N
N

N

HAL

open science

Modeling heterogeneous IT infrastructures: a
collaborative component-oriented approach

Benjamin Somers, Fabien Dagnat, Jean-Christophe Bach

» To cite this version:

Benjamin Somers, Fabien Dagnat, Jean-Christophe Bach. Modeling heterogeneous I'T infrastructures:
a collaborative component-oriented approach. EMMSAD 2023: 28th International working confer-
ence on Evaluation and Modeling Methods for Systems Analysis and Development, BPMDS 2023:
24th International Conference on Business Process Modeling, Development and Support, Jun 2023,
Saragosse, Spain. pp.227-242, 10.1007/978-3-031-34241-7_16 . hal-04083449

HAL Id: hal-04083449
https://hal.science/hal-04083449
Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04083449
https://hal.archives-ouvertes.fr

Modeling heterogeneous IT infrastructures:
a collaborative component-oriented approach

Benjamin SorneI.Sl,Q[OOOO—0002—0359—0902]7 Fabien])agnatl[0000—0002—2419—7587]7
and Jean—Christophe Bachl[()0()07()(]017698671093]

L IMT Atlantique, Lab-STICC, UMR 6285, F-29238 Brest, France
2 Crédit Mutuel Arkéa, 29480 Le Relecq-Kerhuon, France

Abstract. The advent and growing sophistication of modern cloud-
native architectures has brought into question the way we design IT
infrastructures. As the architectures become more complex, modeling
helps employees to better understand their environment and decision
makers to better grasp the “big picture”. As the levels of abstraction
multiply, modeling these infrastructures is becoming more difficult. This
leads to incomplete, heterogeneous views difficult to reconcile. In this
article, we present a collaborative approach focused on improving the
accuracy of IT infrastructure modeling through the involvement of all
stakeholders in the process. Our approach, applied in an incremental
manner, is meant to increase confidence, accountability and knowledge of
the infrastructure, by assigning responsibilities early in the process and
leveraging the expertise of each stakeholder. It is suited for both a priori
and a posteriori modeling at a low adoption cost, through adaptation
of existing workflows and model reuse. Building collaborative models in
such a way aims at bridging the gap between different areas of business
expertise. As a result, we believe that our approach allows to perform
analyses and use formal methods on larger scale models and cover wider
technical domains.

Keywords: IT infrastructure modeling - Collaborative infrastructure
design - Heterogeneous models - Multi-viewpoint design - Model federation

1 Introduction

The evolution of IT infrastructures has followed a tendency towards abstraction.
This has enabled the development and deployment of enterprise-wide systems with
greater flexibility and scalability, in order to fulfill a wider variety of needs. These
advances come however at the cost of increased architectural complexity [30].
In some domains such as banking, healthcare and defense, the lifetime of IT
infrastructures can span over decades, combining the old and the new. Modern
cloud-native IT infrastructures are therefore often built upon so-called legacy
systems, with which they need to interact to perform business-critical operations.

Yet, IT infrastructures do not depend exclusively on the proper operation of
hardware and software: the human factor and the good performance of business

processes must be taken into account. This is where Enterprise Modeling comes
into the picture [32], with two major challenges. First, technical infrastructures
tend to be stacked in technical layers (such as hardware, software, network...)
while human organizations tend to be divided in business domains (financial, cloud
operations, support...). These technical layers, however, do not necessarily match
the business ones, and vice versa; this disalignment must be taken into account
in the modeling. Second, all the stakeholders should be included in the modeling
process [33], to properly capture the interactions within the infrastructure and
the related responsibilities. The different stakeholders, however, have different
skill sets, reflected in the use of different tools and a different jargon from other
employees [3], making model alignment process even more complex.

It is important to gather this knowledge around a common model to have
a good overview of IT infrastructures and to conduct analyses covering several
technical and administrative domains. This article proposes a component-oriented
metamodel that takes into account the various perspectives of such infrastructures.
We argue that a complete and correct model is achieved by considering all of
these viewpoints and better integrating the responsibilities of each stakeholder.

To this end, we present the theoretical background of our study in
describes the metamodel we use. In[section 4] we propose a collaborative
methodological framework to encode business processes and technical jobs in this
metamodel. We present a case study in to illustrate our approach by
reasoning on a model. Finally, concludes this article.

