
HAL Id: hal-04083399
https://hal.science/hal-04083399

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal description of multi-touch interactions
Arnaud Hamon, Philippe Palanque, Yannick Deleris, Eric Barboni, José Luis

Silva

To cite this version:
Arnaud Hamon, Philippe Palanque, Yannick Deleris, Eric Barboni, José Luis Silva. Formal description
of multi-touch interactions. ACM SIGCHI conference Engineering Interactive Computing Systems -
EICS 2013, ACM Special Interest Group on Computer-Human Interaction, Jun 2013, Londres, United
Kingdom. pp.207-216, �10.1145/2494603.2480311�. �hal-04083399�

https://hal.science/hal-04083399
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12677

To link to this article : DOI :10.1145/2494603.2480311
URL : http://dx.doi.org/10.1145/2494603.2480311

To cite this version : Hamon, Arnaud and Palanque, Philippe and
Silva, José Luis and Deleris, Yannick and Barboni, Eric Formal
description of multi-touch interactions. (2013) In: ACM SIGCHI
conference Engineering Interactive Computing Systems - EICS 2013,
24 June 2013 - 27 June 2013 (London, United Kingdom).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12677/
http://oatao.univ-toulouse.fr/12677/
http://dx.doi.org/10.1145/2494603.2480311
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Formal Description of Multi-Touch Interactions
Arnaud Hamon

1,2
, Philippe Palanque

2
, José Luís Silva

2
, Yannick Deleris

1
, Eric Barboni

2

1 AIRBUS Operations, 316 Route de Bayonne, 31060, Toulouse, France
2 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France

(hamon, palanque, silva, barboni)@ irit.fr, yannick.deleris@airbus.com

ABSTRACT

The widespread use of multi-touch devices and the large
amount of research that has been carried out around them
has made this technology mature in a very short amount of
time. This makes it possible to consider multi-touch
interactions in the context of safety critical systems. Indeed,
beyond this technical aspect, multi-touch interactions
present significant benefits such as input-output integration,
reduction of physical space, sophisticated multi-modal
interaction … However, interactive cockpits belonging to
the class of safety critical systems, development processes
and methods used in the mass market industry are not
suitable as they usually focus on usability and user
experience factors upstaging dependability. This paper
presents a tool-supported model-based approach suitable for
the development of interactive systems featuring multi-
touch interactions techniques. We demonstrate the
possibility to describe touch interaction techniques in a
complete and unambiguous way and that the formal
description technique is amenable to verification. The
capabilities of the notation is demonstrated over two
different interaction techniques (namely Pitch and Tap and
Hold) together with a software architecture explaining how
these interaction techniques can be embedded in an
interactive application.

Author keywords

Tactile interactions, development process, model-based
approaches, interactive cockpits

INTRODUCTION

The industrial and academic world have been providing
prototypes, toolkits and toy systems offering tactile and
more recently multi-touch interaction techniques for more
than two decades now. However, the actual engineering of
multi-touch interactive systems remains a cumbersome task,

as it adds complexity to the design, specification, validation
and implementation of interactive systems which is already
a difficult task not addressed by current software
engineering practice.

As model-based approaches already bring many advantages
for the non-interactive part of a software system, it
intuitively seems natural that extending these approaches
can provide support for a more systematic development of
interactive systems featuring multi-touch interactions.

While identifying requirements and user needs for user
interfaces in the area of command and control for safety
critical systems the designers have to decide either to go for
systems with standard and (usually) poor interaction
techniques or to embed new (and more sophisticated)
interaction techniques. If the users’ tasks are complex,
requiring, for instance, the execution of multiple commands
in a short period of time or the manipulation of large data
sets, it is likely that the new interaction techniques will
significantly improve the overall performance of the
operators. However, in such cases, the development process
will at the minimum be more difficult (resources
consumption will increase throughout the design,
development and evaluation stages) or even be impossible
if tools and techniques available for the development do not
bring the required level of quality in the final product. In
the case of safety critical systems, quality is assessed by the
dependability level of the interactive system which must be
compliant with the requirements set by the certification
authorities.

Beyond the fact that they have reached the adequate
maturity level, multi-touch interaction techniques present a
set of advantages as identified in [12]:

 The screen content can be completely modified in order
to include input management previously devoted to
hardware input devices such as keyboard or mouse

 They are by nature multimodal systems taking advantage
of these interaction techniques These previous studies
(and additional ones such as [14] and [37]) have been
proposing and testing the use of multimodal interaction
techniques in the field of safety critical systems have
identified and reported several advantages:

o Multimodality increases reliability of the interaction
as it decreases critical error (between 36% and 50%)
during interaction. This advantage alone can justify
use of multimodality when interacting with a safety
critical system.

o It increases the efficiency of the interaction, in
particular in the field of spatial commands
(multimodal interaction is 10% more rapid than
classical interaction to specify geometric and
localization information).

o Users predominantly prefer interacting in a
multimodal way, probably because it allows more
flexibility in interaction thus taking into account
users' variability (especially if equivalence is
provided).

o Multimodality allows increasing naturalness and
flexibility of interaction so that learning period is
shorter

 It is possible to embed a lot of detailed information within
a single input such as pressure, orientation of the finger
(using the shape of the fingertip) [29];

 They offer a very easy forum for multi-user interaction
reducing articulatory coordination effort that is required if
input devices are to be shared.

