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ABSTRACT 

The widespread use of multi-touch devices and the large 
amount of research that has been carried out around them 
has made this technology mature in a very short amount of 
time. This makes it possible to consider multi-touch 
interactions in the context of safety critical systems. Indeed, 
beyond this technical aspect, multi-touch interactions 
present significant benefits such as input-output integration, 
reduction of physical space, sophisticated multi-modal 
interaction … However, interactive cockpits belonging to 
the class of safety critical systems, development processes 
and methods used in the mass market industry are not 
suitable as they usually focus on usability and user 
experience factors upstaging dependability. This paper 
presents a tool-supported model-based approach suitable for 
the development of interactive systems featuring multi-
touch interactions techniques. We demonstrate the 
possibility to describe touch interaction techniques in a 
complete and unambiguous way and that the formal 
description technique is amenable to verification. The 
capabilities of the notation is demonstrated over two 
different interaction techniques (namely Pitch and Tap and 
Hold) together with a software architecture explaining how 
these interaction techniques can be embedded in an 
interactive application. 
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INTRODUCTION 

The industrial and academic world have been providing 
prototypes, toolkits and toy systems offering tactile and 
more recently multi-touch interaction techniques for more 
than two decades now. However, the actual engineering of 
multi-touch interactive systems remains a cumbersome task, 

as it adds complexity to the design, specification, validation 
and implementation of interactive systems which is already 
a difficult task not addressed by current software 
engineering practice.  

As model-based approaches already bring many advantages 
for the non-interactive part of a software system, it 
intuitively seems natural that extending these approaches 
can provide support for a more systematic development of 
interactive systems featuring multi-touch interactions.  

While identifying requirements and user needs for user 
interfaces in the area of command and control for safety 
critical systems the designers have to decide either to go for 
systems with standard and (usually) poor interaction 
techniques or to embed new (and more sophisticated) 
interaction techniques. If the users’ tasks are complex, 
requiring, for instance, the execution of multiple commands 
in a short period of time or the manipulation of large data 
sets, it is likely that the new interaction techniques will 
significantly improve the overall performance of the 
operators. However, in such cases, the development process 
will at the minimum be more difficult (resources 
consumption will increase throughout the design, 
development and evaluation stages) or even be impossible 
if tools and techniques available for the development do not 
bring the required level of quality in the final product. In 
the case of safety critical systems, quality is assessed by the 
dependability level of the interactive system which must be 
compliant with the requirements set by the certification 
authorities.  

Beyond the fact that they have reached the adequate 
maturity level, multi-touch interaction techniques present a 
set of advantages as identified in [12]:  

 The screen content can be completely modified in order
to include input management previously devoted to 
hardware input devices such as keyboard or mouse 

 They are by nature multimodal systems taking advantage
of these interaction techniques These previous studies 
(and additional ones such as [14] and [37]) have been 
proposing and testing the use of multimodal interaction 
techniques in the field of safety critical systems have 
identified and reported several advantages: 

o Multimodality increases reliability of the interaction
as it decreases critical error (between 36% and 50%)
during interaction. This advantage alone can justify
use of multimodality when interacting with a safety
critical system.



o It increases the efficiency of the interaction, in
particular in the field of spatial commands
(multimodal interaction is 10% more rapid than
classical interaction to specify geometric and
localization information).

o Users predominantly prefer interacting in a
multimodal way, probably because it allows more
flexibility in interaction thus taking into account
users' variability (especially if equivalence is
provided).

o Multimodality allows increasing naturalness and
flexibility of interaction so that learning period is
shorter

 It is possible to embed a lot of detailed information within
a single input such as pressure, orientation of the finger 
(using the shape of the fingertip) [29]; 

 They offer a very easy forum for multi-user interaction
reducing articulatory coordination effort that is required if 
input devices are to be shared.  

Figure 1 - High level representation of a cockpit 

As visible on the Figure 1, the cockpit is made up of 6 large 
display units, 2 head-up displays and 2 Keyboard Cursor 
Control Units (an input device integrating a keyboard and a 
track ball). This paper is part of a study assessing the 
possible implementation of a map application currently 
available in the On Board Information System (IOS) with 
multi-touch interactions. This change of interaction 
technique (from a standard WIMP interaction as promoted 
by ARINC 661 specification [4]) to the Multi-Function 
Display (MFD) which is located in-between the captain and 
the first officer seats thus allowing collaborative tasks 
between the two pilots on this shared workspace. However, 
in order to deploy such interaction techniques in the cockpit 
of commercial aircraft, it is required to ensure that the 
dependability level of the cockpit is as reliable as the 
previous cockpits.  