2 Related work

Models convey domain-specific knowledge in a broad range of fields through
abstraction of concepts. From technical to administrative areas, with various
levels of granularity, they are an integral part of today’s businesses [16]. IT
infrastructure modeling combines the concepts of enterprise modeling and IT
models, linked together to provide a complete picture.

2.1 Enterprise modeling

Enterprise modeling has undergone major evolutions since its inception [32].
Models have become “active” [I0], to manage the complexity of interactions
across diverse business domains. Combined with formal methods, high-fidelity
models can bring great value to companies adopting them [5]. However, due to
the wide range of professions and tools used within these companies, such models
are complex to produce and discrepancies occur [2].

Standards such as ISO 19439 [12] propose to model enterprises in (at least)
four views (process, information, infrastructure and organization) on three model-
ing levels (requirements, design and implementation). Such a layered approach is
found in many modeling frameworks, among which we can mention RM-ODP [I]
and Archimate [29]. These frameworks provide a high-level way to model enter-
prises and allow to represent the infrastructures on which businesses lie. However,

the large amount of concepts and the lack of precise semantics regarding IT
infrastructures make the frameworks difficult to use in IT domains for people
whose main job is not enterprise modeling [I7]. Moreover, the matricial aspects
of their approaches and their division into layers are not always suitable [14].

2.2 IT models

Many languages and representations exist to describe IT infrastructures, from
hardware to software, including networks and processes. A datacenter can be
described by rack diagrams, illustrating the layout of servers and network com-
ponents. A software can be represented using UML diagrams [23], to show its
structure and the different interactions at work, or can be described by its code.
A network topology can be seen as mathematical objects [27124], described by
switch configurations, or as code in Software-Defined Networking [I8]. These areas
also benefit from many contributions from the formal methods communities (e.g.
Alloy [13] to verify specifications or Petri nets [20] to model complex behaviors).

However, most of these frameworks cannot interact with one another. This
limit appears if we ask questions that cross several domains, such as “which
services become non-operational if we unplug this cable?” [21] or “is my business
domain impacted by this router vulnerability?”.

2.3 Collaborative modeling

Domain-specific languages are adapted to their respective domains [6] and can
represent in detail things that holistic frameworks cannot. But these languages are
sometimes not understandable by other parties. It leads to many metamodels [15],
often sharing the same core concepts [4], being used to model enterprises.

The modeling process must come from a need and be undertaken by including
all the professional disciplines concerned. However, due to a lack of modeling
skills, some stakeholders are not able to participate in such a process [25]. Work
in the model federation community [9] (where we maintain links between models
expressed in different metamodels) is a step towards including the expertise of
such stakeholders. Other approaches, such as composition [8] (where we build
a common metamodel to align models) and unification [3I] (where we build a
single model) are described in the literature.

3 Our proposal

In this article, we advocate a collaborative approach to IT infrastructure modeling.
In this section, we present our metamodel (represented in [figure 1)) and detail its
characteristics, before presenting its differentiating aspects.

3.1 Presentation of the metamodel

Our first contribution combines a responsibility-oriented metamodel (though
simpler than what can be found in [7]) and a component-oriented metamodel, all

(a) Actors and responsibilities

4 child of (b) Metamodel links

\ L Component

. . Responsible entity
Relationship
Legend. Every Kind, Type

Legend. M Base, B Kind, >—10 Relationship, and Instance

o0 Aggregation, 0—>0 Inheritance,
o -0 Association class.

(c¢) Components and instances
1..% < outputs

Comporer:

A
|
::Component
<] outputs

Legend. @ Type, [Instance, @ >0 Instantiation

provides >

Reaction

Action

Fig. 1: Component-oriented metamodel

within a reflexive unifying metamodel. Our metamodel is divided in three parts:
the actors and their responsibilities (on [figure 1al), the components and their

instances (on [figure 1d)), and the additional links in the metamodel (on [figure 1b)).

Actors and responsibilities. In our metamodel, responsible entities have
responsibilities over entities and can assume roles. Roles represent generic sets
of responsibilities. They can be used to encode access rights on an information
system or positions in a company’s organizational chart for example. Actors
represent the actual entities which can assume roles and have responsibilities.
They can be used for example to encode users, allowed to access specific servers
because of their positions, or even a whole company, responsible for the proper
functioning of the products it sells. Relationships represent all lines and arrows
in models (and in the metamodel itself).