Figure 1 - High level representation of a cockpit

As visible on the Figure 1, the cockpit is made up of 6 large
display units, 2 head-up displays and 2 Keyboard Cursor
Control Units (an input device integrating a keyboard and a
track ball). This paper is part of a study assessing the
possible implementation of a map application currently
available in the On Board Information System (IOS) with
multi-touch interactions. This change of interaction
technique (from a standard WIMP interaction as promoted
by ARINC 661 specification [4]) to the Multi-Function
Display (MFD) which is located in-between the captain and
the first officer seats thus allowing collaborative tasks
between the two pilots on this shared workspace. However,
in order to deploy such interaction techniques in the cockpit
of commercial aircraft, it is required to ensure that the
dependability level of the cockpit is as reliable as the
previous cockpits.

Next section presents and compares previous contributions
in the field of multi-touch interactions with a special
highlight on expressive power of the notations. The ability
of the notation to provide verification techniques and to
demonstrate properties on the interaction techniques is also
exhibited. The following section presents a quick overview
of the ICO formal description technique and highlights how

this description technique is able cover the needs that have
been highlighted in related work section. A multi-levels
approach is then presented which is able to transform low-
level events produced by the multi-touch device into
meaningful events such as Pinch or Tap Long to be
received and handled by the interactive application. Section
4 briefly highlights how properties verification can be
addressed. Last section identifies a research agenda for
future work that still has to be carried before deploying
multi-touch interaction in the cockpits of large civil
aircrafts.

STATE OF THE ART

In the following paragraphs, we first detail the different
conceptual decompositions of multi-touch interactions
taking a linguistic point of view on multimodal interactions.
Then we compare various notations that have been
proposed to describe this interaction paradigm. As the main
objective of this paper is to provide a notation for
engineering dependable multi-touch interactions, we
compare several software architectures that have been
proposed for enabling the use of such interaction
techniques. This related work analysis is then put into
perspective using the more generic point of view of
multimodality concepts.

Multi-touch interactions as a language

Linguistic point of view, such as semiotics (description of
all phenomena associated with the production and
interpretation of signs and symbols) are used in [25] to
describe multi-touch gestures. However, this semiotics
approach only encompasses some of the multi-touch
features not addressing explicitly the production of higher-
level events (such as double taps) from low-level events
(touch, move, up). This is why, compared to [25], we are
following a standard linguistic view based on lexicon,
syntax and semantics for addressing multi-touch
interactions. The lexicon is composed of the low level
users’ events while the syntax describes their combination
(potentially fusion in the case of multimodal interactions).
Regarding semantics (meaning of the interactions) and
pragmatics (user mental model), the present work is based
on the same definition exposed in [25]. This decomposition
allows sorting our various contributions in this paper as
follows:

 Lexicon: various event types - elementary vocabulary of
the interaction;

 Syntax: combination of interaction models and fusion
model;

 Semantic: the dynamic mapping between interaction
technique and system command;

 Pragmatics is beyond the scope of the paper.

Notations for multi-touch interaction description

Description

Table 1 – is an extension of the work presented in [35] with
additional properties (Analysis…) and references (CPN…).

It summarizes the expressiveness of the UIDL (User
Interface Description Language) through ten different
properties of the language that are used to characterize this
expressiveness. This expressive power is not a goal per se
but it clearly defines the type of user interface that can be
described using the UIDL and the ones that are beyond their
reach. This paper also adds multimodality and formal
analysis features as the considered context relies on both
usability and reliability aspects of multi-touch. The first
three characteristics deal with description of objects and
values in the language (this is named “Data Description”),
with the description of states (“State Representation”) and
the description of events (“Event Representation”). For all
characteristics, there are four possible values.

 Yes means that that characteristic is explicitly handled
by the UIDL;

 No means that the characteristic is not explicitly
handled;

 Some means that the property is partly present; and

 Code means that the characteristic is made explicit but
only at the code level and is thus not a construct of the
UIDL.

For instance, data is described in many UIDLs such as
ICON [16], which allows modeling data emission and
reception from an output port of a device of the model to
the input port of another device. Some UIDLs can also
represent states of the system, such as ICon [16], which
represents the states with nodes in the models. Events are
also sometimes explicitly represented as in Wizz’ed [18]
where connections between bricks represent event flows.

Time is also an important characteristic for behavioral
description of interactive applications.

Time

Qualitative time between two consecutive model elements
aims at representing ordering of actions such as precedence,
succession, and simultaneity. In OSU [27] a transition
between two places represents the fact that the activity
represented by the second place will only be active after the
first one is achieved. Quantitative time between two
consecutive model elements represents behavioral temporal
evolutions related to a given amount of time (usually
expressed in milliseconds). This is necessary for the
modeling of the temporal windows in a fusion engine for
multimodal interfaces, where events from several input
devices are fused only if they are produced within a same
time frame. In ICO (in this article), timed transitions
express such constraints. Finally, quantitative time over
nonconsecutive elements was introduced in [38] for multi-
mice double and fusion double click interactions.

Concurrent behavior

Representation of concurrent behavior is necessary when
the interactive systems feature multimodal interactions or
can be used simultaneously by several users. This can be
made explicit in the models like in data flow notations, as in
ICon [16] or Whizz’Ed [18] and in all the notations based
on Petri nets (last four columns of Table 1. Concurrency
representation can also be found in older languages such as
Squeak [13], where it is possible to represent parallel
execution of processes. This aspect is critical for multi-
touch interactions due to the concurrent use of multiple
fingers and hands.