Next section presents and compares previous contributions 
in the field of multi-touch interactions with a special 
highlight on expressive power of the notations. The ability 
of the notation to provide verification techniques and to 
demonstrate properties on the interaction techniques is also 
exhibited. The following section presents a quick overview 
of the ICO formal description technique and highlights how 

this description technique is able cover the needs that have 
been highlighted in related work section. A multi-levels 
approach is then presented which is able to transform low-
level events produced by the multi-touch device into 
meaningful events such as Pinch or Tap Long to be 
received and handled by the interactive application. Section 
4 briefly highlights how properties verification can be 
addressed. Last section identifies a research agenda for 
future work that still has to be carried before deploying 
multi-touch interaction in the cockpits of large civil 
aircrafts.  

STATE OF THE ART 

In the following paragraphs, we first detail the different 
conceptual decompositions of multi-touch interactions 
taking a linguistic point of view on multimodal interactions. 
Then we compare various notations that have been 
proposed to describe this interaction paradigm. As the main 
objective of this paper is to provide a notation for 
engineering dependable multi-touch interactions, we 
compare several software architectures that have been 
proposed for enabling the use of such interaction 
techniques. This related work analysis is then put into 
perspective using the more generic point of view of 
multimodality concepts.  

Multi-touch interactions as a language 

Linguistic point of view, such as semiotics (description of 
all phenomena associated with the production and 
interpretation of signs and symbols) are used in [25] to 
describe multi-touch gestures. However, this semiotics 
approach only encompasses some of the multi-touch 
features not addressing explicitly the production of higher-
level events (such as double taps) from low-level events 
(touch, move, up). This is why, compared to [25], we are 
following a standard linguistic view based on lexicon, 
syntax and semantics for addressing multi-touch 
interactions. The lexicon is composed of the low level 
users’ events while the syntax describes their combination 
(potentially fusion in the case of multimodal interactions). 
Regarding semantics (meaning of the interactions) and 
pragmatics (user mental model), the present work is based 
on the same definition exposed in [25]. This decomposition 
allows sorting our various contributions in this paper as 
follows: 

 Lexicon: various event types - elementary vocabulary of
the interaction; 

 Syntax: combination of interaction models and fusion
model; 

 Semantic: the dynamic mapping between interaction
technique and system command; 

 Pragmatics is beyond the scope of the paper.

Notations for multi-touch interaction description 

Description 

Table 1 –  is an extension of the work presented in [35] with 
additional properties (Analysis…) and references (CPN…). 



It summarizes the expressiveness of the UIDL (User 
Interface Description Language) through ten different 
properties of the language that are used to characterize this 
expressiveness. This expressive power is not a goal per se 
but it clearly defines the type of user interface that can be 
described using the UIDL and the ones that are beyond their 
reach. This paper also adds multimodality and formal 
analysis features as the considered context relies on both 
usability and reliability aspects of multi-touch. The first 
three characteristics deal with description of objects and 
values in the language (this is named “Data Description”), 
with the description of states (“State Representation”) and 
the description of events (“Event Representation”). For all 
characteristics, there are four possible values.  

 Yes means that that characteristic is explicitly handled
by the UIDL; 

 No means that the characteristic is not explicitly
handled;  

 Some means that the property is partly present; and

 Code means that the characteristic is made explicit but
only at the code level and is thus not a construct of the 
UIDL. 

For instance, data is described in many UIDLs such as 
ICON [16], which allows modeling data emission and 
reception from an output port of a device of the model to 
the input port of another device. Some UIDLs can also 
represent states of the system, such as ICon [16], which 
represents the states with nodes in the models. Events are 
also sometimes explicitly represented as in Wizz’ed [18] 
where connections between bricks represent event flows. 

Time is also an important characteristic for behavioral 
description of interactive applications.  

Time 

Qualitative time between two consecutive model elements 
aims at representing ordering of actions such as precedence, 
succession, and simultaneity. In OSU [27] a transition 
between two places represents the fact that the activity 
represented by the second place will only be active after the 
first one is achieved. Quantitative time between two 
consecutive model elements represents behavioral temporal 
evolutions related to a given amount of time (usually 
expressed in milliseconds). This is necessary for the 
modeling of the temporal windows in a fusion engine for 
multimodal interfaces, where events from several input 
devices are fused only if they are produced within a same 
time frame. In ICO (in this article), timed transitions 
express such constraints. Finally, quantitative time over 
nonconsecutive elements was introduced in [38] for multi-
mice double and fusion double click interactions.  

