
By passing to affine coordinates, we recover z21 \=z2 + z22 + \=z1 = 0, z21 + \=z3 + z23 \=z1 = 0,
and \=z2 + z22 \=z3 + z23 = 0. By expanding z1 = x1 + iy1, z2 = x2 + iy2, and z3 =
x3+ iy3, we find two real equations for each of the complex equations. We give those
corresponding to z21 \=z2 + z22 + \=z1 = 0, the other equations being symmetric. For this
complex equation, we get the real equations x1+x2

1x2+x2
2 - x2y

2
1 +2x1y1y2 - y22 = 0
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Fig. 9. Four views of the flat torus in \BbbR 4 given by two equations x2
1+x2

2 = 1, and x2
3+x2

4 = 1 cut
by the hypersphere (x1 - 1)2+x2

2+(x3 - 1)2+x2
4 = 4, projected to \BbbR 3. The ambient triangulation used

is a Coxeter triangulation of type \~A4 with the diameter 0.15 of the full-dimensional simplices. The
reconstructed boundary is highlighted in yellow. The size | \scrS | of the piecewise-linear approximation
is 14,779. The execution time of the algorithm is 1.84s. The torus has been rotated and translated
in \BbbR 4 so that the coordinate axes do not play any special role.

Fig. 10. The three triangulated surfaces as discussed in the example of z21 \=z2 + z22 \=z3 + z23 \=z1 = 0
in \BbbC \BbbP 2 after projection from \BbbR 4 to \BbbR 3.

and  - y1 + 2x1x2y1  - x2
1y2 + 2x2y2 + y21y2 = 0 in \BbbR 4. The domain D3 is in this case

determined by the equations x2
1 + y21 \leq 1 and x2

2 + y22 \leq 1. Hence we find a surface in
\BbbR 4 with a piecewise smooth boundary. The result provided by our algorithm is shown
in Figure 10. For visualization purposes, we show the three surfaces separately and
projected from \BbbR 4 to \BbbR 3.
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5. Conclusion and open questions. We have presented an efficient, practical,
and provably correct algorithm to compute the PL-approximation of an isomanifold
of any dimension and codimension. The complexity is polynomial in the ambient
dimension so that our algorithm should be beneficial in the numerous areas where
one considers isomanifolds of low intrinsic dimensions embedded in high dimensional
spaces.

Since isomanifolds are a special type of manifolds, it is tempting to see whether
our algorithm extends to general smooth submanifolds of \BbbR d. The manifold tracing
algorithm itself is quite general and works for any submanifold as soon as we provide
a seed point (per connected component) and an oracle that can determine whether
a k-simplex of the ambient triangulation intersects \scrM or not. In this general (noni-
somanifold) setting, the simple algorithm described above is sufficient to compute a
PL-approximation of the manifold and satisfies the bounds given in section 3.

However, this is not enough to obtain guarantees on the geometric and topological
quality of the output mesh. Such guarantees can be obtained by slightly perturbing
the ambient Coxeter triangulation of type \~Ad so that the following conditions are
satisfied:

1. All k-dimensional faces \tau in \scrT , with k\leq d - n - 1, are far enough from \scrM .
2. The longest edge length of \scrT is upper bounded, and its smallest thickness is

lower bounded.
Under these conditions, Algorithm 1 will output a PL-approximation that is topo-

logically equivalent and close in Hausdorff distance to the input manifold [10, 44].
However, the perturbation scheme of [10] perturbs (in the worst case) all the sim-
plices of \scrT of dimension less than the codimension d - n that are incident on a vertex
(in a neighborhood of \scrM ). Since there are exponentially many such simplices, the
perturbation scheme has a complexity that depends exponentially on the ambient di-
mension d. It remains open whether general smooth manifolds embedded in \BbbR d can
be triangulated in time polynomial in d as we were able to do here in the special case
of isomanifolds.

Appendix A. Alternative proof of Proposition 2.22.

Proof of Proposition 2.22. We start by recalling a number of results. Let P =
\{ (xi)\in \BbbR d+1 | \sum i x

i = 0\} , and consider the d-simplex with vertices uk in P .

u0 =
\Bigl( 
0\{ d+1\} 

\Bigr) 
, uk =

\Biggl( \biggl( 
 - d+ 1 - k

d+ 1

\biggr) \{ k\} 

,

\biggl( 
k

d+ 1

\biggr) \{ d+1 - k\} 
\Biggr) 
, k \in [d],

where x\{ k\} denotes k consecutive coordinates x. This simplex is a simplex in the
Coxeter triangulation, as defined in section 2.2.3. In [17] we have seen that the
circumcenter of this simplex is

c=

\biggl( 
 - d - 2i

2(d+ 1)

\biggr) 
,

with i \in \{ 0, . . . , d\} . The circumcenter of a Delaunay simplex is a Voronoi vertex. We
recall the following:

\bullet All simplices in the star of 0 in the Coxeter triangulation are found by con-
secutive reflection of a single simplex (in this star) in the hyperplanes of \scrH EC

that go through 0, that is, the hyperplanes with normals rj,k = ej  - ek, with
j \not = k. See, for example, [14, 17, 30]. We also call these reflections the action
of the Weyl group.
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\bullet The reflection Rj,k in a plane that goes through the origin with normal rj,k
is given by

Rj,k(v) = v - 2
v \cdot rj,k
rj,k \cdot rj,k

rj,k = v - (v \cdot rj,k)rj,k.

We find that

Rj,k (c)
i
= (c - (c \cdot rj,k)rj,k)i = - d - 2i

2(d+ 1)
 - 2j  - 2k

2(d+ 1)
(\delta ij  - \delta ik),

which permutes the jth and kth coordinates of c. Here we used the upper index i to
denote the ith coordinate. Using the cycle notation for the permutation group (see,
for example, [5, Chapter 6]), this coincides with the 2-cycle (j k). Let now

c\pi =

\biggl( 
 - d - 2\pi i

2(d+ 1)

\biggr) 
,

with \{ \pi i\} some permutation of \{ 0, . . . , d\} . We find that

Rj,k (c\pi )
i
= (c\pi  - (c\pi \cdot rj,k)rj,k)i = - d - 2\pi i

2(d+ 1)
 - 2\pi j  - 2\pi k

2(d+ 1)
(\delta ij  - \delta ik),

which again permutes the jth and kth coordinates. Now recall that all permutations
are generated by 2-cycles; see, for example, [5, Theorem 6.1]. This implies that, for
any permutation \pi , we can find c\pi from c by the action of the Weyl group. This
also means that we have explicitly described the Voronoi cell of 0 in the Coxeter
triangulation of type \~Ad as a permutahedron. Because of symmetry, this now holds
for any Voronoi cell.
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