Table 1 – UIDL expressiveness and handling of multi-touch interactions

C
o
ns
tr
ai
n
t

C
o
de

B
as
ed

Fl
o
w
B
a
se
d

St
at
e
B
a
se
d

P
e
tr
i N
e
ts

C
o
n
st
ra
in
tJ
S
[4
3
]

S
q
u
e
a
k
[1
1
]

X
IS
L
[2
4
]

U
si
X
m
l
[3
2
]

G
e
F
o
rM

T
[2
3
]

G
W
U
IM

S
[3
9
]

T
a
ts
u
k
a
w
a
[4
4
]

M
a
ri
g
o
ld

[4
5
]

W
iz
z'
e
d
[1
6
]

IC
O
N
[1
4
]

S
w
in
st
a
te

[3
]

H
ie
ra
rc
h
ic
a
l
[9
]

N
iM

M
iT

[1
3
]

P
ro
to
n
+
+
[2
6
]

H
in
c
k
le
y
[2
0
]

M
IM

L
[3
1
]

IC
O
[t
h
is
a
rt
ic
le
]

C
P
N
[2
1
]

Widgets

Input devices

Reconfiguration of Interaction technique

Reconfiguration of low level events

Implicit

Explicit

Code No

Data Description

State Representation

Event Representation

Time

Qualitative between two consecutive model elements

Quantitative between two consecutive model elements

Quantitative over non consecutive elements

Yes Some

Concurrent Behavior

Dynamic Instantiation

Multimodality: fusion of several modalities

Analysis

Dynamic finger clustering

Capability to deal with multi touch

interactions

Dynamic instantiation

Dynamic instantiation of interactive objects is a
characteristic required for the description of interfaces
where objects are not available at the creation of the
interface as, for instance, in desktop-like interfaces where
new icons are created according to user actions.Supporting
explicit representation of dynamic instantiation requires the
UIDL to be able to explicitly represent an unbounded
number of states, as the newly created objects will by
definition represent a new state for the system. Most of the
time, this characteristic is handled by means of code and
remains outside the UIDLs. Only Petri-nets-based UIDLs
can represent explicitly such a characteristic, provided they
handle high-level data structures, or objects, as is the case
for many dialects [31], [8]; [23]. In the multi-touch context,
new fingers are detected during at execution time. Thus, the
description language must be able to receive dynamically
created objects. In Petri nets this is particularly easy to
represent by the creation/destruction of tokens associated to
the objects. This way, for instance, for each finger currently
touching the multi-touch surface, a corresponding token
will be set in a place of the Petri net.

Dynamicity presented is handled at development time i.e.
when the system is designed and built. However,
dynamicity has also to be addressed at operation time i.e.
when the system is currently in use. For instance, to cope
with potential hardware failure reconfigurations of the
interaction techniques might be required. In [36] we have
presented how such dynamic reconfiguration can be
modeled and executed. This corresponds to a meta-level
representation of interactions which can be dynamically
selected at run-time. This is an important aspect to address
if multi-touch interactions have to be embedded in safety
critical applications. Moreover, in order to ensure the
availability of every system commands and maintain a high
level of usability, the mapping between interaction
techniques and commands (such as presented in a static way
in [44]) shall be resolved during run-time.

Multimodality

This row refers to the capability of a language to support
the fusion of several distinct modalities such as the
combination of pen and multi-touch in [19]. Fusion engines
have been a focal point of the research in the area of
multimodal interactions and they are of prime importance
as far as multi-touch interactions are concerned. A survey
about the characteristic of fusion engines can be found in
[32] and the requirements expressed there are directly
applicable to multi-touch interaction.

Analysis

Analysis of the interaction techniques is a critical aspect in
order to reduce time and resources spent on user studies and
if reliability is considered an important property of the final
system. Typically, analysis requires a formal description of
the interactions and can be separated into three groups
addressed by different types of analysis techniques:

 validation, accomplished by interactive simulation (step
by step), invariant, structural and
reachability/coverabiliy graph analysis;

 verification, accomplished by invariant, structural and
reachability/coverabiliy graph analysis;

 performance analysis, accomplished by simulation.
The results of the analysis aim at detecting errors in the
formal description, to validate the existence of required
properties and to study the performance of the proposed
interaction techniques.

As stated in Table 1 only few approaches for UIDL provide
support analysis. Marigold [49] addresses limited validation
and verification analysis based on reachability graph
analysis. Verification analysis results are based on the
verification of properties such as deadlock-free or liveness
and the validation by a step by step interactive simulation of
the model. By using time in the models (timed colored Petri
nets) CPN Tools [23] provides performance analysis
support.

Architectures to support multi-touch

Various software architectures for multi-touch applications
have been proposed such as in [24] where a taxonomy
describes them. Most interactive software architectures are
layer-based [17] in order to enrich low level user events
into high level events and then interactions techniques. To
resolve the computational delays introduced by these
architectures and allowing most immediate feedback which
is needed by user during direct manipulation, [17]
introduced a low-latency subsystem computing the fingers’
trace to be immediately displayed. Most of these
architectures address hardware/software integration. We
argue that these technical solutions only provide local
solutions to the issue of development of multi-touch
interaction technique and the key point is to integrate them
seamlessly with the description technique. This is the
reason why, this paper proposes a more generic architecture
model that enables all features listed in Table 1 and is based
on the Arch model [7] represented on Figure 2.