Components and instances. Our metamodel is focused on components. They
provide services (actions or reactions to events) that can in turn use other
components’ actions through procotols. They can also contain resources, that
may be entities providing services (components, such as a web server) or not
(such as configuration files, web resources, or even the models themselves). Both

resources and events can be the result of an action, so we decided to unify them
under the effect kind. Three layers appear here:

— The Kind layer (M), representing the core concepts of the metamodel,

— The Type layer (H), representing “types of” these concepts. For example,
“physical server” is a type of component. To follow the UML notation, a
component type is represented here as :Component.

— The Instance layer (OJ), representing “instances of” these concepts and types.
For example, a physical server is an instance of “physical server” and “check
webpage availability” is a service instance. In our work, we have not encoun-
tered the need for service types. An instance of :Component is represented
here as ::Component.

Metamodel links. Every Kind, Type and Instance of the metamodel is an
instance of entity; it means that responsible entities can have responsibilities
over them. For example, an actor can be responsible for the development of a
software component (on the Type layer) and another can be responsible for its
configuration and deployment (on the Instance layer).

A core feature of our metamodel is that responsible entities can be responsible
of responsibilities themselves. It makes sense in a context of access management
where a person may be responsible for the access right given to another person.
As models can themselves be resources in the metamodel, it is easy to represent
situations like an employee responsible for modeling a particular component. We
think that both characteristics are distinctive features of our approach.

For consistency, responsible entities are also components and their behaviors
can be encoded as services.

3.2 Collaborative modeling

Our second contribution is a collaborative modeling framework using this meta-
model relying on three principles: non-intrusiveness, refinability and correctness.

Non-intrusiveness. Most technical IT domain have their own sets of tools and
representations to convey information and model systems [3]. Two persons in the
same domain can understand one another thanks to this common jargon, but
may struggle to interact with people in areas with which they are not familiar.

Working on small models whose boundaries are clearly defined enables experts
to work collaboratively and still preserve the integrity and coherence of each
model. Furthermore, these experts can take advantage of the most appropriate
tools and techniques for their particular domains. Our metamodel intends to
provide a framework adapted to linking these tools together, rather than replacing
them. By allowing employees to work locally with their peers on models, we avoid
the issues raised by [25] in the first phases of modeling.

Service S

Service checker

Bottom-up Top-down

Fig. 2: Model for a generic service checker

Refinability. To reflect the actual design process of its components, people
involved in infrastructure modeling should be able to gradually refine their models.
This can be done either in a top-down (where one adds details) or bottom-up
(where one abstracts them) approach, or a combination of both, as shown in
In this example, a top-down approach would describe what a “service
checker” is, by dividing it into sub-components (Service checker, made of Checker
APl and Logger) and then refining their services (check, history...). A bottom-up
approach would be to describe the services wanted for a “service checker” and
combining them into components and super-components providing them.

Iterative conception goes through a succession of incomplete models. When
working on a new piece of software, a common approach consists in letting the
end-users describe their needs and iteratively producing code that meets these
needs [26]. The initial need may be very imprecise and high-level and may require
several refinement steps during the project’s lifespan.

“Holes” in models can also arise from blackbox software or hardware, or even
legacy components whose knowledge has been lost, for example due to employee
turnover. Even though the knowledge of an IT infrastructure is partial, properties
can still be deduced. By allowing imprecision, the benefit is threefold:

— Coherence: instead of making wrong assumptions, modelers can express their
lack of knowledge, limiting the number of inconsistencies between models;

— Reconciliability: employees should not attempt to refine a component they
are not responsible for, simplifying the reconciliation phase and ensuring that
responsibilities are respected;

— “Fail-early”™ness: as properties can be proved early in a project modeling, safety
and security issues can be addressed from the first stages of development.