Concurrent behavior 

Representation of concurrent behavior is necessary when 
the interactive systems feature multimodal interactions or 
can be used simultaneously by several users. This can be 
made explicit in the models like in data flow notations, as in 
ICon [16] or Whizz’Ed [18] and in all the notations based 
on Petri nets (last four columns of Table 1. Concurrency 
representation can also be found in older languages such as 
Squeak [13], where it is possible to represent parallel 
execution of processes. This aspect is critical for multi-
touch interactions due to the concurrent use of multiple 
fingers and hands.  

Table 1 – UIDL expressiveness and handling of multi-touch interactions 
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Dynamic instantiation 

Dynamic instantiation of interactive objects is a 
characteristic required for the description of interfaces 
where objects are not available at the creation of the 
interface as, for instance, in desktop-like interfaces where 
new icons are created according to user actions.Supporting 
explicit representation of dynamic instantiation requires the 
UIDL to be able to explicitly represent an unbounded 
number of states, as the newly created objects will by 
definition represent a new state for the system. Most of the 
time, this characteristic is handled by means of code and 
remains outside the UIDLs. Only Petri-nets-based UIDLs 
can represent explicitly such a characteristic, provided they 
handle high-level data structures, or objects, as is the case 
for many dialects [31], [8]; [23]. In the multi-touch context, 
new fingers are detected during at execution time. Thus, the 
description language must be able to receive dynamically 
created objects. In Petri nets this is particularly easy to 
represent by the creation/destruction of tokens associated to 
the objects. This way, for instance, for each finger currently 
touching the multi-touch surface, a corresponding token 
will be set in a place of the Petri net.  

Dynamicity presented is handled at development time i.e. 
when the system is designed and built. However, 
dynamicity has also to be addressed at operation time i.e. 
when the system is currently in use. For instance, to cope 
with potential hardware failure reconfigurations of the 
interaction techniques might be required. In [36] we have 
presented how such dynamic reconfiguration can be 
modeled and executed. This corresponds to a meta-level 
representation of interactions which can be dynamically 
selected at run-time. This is an important aspect to address 
if multi-touch interactions have to be embedded in safety 
critical applications. Moreover, in order to ensure the 
availability of every system commands and maintain a high 
level of usability, the mapping between interaction 
techniques and commands (such as presented in a static way 
in [44]) shall be resolved during run-time.  

Multimodality 

This row refers to the capability of a language to support 
the fusion of several distinct modalities such as the 
combination of pen and multi-touch in [19]. Fusion engines 
have been a focal point of the research in the area of 
multimodal interactions and they are of prime importance 
as far as multi-touch interactions are concerned. A survey 
about the characteristic of fusion engines can be found in 
[32] and the requirements expressed there are directly 
applicable to multi-touch interaction. 

Analysis 

Analysis of the interaction techniques is a critical aspect in 
order to reduce time and resources spent on user studies and 
if reliability is considered an important property of the final 
system. Typically, analysis requires a formal description of 
the interactions and can be separated into three groups 
addressed by different types of analysis techniques: 

 validation, accomplished by interactive simulation (step
by step), invariant, structural and 
reachability/coverabiliy graph analysis; 

 verification, accomplished by invariant, structural and
reachability/coverabiliy graph analysis; 

 performance analysis, accomplished by simulation.
The results of the analysis aim at detecting errors in the 
formal description, to validate the existence of required 
properties and to study the performance of the proposed 
interaction techniques. 

As stated in Table 1 only few approaches for UIDL provide 
support analysis. Marigold [49] addresses limited validation 
and verification analysis based on reachability graph 
analysis. Verification analysis results are based on the 
verification of properties such as deadlock-free or liveness 
and the validation by a step by step interactive simulation of 
the model. By using time in the models (timed colored Petri 
nets) CPN Tools [23] provides performance analysis 
support.  

Architectures to support multi-touch 

Various software architectures for multi-touch applications 
have been proposed such as in [24] where a taxonomy 
describes them. Most interactive software architectures are 
layer-based [17] in order to enrich low level user events 
into high level events and then interactions techniques. To 
resolve the computational delays introduced by these 
architectures and allowing most immediate feedback which 
is needed by user during direct manipulation, [17] 
introduced a low-latency subsystem computing the fingers’ 
trace to be immediately displayed. Most of these 
architectures address hardware/software integration. We 
argue that these technical solutions only provide local 
solutions to the issue of development of multi-touch 
interaction technique and the key point is to integrate them 
seamlessly with the description technique. This is the 
reason why, this paper proposes a more generic architecture 
model that enables all features listed in Table 1 and is based 
on the Arch model [7] represented on Figure 2.  