Figure 2 - Arch Model from [7]

Multi-touch as multi-modality: fusion engines

As stated above, multi-touch interaction techniques are by
nature multimodal as their event stream meanings “can vary
according to the context, task, user and time” [32]. In this
paper we will address two of the important features of
fusion engines from [32]: the temporal combinations of
multiple events and error handling.

MODELLING MULTI-TOUCH INTERACTION
TECHNIQUES WITH THE ICO FORMALISM

ICO: Informal definition

ICOs (Interactive Cooperatives Objects) are a formal
description technique dedicated to the specification of
interactive systems. It uses concepts borrowed from the
object-oriented approach (dynamic instantiation,
classification, encapsulation, inheritance, client/server
relationship) to describe the structural or static aspects of
systems, and uses high-level Petri nets [20] to describe their
dynamics or behavior. The ICO notation is based on a
behavioral description of the interactive system using the
Cooperative objects formalism that describes how the
object reacts to external stimuli according to its inner state.
This behavior, called the Object Control Structure (ObCS)
is described by means of Object Petri Net (OPN). An ObCS
can have multiple places and transitions that are linked with
arcs as with standard Petri nets. As an extension to these
standard arcs, ICO allows using test arcs and inhibitor arcs.
Each place has an initial marking (represented by one or
several tokens in the place) describing the initial state of the
system. As the paper mainly focuses on behavioral aspects,
we do not describe them further (more can be found in [35].

It is important to note that ICOs have been used for other
types of interfaces than multimodal ones. The notation is
supported by a CASE tool called PetShop [9]. As it goes
beyond the scope of this paper that focuses on the fusion
engines aspects, more information about the tool structure
and integration in a software development process is
available in [40].

Figure 3 – Software architecture dedicated to the management

of multi-touch events

Managing the event chain from hardware to application

From raw data events to object manipulation and system
commands

As we demonstrated in the section introducing multi-touch
architecture principles, the architecture we propose here
(see Figure 3) can be directly mapped onto the ARCH
architecture presented in Figure 2. The 3 circles in the
ARCH model are thus explicitly represented on that
architecture.

The first level corresponds to the low level transducer while
the second one is composed by the various interaction
technique models. Finally, the fusion engine model ensures
consistency between the recognized events and is in charge
of triggering these events to the dialog part for system
command construction. In the following parts, we will use
the following graphical hints to ease the reading of the
models’ descriptions: places, events, transitions. As there is
a Java binding to ICOs and Petshop the detailed elements
are given with respect to that binding. Each element of the
architecture is presented in details together with its
modeling using the ICO notation introduced above.

Low level transducer

The low level transducer is the one model linked to the
hardware touch events. An excerpt of this model is
presented Figure 4. It parses the features of the received
event into a java finger object. The FingerPool place acts
as a limiter on the allowed number of distinct fingers input.
This transducer packages events, forwards them to models
listners (i.e. higher level events handlers) such as
TapAndHold, Pinch… as defined in [1]. Indeed, a
“toucheventf_move” or “toucheventf_up” event will only be
triggered if the event corresponds to a registered finger.

Figure 4 - Low Level event transducer

 Interaction technique description

The following paragraph describes the model of the
“standard” interaction technique called Pinch and presented
in Figure 5. When the interaction transducer is in initial
state, all places of the models are free of tokens. The model
may receive the low level event “toucheventf_down”
handled by the synchronized transition
toucheventf_down_1. When this event occurs, a token is set
in the place p1. This token comprises a finger object
synthetizing the touch information encompassed by the low
level event. Another token (empty this time) is added in the
place nbFingerModel and enables to toucheventf_up_1
transition, allowing the model to handle “toucheventf_up”
events. In this configuration, two low level events may be
handled:

 “toucheventf_down”: another “toucheventf_down”
received event behaves the same way on the PetriNet.
Then if two token are stored in the p1 place, the
eagerFusion transition is automatically crossed,
grouping both fingers into the same token in place p2.

 “toucheventf_up”: as long at the transducer contains
information about at least one finger, the event handler
toucheventf_up_1 is fireable. Each time such an event is
received, a token containing the corresponding finger
information is added to temp place, leading to two
cases:
o The “toucheventf_up” event corresponds to a finger

stored in place p1: the transition endInteraction1 is
fired, removing the finger’s related token in p1 and
temp as well as one token from nbFingerModel

place.
o The “toucheventf_up” event corresponds to a finger

stored in place p2: the transition endInteraction2 is
fired, subtracting the finger’s related token in p2 and
temp; and two tokens from nbFingerModel place
since to fingers are composing tokens in place p2.

While waiting in place p2, the transition
toucheventf_move_1 is enabled and can handle move
events from the low level transducer. When such an event
occurs, the transition is fired and updates the corresponding
finger’s information. Finally the transition triggers a
“pinch” event.

Figure 5 - Pinch Interaction transducer’s model

Combining interaction techniques

The ICO notation together with the related architecture
(presented in Figure 3) allows the design of complex
interaction techniques using the events triggered by models
other interaction techniques such as the uniform scale
interaction proposed in [29] and combining a “one-touch on
the object, together with a two-touch pinch”. Due to the
space constraint, we will not present the corresponding
model in this paper. However, its principle is identical to
the other interaction technique models.