Correctness. In order to get a detailed view of an IT infrastructure, it is crucial
to involve all its stakeholders in the process. Indeed, the sum of local viewpoints is
not enough to produce an overall model: the reconciliation and the resulting links

Responsible
Component

AR %
! \
: \ Database
I \\ |
1
Human resources HR ! 10.2.42.1:3306 MySQL

database

1
. Employee ‘ |
7 _02-
’ Training ‘ ’ Payroll ‘ ’ 7 ’—‘ﬁ ERERe —{ * A mysql-02-01
Personnel ‘ responsnPIe of > | //

\

administration Read/Write \\ /’
\ //
| A
Responsibility %

Fig. 3: Model reconciliation with three points of view
Legend. c—=o Reconciliation

between models are essential. As the literature shows [22], model reconciliation
is a complex task, this is why we advocate to start the collaborative modeling
process as soon as possible.

If the modeling is done according to these principles, model reconciliation
is mainly a matter of refining black boxes in other models and linking them
together, as illustrated in [figure 3] Here, we have three points of view, from three
teams. On the left, the organizational structure of a human resources department
is represented. In the middle, we have the design of a web application using a
remote database (not modeled) allowing some HR people (unknown at modeling
time) to manage employees. On the right, there is a simple model of said database.

During model reconciliation, the teams align their vocabularies (Human
resources and HR), specify black boxes (? becomes Personnel administration) and
combine knowledge (10.2.42.1:3306 refers to mysql-02-01). There is no universal
method to solve modeling conflicts, but we think that modeling in incremental
steps avoids solving them on larger models. The reconciliation process itself may
be modeled using our metamodel, by assigning responsibilities to the employees
performing the reconciliation. When a model is updated, it becomes easy to know
who performed the reconciliation and notify them to review whether the change
invalidates their work or not. This idea, which to our knowledge has not been
explored, ensures that the overall model remains correct in the long term.

4 Encoding business processes and technical jobs

Modern IT companies have a combination of business processes, which are more
administrative in nature, and very detailed technical workflows. Choosing a holis-
tic modeling framework that can cover all these aspects in detail seems unrealistic.
A federated approach [II] enables to take advantage of everyone’s skills, while

Company B

Servers
Operating systems
Company A Current company
+— Servers 4— Servers
Line a Physical
Product™} Server 2
Line b Server 3
L .
— Network Virtual
=— Storage Product o & Server 1 *— Software

Fig. 4: An example of model reuse

achieving a more thorough modeling. Such an approach keeps the metamodels
and models of each stakeholder and proceeds by establishing semantics links
between models. Yet, model interdependencies and inconsistencies can arise and
hinder collaboration, especially when changes are made in one model that affect
other models. As already stated in our framework makes it possible
to detect and react to these changes.

In this section, we propose a methodological framework adaptable to concrete
business processes, to build thorough yet accurate models using our metamodel.

4.1 Component catalogs

Companies usually design their systems by using external components. For
hardware systems, most of them include commercially available off-the-shelf
components sold by other companies. In the software domain, third-party libraries
and packages are an integral part of modern systems.

This decentralized aspect of system design can be applied to infrastructure
modeling: manufacturers can produce models for their systems and users can
integrate these models into their infrastructure models. Such models can be
made available in catalogs available internally within companies and externally
to clients or for public use. The benefit is twofold. First, responsibilities and
knowledge are better distributed: the models are produced by system designers,
not the users. Second, the modeling process is sped up: model reuse, as would
code reuse in software development, allows designers to build systems faster.

The two modeling steps, design and use, are illustrated in where a,
company’s Server 1 is build from other companies’ Product o and OS 2. One can
then instantiate this Server 1 architecture in their models without redesigning it.

4.2 A posteriori modeling

Understanding the orchestration of a company’s business processes can help
optimize the existing, as well as build the new, in a better controlled way. In the

* Department 2
| TEE
[

o =

Department 1 @

¥
\

A
oy
5544

| 7
Fig. 5: A posteriori modeling. Step 1 corresponds to the inventory, step 2 is the
modeling process and step 3 is the reconciliation.

banking industry for example, the use of legacy systems imposes technical choices
that cannot be made without a good knowledge of existing architectures. Within
the company’s departments, this knowledge exists in diagrams, source code,
configuration files... which first need to be identified (step 1 of. This step
comes along with hardware inventories, if needed. Then, the identified elements
are mapped onto our metamodel. Care must be taken to assign responsibilities to
the model entities in the early stages of modeling (who owns which product, who
develops which service, who is in charge of modeling which component...). Step 2 of
illustrates this process. In an iterative way, business processes interacting
with the modeled elements must be identified. Agile collaboration frameworks
should be used to implement this process, as they promote collaborative, quick
and iterative changes. This is represented in step 3 of