Figure 2 - Arch Model from [7] 

Multi-touch as multi-modality: fusion engines 

As stated above, multi-touch interaction techniques are by 
nature multimodal as their event stream meanings “can vary 
according to the context, task, user and time” [32]. In this 
paper we will address two of the important features of 
fusion engines from [32]: the temporal combinations of 
multiple events and error handling.  



MODELLING MULTI-TOUCH INTERACTION 
TECHNIQUES WITH THE ICO FORMALISM 

ICO: Informal definition 

ICOs (Interactive Cooperatives Objects) are a formal 
description technique dedicated to the specification of 
interactive systems. It uses concepts borrowed from the 
object-oriented approach (dynamic instantiation, 
classification, encapsulation, inheritance, client/server 
relationship) to describe the structural or static aspects of 
systems, and uses high-level Petri nets [20] to describe their 
dynamics or behavior. The ICO notation is based on a 
behavioral description of the interactive system using the 
Cooperative objects formalism that describes how the 
object reacts to external stimuli according to its inner state. 
This behavior, called the Object Control Structure (ObCS) 
is described by means of Object Petri Net (OPN). An ObCS 
can have multiple places and transitions that are linked with 
arcs as with standard Petri nets. As an extension to these 
standard arcs, ICO allows using test arcs and inhibitor arcs. 
Each place has an initial marking (represented by one or 
several tokens in the place) describing the initial state of the 
system. As the paper mainly focuses on behavioral aspects, 
we do not describe them further (more can be found in [35]. 

It is important to note that ICOs have been used for other 
types of interfaces than multimodal ones. The notation is 
supported by a CASE tool called PetShop [9]. As it goes 
beyond the scope of this paper that focuses on the fusion 
engines aspects, more information about the tool structure 
and integration in a software development process is 
available in [40]. 

Figure 3 – Software architecture dedicated to the management 

of multi-touch events  

Managing the event chain from hardware to application 

From raw data events to object manipulation and system 
commands  

As we demonstrated in the section introducing multi-touch 
architecture principles, the architecture we propose here 
(see Figure 3) can be directly mapped onto the ARCH 
architecture presented in Figure 2. The 3 circles in the 
ARCH model are thus explicitly represented on that 
architecture.  

The first level corresponds to the low level transducer while 
the second one is composed by the various interaction 
technique models. Finally, the fusion engine model ensures 
consistency between the recognized events and is in charge 
of triggering these events to the dialog part for system 
command construction. In the following parts, we will use 
the following graphical hints to ease the reading of the 
models’ descriptions: places, events, transitions. As there is 
a Java binding to ICOs and Petshop the detailed elements 
are given with respect to that binding. Each element of the 
architecture is presented in details together with its 
modeling using the ICO notation introduced above.  

Low level transducer 

The low level transducer is the one model linked to the 
hardware touch events. An excerpt of this model is 
presented Figure 4. It parses the features of the received 
event into a java finger object. The FingerPool place acts 
as a limiter on the allowed number of distinct fingers input. 
This transducer packages events, forwards them to models 
listners (i.e. higher level events handlers) such as 
TapAndHold, Pinch… as defined in [1]. Indeed, a 
“toucheventf_move” or “toucheventf_up” event will only be 
triggered if the event corresponds to a registered finger. 

Figure 4 - Low Level event transducer 

 Interaction technique description 

The following paragraph describes the model of the 
“standard” interaction technique called Pinch and presented 
in Figure 5. When the interaction transducer is in initial 
state, all places of the models are free of tokens. The model 
may receive the low level event “toucheventf_down” 
handled by the synchronized transition 
toucheventf_down_1. When this event occurs, a token is set 
in the place p1. This token comprises a finger object 
synthetizing the touch information encompassed by the low 
level event. Another token (empty this time) is added in the 
place nbFingerModel and enables to toucheventf_up_1 
transition, allowing the model to handle “toucheventf_up” 
events. In this configuration, two low level events may be 
handled: 

 “toucheventf_down”: another “toucheventf_down”
received event behaves the same way on the PetriNet. 
Then if two token are stored in the p1 place, the 
eagerFusion transition is automatically crossed, 
grouping both fingers into the same token in place p2. 