Interaction Manager

The interaction manager acts as a supervisor entitled to
generate coherent user events from its lower level
transducers towards the application. This model may act as
a fusion or fission engine depending on the type of rules it
implements. Figure 6 details the model of another role of

the interaction manager i.e. conflict management between
interaction techniques. Indeed, in early design phases,
interaction designers specify standalone interaction
techniques which might, in the end, be conflicting. Such
conflicts can be identified and corrected later on using
regular expression analysis as demonstrated in [28]. We
argue that this course of action may alter the usability of the
initial standalone interactions in order to cope with local
and identified conflicts. The interaction manager aims at
resolving these local conflicts preserving usability by
implementing simple resolution rules. An example of such
conflict may occur when two interaction techniques
interfere. For instance Pinch could interfere with a
TapAndHold interaction if one of the fingers used for the
Pinch does not move enough and thus is treated as a
TapAndHold even though involved in a Pinch. Such a
scenario is part of the interaction specification process we
presented in [21] and applied to the interaction techniques
fusion engine. To solve this conflict a possible modification
is to give priority to Pinch and thus disabling TapAndHold
interaction when a Pinch interaction is being recognized.

Figure 6 – Interaction Manager

When the interaction manager receives a “Pinch” event, the
synchronized transition Pinch_1 forwards the event (trigger
PINCH) and puts two tokens in the PinchingFingers place,
each token being compose by an int value corresponding to
one of the Pinch finger. In parallel, each time a
“TapAnhHold” is received, the event is stored in the
TapAndHoldId place with the corresponding finger id.
Then, the transitions inhibTapAndHold and
ForwardTapAndHold which are in mutual exclusion test if
the finger from the received event is involved in a Pinch
interaction and process it according to the rule presented
above. When a “toucheventf_up” is received, if it impacts
on finger involved in a Pinch interaction, the
pinchFingerAffected transition subtracts the
PinchingFinger token with the same id; otherwise the
transition noFingerAffected discards the token.

In addition of the conflict resolution rules, the interaction
manager acts by default as an event forwarder towards the

applications. This allows the applications to be registered
only to this one model which keep them independent from
the various transducers and their architecture. This
forwarding role is instantiated by the trigger actions in the
various synchronized transitions.

Figure 7 - ICO services for dynamic registration to low level

events providers

Handling multi-touch specificities

Dynamic instantiation and management

During multi-touch interactions, fingers are by definition
detected dynamically. We argue that the most natural
manner to fully specify multi-touch interactions is for UIDL
to support dynamic instantiation (creation of inputs devices
and GUI components at run time). Indeed, most operating
systems handle plug and play devices. Therefore a notation
for multi-touch application specification should be able to
dynamically detect and manage input devices. Figure 7
presents one ICO service called addLowLevelProvider.
This handles a list of LowLevelProviders (stored in place
with the same name) and can be added to the ICO
transducer presented in Figure 4. It also allows the
transducer to listen to “rawToucheventf_down” (moves and
ups) fired by the providers it is a listener of. Due to space
constraints, the service to remove providers it not presented.

Finger clustering

In purely multi-touch interaction techniques, determining a
correct mapping between fingers of the same hand/user is
critical as demonstrated in [30]. Therefore we present how
our notation is able to formally address this aspect at run-
time. The initial Pinch transducer model Figure 5 matches
fingers in the order they are pressed. This specific model
works for a single user that interacts with one object at the
time. In the context of our application domain the presented
model will suffer shortcomings when two users will start to
interact on a multi-touch surface at the same time. The
model shall be able to resolve the correct finger clustering
i.e. which fingers are paired. The model we present Figure 8
is one possible specification that can handle dynamic finger
re-clustering and resolve possible inconsistencies of the
previous model and is divided into four different parts:

 The first part is the same as the Pinch interaction model
presented in Figure 5 (augmented only with the
transition remaingPinch).

 The second part is in charge of managing clustering.
When the model receives a “toucheventf_move”, the

related pinching fingers trajectories are analyzed to
verify their match. If such is the case, the clustering_ok
transition is crossed and the pinching fingers are stored
back in the PinchReady place; otherwise, they are put
in the Re-Clustering place. From this point, the
analysis is recursive as long as the PinchReady place is
empty or a correct match for the finger trajectories is
found which leads to four possibilities after taken a pair
of pinching fingers from the PinchReady place: a
match is found (two possibilities), no finger corresponds
and either the PinchReady place is empty or not. In this
last case, the finger clustering is let as is until a next
“toucheventf_move” event is received.

 The third part is composed of meta-event listeners
capable to monitor the state of particular transitions and
places in the model.

 Once the re-clustering has been computed, the fourth
part’s behavior is designed to re-locate all pinching
fingers in their idle state setting the corresponding
tokens in place PinchReady.

Gesture recognition

Formal description of multi-touch gestures is proposed in
PROTON++ is based on regular expressions [28]. To
enable such specifications, PROTON++ introduces
directions (South, North…) to the touch events used by the
gesture recognizer. A gesture is a sequence of finger
movement which directions match its description. The ICO
formalism addresses such specification even though it is not
presented in this paper due to space constraints. The events
represented in PROTON++ by means of regular
expressions are described in the synchronized transitions in
ICO. The touch direction attributed computed in
PROTON++ by combining position associated to previous
touch events past with the position of the current touch
event is represented in ICO adding the same mechanisms in
the low-level transducers.