4.3 A priori modeling

Accurate and complete models allow to better evaluate the financial and technical
costs of projects, to optimize infrastructure dimensioning and to create safe and
secure by design systems. Throughout the life of a project, it is important to
ensure that a system does not deviate from its specification, for example due to
a lack of communication, a misunderstanding or an urge to move too quickly.
Verification of expert-defined properties on these models allows to ensure the
conformity of such systems before their realization and helps to select a technical
solution rather than another. For example, in a banking infrastructure, we could
check that only certified personnel can access sensitive cardholder data.

A specification is seen in our approach as a model interface that technical
proposals must implement. This extends the concepts from Object-Oriented
Programming to infrastructure modeling. This concept of model typing is explored
in [28]. Our metamodel ensures the syntactic conformance of the models to the
specification, but the semantic conformance must be verified by domain experts.

5 Case study

To illustrate our approach, let us now consider a fake banking company, called
eBank. eBank provides banking and payment services to consumers and businesses.
One of its flagship product, ePay, acts as a payment processor for companies and
as an instant payment and expense sharing tool for consumers. The employees
of the company want to have a better understanding of its overall processes
and decided to use our approach to this end. In this section, we first make an
inventory of the company’s models. Then, we link these models together into our
metamodel. Finally, we use the resulting big picture for a cross-model case study.

5.1 Heterogeneous models...

The company decided to start its modeling by focusing on ePay’s environment,
namely the company’s organizational structure, the business processes around
the product and the technical architecture. Each department uses domain-specific
modeling tools, leading to different views of the overall infrastructure.

Organizational structure. eBank is structured in two directions: Technical
and Administrative, each subdivided into structures, divided themselves into
departments. An organizational chart of the company is given in

Business processes. The company’s activities are guided by various business
processes. For the sake of brevity, we consider here only the equipment purchase

process, represented in

Datacenter | | Cloud & Software | Data | Human Resources Marketing & Sales | Finance |
Hardware | Virtualization | Storage | Payroll | Sales | Planning |

Electricity & HVAC| Applications | Analytics | Hiring | Communication Purchasing |
Network | Security | Governance | Development | Service Desk | Capital |

Fig. 6: eBank’s organizational structure

Write technical
specifications

Write purchase {
request {

Need emerged ~———— Technical Bill of materials Purchase Notification received
specs sent received request sent :

A b
Write bill of

Technical specs ~——————————— Bill of Hardware received Notification sent
received materials sent

Review purchase Make order
request

Purchase
request received

v

eBank
Datacenter structure| Cloud & Software

Purchasing dept.

Order sent Invoice received

Seller

Fig.7: BPMN diagram for purchasing new hardware. For clarity, we do not
show the exclusive gateways and assume requests to be automatically accepted.

eBank has been using a task management solution for many years to track
how many person-hours are needed for which projects. The solution is also used
to know who is working on what at a given time. By reusing this software’s
database, employees created a catalog of common company tasks to predict their
durations and help project planning. This catalog ranges from technical tasks,
for example “commission a server”, to administrative ones, for example “open a
position”. These two tasks are represented in

Lastly, all financial transactions are managed by the finance department.

Technical architecture. eBank manages a datacenter hosting the hardware
necessary for its activities. Some services are hosted on dedicated machines and
others are on an internal cloud infrastructure. Due to time constraints, ePay has
not been migrated to a modern cloud infrastructure yet. The service follows an
active/passive architecture, where only one node operates at a time.

To check the proper functioning of its services in real time, the company has a
monitoring infrastructure that measures availability and several key performance

Commission a server Open a position
Check electrical regs. Check finance plan
Elec/HVAC [1 [15mn Planning [1 [45mn
Install hardware Publish job offer

Prepare network Interview
Network [1 [15mn L Hiring [? [? l
< L 4

Fig. 8: Task catalog
Sub-task (a: title, b: department, ¢: people, d: duration), ¢ End

7 Hardware[2[30mn 7 Hiring[1[30mn |

Legend.

indicators. For business clients, ePay must process its requests within three
seconds 99.9% of the time and must pay penalties in case of non-compliance.