 “toucheventf_up”: as long at the transducer contains
information about at least one finger, the event handler 
toucheventf_up_1 is fireable. Each time such an event is 
received, a token containing the corresponding finger 
information is added to temp place, leading to two 
cases: 
o The “toucheventf_up” event corresponds to a finger

stored in place p1: the transition endInteraction1 is
fired, removing the finger’s related token in p1 and
temp as well as one token from nbFingerModel

place.
o The “toucheventf_up” event corresponds to a finger

stored in place p2: the transition endInteraction2 is
fired, subtracting the finger’s related token in p2 and
temp; and two tokens from nbFingerModel place
since to fingers are composing tokens in place p2.

While waiting in place p2, the transition 
toucheventf_move_1 is enabled and can handle move 
events from the low level transducer. When such an event 
occurs, the transition is fired and updates the corresponding 
finger’s information. Finally the transition triggers a 
“pinch” event.  

Figure 5 - Pinch Interaction transducer’s model 

Combining interaction techniques 

The ICO notation together with the related architecture 
(presented in Figure 3) allows the design of complex 
interaction techniques using the events triggered by models 
other interaction techniques such as the uniform scale 
interaction proposed in [29] and combining a “one-touch on 
the object, together with a two-touch pinch”. Due to the 
space constraint, we will not present the corresponding 
model in this paper. However, its principle is identical to 
the other interaction technique models.  

Interaction Manager 

The interaction manager acts as a supervisor entitled to 
generate coherent user events from its lower level 
transducers towards the application. This model may act as 
a fusion or fission engine depending on the type of rules it 
implements. Figure 6 details the model of another role of 

the interaction manager i.e. conflict management between 
interaction techniques. Indeed, in early design phases, 
interaction designers specify standalone interaction 
techniques which might, in the end, be conflicting. Such 
conflicts can be identified and corrected later on using 
regular expression analysis as demonstrated in [28]. We 
argue that this course of action may alter the usability of the 
initial standalone interactions in order to cope with local 
and identified conflicts. The interaction manager aims at 
resolving these local conflicts preserving usability by 
implementing simple resolution rules. An example of such 
conflict may occur when two interaction techniques 
interfere. For instance Pinch could interfere with a 
TapAndHold interaction if one of the fingers used for the 
Pinch does not move enough and thus is treated as a 
TapAndHold even though involved in a Pinch. Such a 
scenario is part of the interaction specification process we 
presented in [21] and applied to the interaction techniques 
fusion engine. To solve this conflict a possible modification 
is to give priority to Pinch and thus disabling TapAndHold 
interaction when a Pinch interaction is being recognized.  

Figure 6 – Interaction Manager 

When the interaction manager receives a “Pinch” event, the 
synchronized transition Pinch_1 forwards the event (trigger 
PINCH) and puts two tokens in the PinchingFingers place, 
each token being compose by an int value corresponding to 
one of the Pinch finger. In parallel, each time a 
“TapAnhHold” is received, the event is stored in the 
TapAndHoldId place with the corresponding finger id. 
Then, the transitions inhibTapAndHold and 
ForwardTapAndHold which are in mutual exclusion test if 
the finger from the received event is involved in a Pinch 
interaction and process it according to the rule presented 
above. When a “toucheventf_up” is received, if it impacts 
on finger involved in a Pinch interaction, the 
pinchFingerAffected transition subtracts the 
PinchingFinger token with the same id; otherwise the 
transition noFingerAffected discards the token.  

In addition of the conflict resolution rules, the interaction 
manager acts by default as an event forwarder towards the 



applications. This allows the applications to be registered 
only to this one model which keep them independent from 
the various transducers and their architecture. This 
forwarding role is instantiated by the trigger actions in the 
various synchronized transitions.  

Figure 7 - ICO services for dynamic registration to low level 

events providers 

Handling multi-touch specificities 

Dynamic instantiation and management 

During multi-touch interactions, fingers are by definition 
detected dynamically. We argue that the most natural 
manner to fully specify multi-touch interactions is for UIDL 
to support dynamic instantiation (creation of inputs devices 
and GUI components at run time). Indeed, most operating 
systems handle plug and play devices.  Therefore a notation 
for multi-touch application specification should be able to 
dynamically detect and manage input devices. Figure 7 
presents one ICO service called addLowLevelProvider. 
This handles a list of LowLevelProviders (stored in place 
with the same name) and can be added to the ICO 
transducer presented in Figure 4. It also allows the 
transducer to listen to “rawToucheventf_down” (moves and 
ups) fired by the providers it is a listener of. Due to space 
constraints, the service to remove providers it not presented. 