The main advantage of ICO with respect to PROTON++ is
that on one hand it makes explicit the various states the
interaction techniques can be in and, on the other hand
explicitly supports concurrency both in terms of fork and
join. Such elements remain implicit in PROTON++ as
interaction techniques are handled independently and it is
even recommended to remove them at design time as they
are not recognized by regular expressions1. However, for
sake of readability of the models this direction management
has not been represented in the models.

Adding Resilience to manipulation errors

Many studies such as [2] have highlighted limitations of
touch manipulations and have considered solutions to
overcome then ([2, 10]).

1
“Proton++ recognizes a gesture when the entire touch event stream matches a

gesture regular expression. Each time a match is found, Proton++ executes the
callback associated with the gesture expression and flushes the stream. Thus, with a
single stream, Proton++ is limited to recognizing at most one gesture at a time.”
Paragraph “SPLITTING THE TOUCH EVENT STREAM ”Page 6 from[28]

H
h
in
m
f

I
b
s
a

However, less
handling whic
nteracting and

may inadverten
false touches ev

Figure 9 - An

n order to m
blinking feedb
such manipulat
applied to the

work has b
h is the purp
more frequen

ntly and brief
vents.

error-tolerant

maintain high u
ack, interactio
tions errors. Fi
e initial dete

Figure 8 - P

een published
pose of this p
tly in case of t
fly touch the

model for the P

usability level
on models sha
igure 9 present
ection of a P

Pinch interactio

d on false to
paragraph. Wh
turbulences, us
screen trigger

Pinch interactio

and not disp
all be resilient
ts such a behav
Pinch interact

on model with d

uch
hile
sers
ring

on

play
t to
vior
tion

techniqu
after the
3 finger
model a
this time

ANALYS

The Pet
capabilit
to perfo
CPN To
to accom
analysis
Invarian
based o
identifie
to space

CONCL

This pa
techniqu
based
modellin
The pap
formal d
touch
demonst
(fingers)
multiple
involved
true con
Gesture

dynamic re-clus

ue. If a “touche

e second down
rs fusion is va
after 5ms unles
e frame.

SIS

tri net formalis
ities provided b
orm the invari
ools together w
mplish the stru
s to CPN m
nts, standard p
on patterns (
ed in the prese
e constraints.

LUSION AND P

aper has pre
ues can be mo
formal descr
ng, verification

per has emphas
description tec
interactions

trated how dy
), dynamic rec
e events, clu
d in the same
ncurrency enab

recognition ha

stering

eventf_down” i
n, a temporary
alidated and se
ss a “toucheven

sm enables the
by the commun
iant analysis d

with the work o
uctural analysi

models convert
properties (e.g.
(e.g. consiste

ented models b

PERSPECTIVE

esented how
odelled using I
ription techni
n and simulatio
sised how som
chnique fit w

modelling.
ynamic instan
configuration o
ustering (grou
e interaction) a
ble multi-touch
as only been m

is received less
fusion is proce
nt to the 3 fin

ntf_up” is recei

e use of sever
nity. Petshop t
directly on IC
of Silva et al. [
is and reachab
ted from ICO
liveness) and

ency, preceden
but are not pre

ES

multi-touch
COs which is
ique dedicate
on of interactiv

me of the constr
ith the needs

More prec
ntiation of inp
of interactions

uping of inpu
and explicit h
interaction spe

mentioned even

s than Xms
essed. This

ngers pinch
ived within

ral analysis
tool is used

CO models.
43] is used

bility graph
O models.

d properties
nce) were

esented due

interaction
a Petri net

ed to the
ve systems.
ructs of the
for multi-

cisely we
put devices
s, fusion of
ut devices
handling of
ecification.
n though it

is easily manipulated thanks to the capability of ICO to
handle complex tokens carrying values. The examples given
have presented in detail how multi-touch interactions
modelled with ICOs can cooperate in order to produce high-
level events such as Pinch and TapAndHold meaningful for
the interactive application.

This work belong to more ambitious research programme
aiming at producing methods, tools and techniques for the
engineering of multimodal and multi-touch interfaces in the
field of safety critical interactive systems. Indeed, ICOs
provide a complete, concise and un-ambiguous description of
the fusion engine that makes it possible to assess the
performance, the efficiency and the reliability of multimodal
interfaces thus providing a way of broadening the application
of multi-touch interfaces to the area of safety critical
systems.

ACKNOWLEDGEMENTS

This work is partly funded by Airbus under the contract
CIFRE PBO D08028747-788/2008

REFERENCES

1. Accot J., Chatty S., Maury S. and Palanque P. Formal
Transducers: Models of Devices and Building Bricks for
Highly Interactive Systems DSVIS 1997, Springer
Verlag, pp. 234-259.

2. Albinsson, P.A. and Zhai, S. High Precision Touch
Screen Interaction. Proc. CHI '03, 2003, pp. 105-112.

3. Appert, C. and Beaudouin-Lafon, M. 2006. SwingStates:
Adding state machines to the swing toolkit. In Proc. of
the 19th Annual ACM Symp. on User Interface Software
and Technology (UIST ’06). ACM, N-Y, 319–322.

4. ARINC 661-4, Prepared by Airlines Electronic
Engineering Committee. Cockpit Display System
Interfaces to User Systems. ARINC Specification 661-4;
(2010)

5. Barboni E., Jean-François Ladry J-F., Navarre D,
Palanque P, & Marco Winckler M. 2010. Beyond
modelling: an integrated environment supporting co-
execution of tasks and systems models. In Proc. ACM
SIGCHI symp. EICS '10. ACM, 165-174.