5.2 ... linked together

After several rounds of modeling, eBank’s employees came up with the represen-
tation shown in First, the organizational structure (figure 6)) is partially
mapped to the eBank component and its four sub-components representing
structures and departments. The BPMN diagram adds the Hardware
component type, along with the Maintenance and Usage responsibilities that the
Cloud & Software structure and Hardware department have on this Hardware. The
task catalog adds knowledge about the Hiring department and its Hiring
responsibility. The task management solution (Task manager) keeps track of the
time spent on the Usage and Maintenance of the Hardware and on the Hiring
process, highlighting the particular nature of responsibilities in our metamodel.
Finally, the Finance department is responsible for employees’ Wage payment, for
the Invoice payment of Hardware and the company’s Financial obligation regarding
its Payment processing’s SLAs.

5.3 Exploiting the model

The company’s real time monitoring has recently identified slowdowns in ePay on
peak hours. Following our model, we can see that there is a potential impact on
the Finance department because of its Financial obligations. Some employees have
suggested scaling the infrastructure before such slowdowns violate SLAs. One
way to do so is to setup new Physical servers and change the overall architecture
of the services. This new architecture is expected to mobilize part of the Cloud &
Software structure for several months. The Human Resources structure proposes to
either ignore the potential problem or to assign its teams on the scaling project
(by hiring new staff, outsourcing some of the work or reassigning staff without
additional hiring or outsourcing).

In we explore our model to trace the paths between the slowdown
and the Finance department, to identify potential financial impacts. To make
its decision, the company has to compare (a) the financial impact if nothing
is done (resulting from the Financial obligation) to (b) the financial impact of
the improved architecture (resulting from Invoice payments and the personnel
cost). The company does not have an outsourcing process, so the analysis of the
Outsource branch, represented by “?” in the figure, cannot be performed. We have
not detailed the Reassign branch because it is outside the scope of this article.
However, its analysis is valuable to the company since the reassignment of staff
would change the time allocated in the Task manager. This would consequently
have indirect impacts on the Finance department (for example, failure to deliver
new features to clients due to a lack of time, leading to increased customer churn).

By calculating the cost of each decision branch, which is partly automatable,
the company can make a decision regarding this particular problem.

l—ﬁ Cloud & Software structur? 2 eBank
|

Hardware department L ,,,,,,,,,, B N
A

|
|
: ’ Hiring department J
|
|

-- - { Maintenance Hiring

|
Physical server Task manager ’ Finance department % B
|
|
|
|
|
|
|

N

o—{ ePay ‘ ’ Financial obligation
outputs ‘ < calls

SR

P

Fig. 9: ePay’s big picture. To help the reader, instantiations are blue (3->0) and
respounsibility links and their association classes are red (o—o and o - o).

Slowdown detected N Payment processing‘

’ Improve architecture ﬁ Do nothing
’ Scale infrastructure Use microservices‘

Maintenance

Accounting

| [ShS |

’Reassign‘ ’ Hire ‘ ’Outsource‘

Invoice payment ‘ Financial obligation ‘

‘ HWagepaymentH ? ‘

| Finance department |

Financial impact

Fig. 10: Impact tree from application slowness to financial impact
Legend. O Default branch, O Employee suggestions, O Model elements

6 Conclusion and future work

In this article, we have presented a collaborative approach for IT infrastructure
modeling. This approach consists of a generic metamodel aimed at linking models
together, a better control of each stakeholder’s responsibilities and methods
inspired by software engineering to guide the modeling process. Our approach
is not intended to replace established methods within companies, but rather to
allow for analyses spanning across multiple models. Through model federation,
we think that business modeling can include more stakeholders, while preserving
the tools and models they are used to working with.

The validation of our approach is still a work in progress. To this end, we
have developed an infrastructure modeling language and its compiler that can
be linked to model checkers such as Z3 [19]. While we have been able to verify
consistency (for example, whether a set of configuration constraints is satisfiable)
and safety properties (for example, whether a system is fault-tolerant) on small
models, we are now focusing on scaling our tool to larger models. An important
step in the validation of our approach is an industrial experiment, covering broad
business domains, that we are currently drafting.