Finger clustering 

In purely multi-touch interaction techniques, determining a 
correct mapping between fingers of the same hand/user is 
critical as demonstrated in [30]. Therefore we present how 
our notation is able to formally address this aspect at run-
time. The initial Pinch transducer model Figure 5 matches 
fingers in the order they are pressed. This specific model 
works for a single user that interacts with one object at the 
time. In the context of our application domain the presented 
model will suffer shortcomings when two users will start to 
interact on a multi-touch surface at the same time. The 
model shall be able to resolve the correct finger clustering 
i.e. which fingers are paired. The model we present Figure 8 
is one possible specification that can handle dynamic finger 
re-clustering and resolve possible inconsistencies of the 
previous model and is divided into four different parts: 

 The first part is the same as the Pinch interaction model
presented in Figure 5 (augmented only with the 
transition remaingPinch).  

 The second part is in charge of managing clustering.
When the model receives a “toucheventf_move”, the 

related pinching fingers trajectories are analyzed to 
verify their match. If such is the case, the clustering_ok 
transition is crossed and the pinching fingers are stored 
back in the PinchReady place; otherwise, they are put 
in the Re-Clustering place. From this point, the 
analysis is recursive as long as the PinchReady place is 
empty or a correct match for the finger trajectories is 
found which leads to four possibilities after taken a pair 
of pinching fingers from the PinchReady place: a 
match is found (two possibilities), no finger corresponds 
and either the PinchReady place is empty or not. In this 
last case, the finger clustering is let as is until a next 
“toucheventf_move” event is received. 

 The third part is composed of meta-event listeners
capable to monitor the state of particular transitions and 
places in the model. 

 Once the re-clustering has been computed, the fourth
part’s behavior is designed to re-locate all pinching 
fingers in their idle state setting the corresponding 
tokens in place PinchReady. 

Gesture recognition 

Formal description of multi-touch gestures is proposed in 
PROTON++ is based on regular expressions [28]. To 
enable such specifications, PROTON++ introduces 
directions (South, North…) to the touch events used by the 
gesture recognizer. A gesture is a sequence of finger 
movement which directions match its description. The ICO 
formalism addresses such specification even though it is not 
presented in this paper due to space constraints. The events 
represented in PROTON++ by means of regular 
expressions are described in the synchronized transitions in 
ICO. The touch direction attributed computed in 
PROTON++ by combining position associated to previous 
touch events past with the position of the current touch 
event is represented in ICO adding the same mechanisms in 
the low-level transducers. 

The main advantage of ICO with respect to PROTON++ is 
that on one hand it makes explicit the various states the 
interaction techniques can be in and, on the other hand 
explicitly supports concurrency both in terms of fork and 
join. Such elements remain implicit in PROTON++ as 
interaction techniques are handled independently and it is 
even recommended to remove them at design time as they 
are not recognized by regular expressions1. However, for 
sake of readability of the models this direction management 
has not been represented in the models. 

Adding Resilience to manipulation errors 

Many studies such as [2] have highlighted limitations of 
touch manipulations and have considered solutions to 
overcome then ([2, 10]). 

1
“Proton++ recognizes a gesture when the entire touch event stream matches a 

gesture regular expression. Each time a match is found, Proton++ executes the 
callback associated with the gesture expression and flushes the stream. Thus, with a 
single stream, Proton++ is limited to recognizing at most one gesture at a time.” 
Paragraph “SPLITTING THE TOUCH EVENT STREAM ”Page 6 from[28]
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is easily manipulated thanks to the capability of ICO to 
handle complex tokens carrying values. The examples given 
have presented in detail how multi-touch interactions 
modelled with ICOs can cooperate in order to produce high-
level events such as Pinch and TapAndHold meaningful for 
the interactive application.  

This work belong to more ambitious research programme 
aiming at producing methods, tools and techniques for the 
engineering of multimodal and multi-touch interfaces in the 
field of safety critical interactive systems. Indeed, ICOs 
provide a complete, concise and un-ambiguous description of 
the fusion engine that makes it possible to assess the 
performance, the efficiency and the reliability of multimodal 
interfaces thus providing a way of broadening the application 
of multi-touch interfaces to the area of safety critical 
systems.  
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