6. Barboni E., Conversy S., Navarre D. & Palanque P.
Model-Based Engineering of Widgets, User
Applications and Servers Compliant with ARINC 661
Specification. Proc. 13th conf. on Design Specification
and Verification of Interactive Systems (DSVIS 2006),
LNCS Science, Springer Verlag. p25-38

7. Bass, L., Pellegrino, R., Reed, S., Seacord, R., Sheppard,
R., and Szezur, M. R. The Arch model: Seeheim
revisited. Proc. of the User Interface Developpers'
workshop. 91.

8. Bastide, R. and Palanque, P. 1990. Petri nets with
objects for specification, design and validation of user
driven interfaces. Proc. of the 3rd IFIP Conf. on Hum.-
Comput. Interact. (Interact’90).

9. Bastide, R., Navarre, D., and Palanque, P. 2002. A
model-based tool for interactive prototyping of highly
interactive applications. CHI '02., demo., ACM, 516-517

10. Benko H., Wilson A.D. & Baudisch P. 2006. Precise
selection techniques for multi-touch screens. In Proc. of
CHI '06, ACM, 1263-1272.

11. Blanch, R. and Beaudouin-Lafon, M. 2006.
Programming rich interactions using the hierarchical
state machine toolkit. In Proc. of the Working C. on
Advanced Visual Interfaces: AVI’06, ACM N-Y, 51–58.

12. Buxton B. Multi-touch systems that I have known and
loved. http://billbuxton.com/multitouchOverview.html,
2009

13. Cardelli, L. and Pike, R. 1985. Squeak: A language for
communicating with mice. SIGGRAPH Comput. Graph.
19, 3, 199–204.

14. Cohen, P. R., Johnston, M., McGee, D., Oviatt, S.,
Pittman, J., Smith, I., Chen, L., and Clow, J. 1997.
QuickSet: multimodal interaction for distributed
applications. In Proc. of the Fifth ACM int. Conf. on
Multimedia. Multimedia '97. ACM, 31-40.

15. Coninx, K., Cuppnes, E., De Boeck, J., and Raymaekers,
C. 2007. Integrating support for usability evaluation into
high level interaction descriptions with nimmit. In
Interactive Systems: Design, Specification, and
Verification. Lecture Notes in Comput. Sc. Springer.

16. Dragicevic, P. and Fekete, J. 2004. Support for input
adaptability in the ICON toolkit. 6th Int. Conf. on
Multimodal Interfaces (ICMI’04). ACM, N-Y, 212–219.

17. Echtler F. & Klinker G.. 2008. A multitouch software
architecture. In Proc. of the 5th Nordic Conf. on Hum.-
Comput. Interact: building bridges (NordiCHI '08).
ACM, 463-466.

18. Esteban, O., Chatty, S., and Palanque, P. 1995.
Whizz’Ed: A visual environment for building highly
interactive interfaces. In Proc. of the Interact’95 Conf.
121–126.

19. Frisch M., Heydekorn J., & Dachselt R. 2009.
Investigating multi-touch and pen gestures for diagram
editing on interactive surfaces. In Proc. of the ACM Int.
Conf. on Interactive Tabletops and Surfaces (ITS '09).
ACM, 149-156.

20. Genrich, H. J. 1991. Predicate/Transitions Nets. In High-
Levels Petri Nets: Theory and Application. K. Jensen
and G. Rozenberg, Springer Verlag (1991) pp. 3-43

21. Hamon A., Palanque P., Deleris Y., Navarre D. &
Barboni E.. A Tool-supported Development Process for
Bringing Touch Interactions into Interactive Cockpits
for Controlling Embedded Critical Systems. Int. Conf.
on Hum.-Comput. Interact. in Aeronautics (HCI'Aero
2012), ACM DL, p. 25-36, 2012.

22. Hinckley, K., Czerwinski, M., and Sinclair, M. 1998.
Interaction and modeling techniques for desktop
twohanded input. In Proc. of the 11th Annual ACM
Symp. on User Interface Software and Technology
(UIST’98). ACM, N-Y, 49–58.

23. Jensen, K., Kristensen, L. M., & Wells, L. (2007).
Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems. Int. Journ. on Software
Tools for Technology Transfer, 9(3-4), 213-254.

24. Kammer D., Keck M., Freitag G. & Wacker M.
Taxonomy and Overview of Multi-touch Frameworks:
Architecture, Scope and Features. In Proc. of Workshop
on Engineering Patterns for Multi-Touch Interfaces,
Berlin, Germany, June 2010.

25. Kammer D., Wojdziak J., Keck M., Groh R., & Taranko
S. 2010. Towards a formalization of multi-touch
gestures. In ACM Int. Conf. on Interactive Tabletops
and Surfaces (ITS '10)

26. Katsurada, K., Nakamura, Y., Yamada, H., and Nitta, T.
2003. XISL: A language for describing multimodal
interaction scenarios. In Proc. of the 5th Int. Conf. on
Multimodal Interfaces (ICMI’03). ACM, N-Y, 281–284.

27. Keh, H. C. and Lewis, T. G. 1991. Direct-Manipulation
user interface modeling with high-level Petri nets. In
Proc. of the 19th Annual Conf. on Comput. Sc.
(CSC’91). ACM, 487–495.

28. Kin K., Hartmann B., DeRose T., and Agrawala M..
2012. Proton++: a customizable declarative multitouch
framework. In Proc. Of ACM Symp. on User Interface
Software and Technology (UIST '12). ACM, 477-486.