References

1. Reference Model of Open Distributed Processing (RM-ODP), http://rm-odp.net/

2. van der Aalst, W.M.P.: Business Process Management: A Comprehensive Survey.
ISRN Software Engineering (2013). https://doi.org/10.1155/2013/507984

3. Amaral, V., Hardebolle, C., Karsai, G., Lengyel, L., Levendovszky, T.: Recent
Advances in Multi-paradigm Modeling. In: Models in Soft. Eng. pp. 220-224 (2010)

4. Breton, E., Bézivin, J.: An Overview of Industrial Process Meta-Models. In: Int.
Conference on Software & Systems Engineering and their Applications (2000)

5. Cohn, D., Stolze, M.: The rise of the model-driven enterprise. In: IEEE International
Conference on E-Commerce Technology for Dynamic E-Business. pp. 324-327 (2004).
https://doi.org/10.1109/CEC- EAST.2004.65

6. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated
bibliography. SIGPLAN Notices (2000). https://doi.org/10.1145/352029.352035

7. Feltus, C., Petit, M., Dubois, E.: ReMoLa: Responsibility model language to align
access rights with business process requirements. In: International Conference on
Research Challenges in Information Science. pp. 1-6 (2011). https://doi.org/16|
1109/RCIS.2011.6006828

8. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A Generic Approach for Automatic
Model Composition. In: Models in Software Engineering. pp. 7-15 (2008)

9. Golra, F.R., Beugnard, A., Dagnat, F., Guérin, S., Guychard, C.: Addressing
Modularity for Heterogeneous Multi-model Systems using Model Federation. In:
Companion Proceedings of the International Conference on Modularity (MoMo).
ACM (2016). |https://doi.org/10.1145/2892664.2892701

10. Greenwood, R.M., Robertson, 1., Snowdon, R.A., Warboys, B.: Active Models in
Business. In: Annual Conference on Business Information Technology (BIT) (1995)

11. International Organization for Standardization: ISO 14258:1998 — Industrial au-
tomation systems and integration — Concepts and rules for enterprise models (1998),
https://www.iso.org/standard/24020.html

http://rm-odp.net/
https://doi.org/10.1155/2013/507984
https://doi.org/10.1155/2013/507984
https://doi.org/10.1109/CEC-EAST.2004.65
https://doi.org/10.1109/CEC-EAST.2004.65
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/352029.352035
https://doi.org/10.1109/RCIS.2011.6006828
https://doi.org/10.1109/RCIS.2011.6006828
https://doi.org/10.1109/RCIS.2011.6006828
https://doi.org/10.1109/RCIS.2011.6006828
https://doi.org/10.1145/2892664.2892701
https://doi.org/10.1145/2892664.2892701
https://www.iso.org/standard/24020.html

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

International Organization for Standardization: ISO 19439:2006 — Enterprise
integration — Framework for enterprise modelling (2006), https://www.iso.org/
standard/33833.html

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press,
second edn. (2011)

Jorgensen, H.D.: Enterprise Modeling — What We Have Learned, and What We
Have Not. In: The Practice of Enterprise Modeling. pp. 3-7 (2009)

Kaczmarek, M.: Ontologies in the realm of enterprise modeling — a reality check.
In: Formal Ontologies Meet Industry. pp. 39-50 (2015)

Kulkarni., V., Roychoudhury., S., Sunkle., S.; Clark., T., Barn., B.: Modelling and
enterprises - the past, the present and the future. In: International Conference on
Model-Driven Engineering and Software Development. pp. 95-100 (2013). |https:
//doi.org/10.5220/0004310700950100

Lantow, B.: On the Heterogeneity of Enterprise Models: ArchiMate and Troux
Semantics. In: IEEE Int. Enterprise Distributed Object Computing Conf. Workshops
and Demonstrations. pp. 67-71 (2014). https://doi.org/10.1109/EDOCW.2014.18
Masoudi, R., Ghaffari, A.: Software defined networks: A survey. Journal of Network
and Computer Applications (2016). https://doi.org/10.1016/j.jnca.2016.03.016
de Moura, L., Bjgrner, N.: Z3: An Efficient SMT Solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. pp. 337-340 (2008)

Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541-580 (1989). https://doi.org/10.1109/5.24143