29. Kin K., Miller T., Bollensdorff B., DeRose T., Hartmann
B.& Agrawala M. Eden: a professional multitouch tool
for constructing virtual organic environments. Proc. of
(ACM CHI '11). ACM, New-York, 1343-1352.

30. Kin-Chung Au O. & Tai C-L. 2010. Multitouch finger
registration and its applications. Proc. of (OZCHI '10).
ACM DL, 41-48.

31. Lakos C. 1991. Language for object-oriented Petri nets.
#91-1. Dep. of Comput. S., Univ. of Tasmania.

32. Lalanne D., Nigay L., Palanque P., Robinson P.,
Vanderdonckt J., & Ladry J-F. 2009. Fusion engines for
multimodal input: a survey. In Proc. of the 2009 Int.
Conf. on Multimodal Interfaces (ICMI-MLMI '09).
ACM, New-York, 153-160.

33. Latoschik, M. E. 2002. Designing transition networks
for multimodal VR-interactions using a markup
language. In Proc. of the 4th IEEE Int. Conf. on
Multimodal Interfaces. 411–416.

34. Limbourg, Q., Vanderdonck, J., Michotter, M., Bouillon,
L., and Lopez-Jaquero, V. 2005. USIXML: A language
supporting multi-path development of user interfaces. In
Proc. of EHCI-DSVIS’04 Conf. Lecture Notes in
Comput. Sc., vol. 3425. Springer, 200–220.

35. Navarre D., Palanque P., Ladry J-F., & Barboni E. ICOs:
A model-based user interface description technique
dedicated to interactive systems addressing usability,
reliability and scalability. ACM Trans. Comput.-Hum.
Interact. 16, 4, Article 18 (Nov. 2009), 56 pages.

36. Navarre, D., Palanque, P., Basnyat, S. Usability Service
Continuation through Reconfiguration of Input and
Output Devices in Safety Critical Interactive Systems.

Int Conf. on Comp. Safety, Reliability and Security
(SAFECOMP 2008), LNCS 5219, pp. 373–386.

37. Oviatt, S. Ten myths of Multimodal Interaction Comm.
of the ACM; 42: 11: 74-81, 1999.

38. Palanque P., Barboni E., Martinie De Almeida, Navarre
D., Winckler M. A Tool Supported Model-based
Approach for Engineering Usability Evaluation of
Interaction Techniques. ACM (EICS 2011), Pisa, Italy.

39. Palanque P., Bastide R. & Sengès V. Validating
interactive system design through the verification of
formal task and system models. In Proc. of the IFIP
TC2/WG2.7 Working Conf. on Engineering for Hum.-
Comput. Interact., Chapman & Hall, Ltd., UK, 189-212.

40. Palanque P., Ladry J-F, Navarre D. & Barboni E. High-
Fidelity Prototyping of Interactive Systems can be
Formal too 13th Int. Conf. on Hum.-Comput. Interact.
(HCI International 2009) Springer Verlag, LNCS 5610

41. Roch, S. and P. H. Starke (1999, April). INA Integrated
Net Analyser (V. 2.2). Humboldt-Universitat zu Berlin

42. Sibert, J. L.,Hurley,W. D., and Bleser, T.W. 1986. An
object-oriented user interface management system. In
Proc. of Conf. on Comput. Graph. and Interactive
Techniques (SIGGRAPH’86). ACM, 259–268.

43. Silva J. L., Campos J.C., & Harrison M. D., Formal
Analysis of Ubiquitous Computing Environments
through the APEX Framework,” in EICS ’12: Proc. of
the 4th ACM SIGCHI symp. 2012, pp. 131-140.

44. Songyang Lao, Xiangan Heng, Guohua Zhang,
Yunxiang Ling, and Peng Wang. 2009. A gestural
interaction design model for multi-touch displays. Proc.
of the BCS HCI Conf. (BCS-HCI '09), 440-446.

45. Starke P. H.: Analyse von Petri-Netz-Modellen. Stuttgart
: B. G. Teubner, 1990 (Leitfäden und Monographien der
Informatik).

46. Oney S., Myers B. and Brandt J. 2012. ConstraintJS:
programming interactive behaviors for the web by
integrating constraints and states. ACM symp. on User
interface software and technology (UIST '12). ACM,
New-York, 229-238.

47. Szekely, P. and Myers, B. 1988. A user interface toolkit
based on graphical objects and constraints. In Proc. of
the Conf. on Object-Oriented Prog. Systems, Languages
and Applications (OOPSLA’88). ACM, 36–45.

48. Tatsukawa, K. 1991. Graphical toolkit approach to user
interaction description. In Proc. of the SIGCHI Conf. on
Hum. Fact. in Comput. Syst. (CHI’91), S. P. Robertson,
G. M. Olson, and J. S. Olson, Eds. ACM, N-Y, 323–328.

49. Vorobyov, K. & Krishnan, P. (2010). Comparing model
checking and static program analysis: A case study in
error detection approaches. 5th Int. Workshop on
Systems Software Verification (SSV '10).

50. Willans, J. S. and Harrison, M. D. 2001. Prototyping
pre-implementation designs of virtual environment
behavior. In Proc. of the 8th IFIP Int. Conf. on
Engineering for Hum.-Comput. Interact., Lecture Notes
In Comput. Sc., vol. 2254. Springer, 91–10.