Neville-Neil, G.: I Unplugged What? Communications of the ACM 65(2) (2022).
https://doi.org/10.1145/3506579

Nuseibeh, B., Kramer, J., Finkelstein, A.: ViewPoints: meaningful relationships are
difficult! In: International Conference on Software Engineering. pp. 676-681 (2003).
https://doi.org/10.1109/ICSE.2003.1201254

OMG: Unified Modeling Language (UML), Version 2.5.1 (December 2017), https!
//www.omg.org/spec/UML/2.5.1

Park, K., Willinger, W.: Self-Similar Network Traffic: An Overview, chap. 1, pp.
1-38. John Wiley & Sons, Ltd (2000). https://doi.org/10.1002/047120644X.chl
Renger, M., Kolfschoten, G.L., de Vreede, G.J.: Challenges in Collaborative Model-
ing: A Literature Review. In: Advances in Enterprise Eng. 1. pp. 61-77 (2008)
Ruparelia, N.B.: Software Development Lifecycle Models. SIGSOFT Software
Engineering Notes 35(3), 8-13 (2010). https://doi.org/10.1145/1764810.1764814
Salamatian, K., Vaton, S.: Hidden Markov Modeling for Network Communication
Channels. SIGMETRICS Perform. Eval. Rev. 29(1), 92-101 (2001). https://doi!
org/10.1145/384268.378439

Steel, J., Jézéquel, J.M.: On model typing. Software & Systems Modeling 6(4),
401-413 (DeC 2007). https://doi.org/10.1007/510270-006-0036-6

The Open Group: ArchiMate® 3.1 Spec., |https://publications.opengroup.org/c197
Urbach, N., Ahlemann, F.: Transformable IT Landscapes: IT Architectures Are
Standardized, Modular, Flexible, Ubiquitous, Elastic, Cost-Effective, and Secure,
pp- 93-99 (2019). https://doi.org/10.1007/978-3-319-96187-3_10

Vernadat, F.: UEML: Towards a unified enterprise modelling language. International
Journal of Production Research 40(17), 4309-4321 (2002). https://doi.org/10.
1080/00207540210159626

Vernadat, F.: Enterprise modelling: Research review and outlook. Computers in
Industry 122, 103265 (2020). |https://doi.org/10.1016/j.compind.2020.103265
Voinov, A., Bousquet, F.: Modelling with stakeholders. Environmental Modelling &
Software 25, 1268-1281 (2010). https://doi.org/10.1016/j.envsoft.2010.03.007

https://www.iso.org/standard/33833.html
https://www.iso.org/standard/33833.html
https://doi.org/10.5220/0004310700950100
https://doi.org/10.5220/0004310700950100
https://doi.org/10.5220/0004310700950100
https://doi.org/10.5220/0004310700950100
https://doi.org/10.1109/EDOCW.2014.18
https://doi.org/10.1109/EDOCW.2014.18
https://doi.org/10.1016/j.jnca.2016.03.016
https://doi.org/10.1016/j.jnca.2016.03.016
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/5.24143
https://doi.org/10.1145/3506579
https://doi.org/10.1145/3506579
https://doi.org/10.1109/ICSE.2003.1201254
https://doi.org/10.1109/ICSE.2003.1201254
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1002/047120644X.ch1
https://doi.org/10.1002/047120644X.ch1
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/384268.378439
https://doi.org/10.1145/384268.378439
https://doi.org/10.1145/384268.378439
https://doi.org/10.1145/384268.378439
https://doi.org/10.1007/s10270-006-0036-6
https://doi.org/10.1007/s10270-006-0036-6
https://publications.opengroup.org/c197
https://doi.org/10.1007/978-3-319-96187-3_10
https://doi.org/10.1007/978-3-319-96187-3_10
https://doi.org/10.1080/00207540210159626
https://doi.org/10.1080/00207540210159626
https://doi.org/10.1080/00207540210159626
https://doi.org/10.1080/00207540210159626
https://doi.org/10.1016/j.compind.2020.103265
https://doi.org/10.1016/j.compind.2020.103265
https://doi.org/10.1016/j.envsoft.2010.03.007
https://doi.org/10.1016/j.envsoft.2010.03.007

	Modeling heterogeneous IT infrastructures: a collaborative component-oriented approach

