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Abstract—The quantification of dynamic PET images requires
the definition of regions of interest. The manual delineation is
a time consuming and unreproducible process due to the poor
resolution of PET images. Approaches were proposed in the
literature to classify the kinetic profiles of voxels, however, they
are generally either sensitive to initial conditions or favor convex
shaped clusters. Recently we have proposed a kinetic spectral
clustering (KSC) method for segmentation of dynamic PET
images that has the advantage of handling clusters with arbitrary
shape in the space in which they are identified. However, its use
for clinical applications is still hindered by the manual setting
of several parameters. In this paper, we propose an extension of
KSC to make it automatic (ASC). A new unsupervised clustering
criterion is tailored and a global optimization by a probabilistic
metaheuristic algorithm is used to select the scale parameter and
the weighting factors involved in the method. We validate our
approach with GATE Monte Carlo simulations. Results obtained
with ASC compare closely with those obtained with optimal
manual parameterization of KSC, and outperform those obtained
with two other approaches from the literature.

I. INTRODUCTION

Positron Emission Tomography (PET) is a powerful tech-
nique for the in vivo study of physiological and biochemical
processes of organs. Such studies require the definition of
regions of interest (ROI) to extract the time activity curves
(TACs) that are used into compartment models to quantify
the target. The definition of regions of interest is generally
performed by an expert operator. These manual delineations
are a time-consuming, subjective and unreliable process due to
noise and poor spatial resolution of PET images. As a result,
there is a growing interest in the development of clustering
methods that aim at classifying the TAC of voxels in order to
separate the PET image into functional regions. Wong et al.
[1] proposed to segment dynamic PET images using a Kmeans
algorithm, Kim et al. [2] integrated the spatial and temporal
information in an hybrid method that uses both cluster analysis
and region growing. Maroy et al. [3] estimated the pharma-
cokinetics far from organ borders and segmented the rodent
whole-body PET images by local means analysis followed by
hierarchical linkage algorithm to merge regions with similar
TAC. Kamasak [4] presented a parametric iterative coordinate
descent algorithm for direct nonlinear estimation of kinetic
parameters at each voxel from dynamic PET sinogram data.

Recently we have proposed a kinetic spectral clustering (KSC)
approach for the segmentation of dynamic PET images, which
has the advantage of handling arbitrary shaped clusters [5].
It achieved increased precision in the differentiation between
functional regions. However it requires manual setting of the
parameters involved in the method. In this paper we extend
the KSC method by making it automatic (ASC) and therefore
more suited for clinical applications. We change the last step
of the method to make spectral clustering deterministic, and
we combine an original unsupervised clustering criterion and
a probabilistic metaheuristic to automatically estimate both the
scale parameter of the method and the weighting scheme of the
frames of the dynamic PET sequence. In order to validate our
approach, GATE Monte Carlo simulations of the Zubal head
phantom and a sphere phantom were performed. The ASC was
successfully compared with the best result of KSC when the
parameters are selected manually and with two other methods
from the literature.

II. PROPOSED METHOD

A. Notations

Let us denote K the number of functional regions sup-
posedly known a priori by the user, T the number of frames
contained in the PET image series, N the number of voxels
to be clustered and Xi ∈ R

T the measured TAC in voxel
i ∈ [1...N ].

B. Kinetic spectral clustering for segmentation of dynamic
PET images

The KSC of voxel TAC consists in mapping the data into
a high dimensional space to increase the separation between
clusters, then clustering the data in a reduced space where they
are linearly separable [5].

1) Mapping into a high dimensional space: We build the
similarity matrix between all pairs of TACs by the calculation
of the similarity function S defined as follows:

S(Xi, Xj) = exp(
−d(Xi, Xj)

2σ2
, (1)

where Xi and Xj are the TACs of voxels i and j, σ is a scale
parameter that adjusts the distance of patterns mapped into the



Fig. 1. Regions of the Zubal head phantom used for image simulation.

feature space, and d(Xi, Xj) is a weighted euclidean distance
that we define as:

d(Xi, Xj) = (

T∑

l=1

wl(Xi(l)−Xj(l))
2)1/2 (2)

where wl is the weighting factor of frame l. The noise level
in dynamic PET images differs significantly between frames,
therefore we include the noise variance in the calculation of the
distance between TACs to increase the confidence in frames
having less noise. In KSC the weighting factors of each frame
were calculated as a noise estimate based on frame duration,
time since injection and the number of counts. While this
approach allows increased precision in the results, it does not
consider the actual activity separation of ROIs. In this paper
we propose to consider the weighting factors as parameters of
the model and estimate them in a global optimization scheme.

2) Projection into a low dimensional space: We adopt a
Laplacian random walk matrix Lrw [6]. Spectral clustering
using Lrw can be interpreted as trying to find a partition of
the graph such that the random walk stays long within the
same cluster and seldom jumps between clusters. The first K
eigenvectors of Lrw are calculated, they constitute a new space
where the data are projected, which contains the information
needed for clustering.

3) Clustering of the projected data: In KSC the projected
data are clustered by Kmeans algorithm [5]. Kmeans depends
on the initial condition and several runs from different starting
centers can be necessary to obtain the best result. To avoid any
dependency on initial condition, we propose to use a Global
Kmeans approach (GKM) [7] to classify the projected data
in the last step of spectral clustering. Compared to KSC, the
clustering process of ASC is therefore deterministic, which
is a necessary condition for the global optimization of its
parameters.

C. Normalized minimal distance

In the segmentation of dynamic PET images two phenom-
ena frequently occur: the separation and the fusion of clusters.
To detect these two phenomena, several unsupervised criteria
were proposed: Davies and Bouldin [8] proposed an index
based on a ratio between the sum of within cluster scatter and
between cluster scatter. Dunn [9] proposed a cluster validity
index to identify compact and well separated clusters, and
defined the diameter of a cluster as the maximal intra cluster
distance between all pairs of points. In this paper, we propose a
criterion that consists in a robust extension of the Dunn index.
We define the normalized minimal distance (NMD) criterion
as:

NMD = −
δmin

∆max
(3)

TABLE I. PARAMETERS USED FOR THE SIMULATION AND THE

RECONSTRUCTION OF THE 3 PET SEQUENCES

Sim.1 Sim.2 Sim.3

Phantom Sphere Zubal Zubal

Medium attenuation yes no yes

Attenuation correction yes no yes

Normalization yes no yes

Iteration numbers 2 iteration 5 iterations 10 iterations

Subset numbers 16 subsets 8 subsets 16 subsets

Noise level + + + + + +

where δmin is a minimal inter-cluster distance that decreases
when voxels representing similar time courses are assigned to
different clusters. It is defined as follows:

δmin = min
1≤o<p≤K

||Co − Cp||, (4)

where Co and Cp are the centers of cluster o and p respectively
and ||Co − Cp|| is the euclidean distance between these two
centers. ∆max is a robust maximal intra-cluster distance, that
tends to increase when a fusion of clusters occurs. It is defined
as:

∆max = max
1<z<K

(
∑

i,j∈z
||Xi−Xj ||A(||Xi−Xj ||≥dz

95th
)

Nz×0.05 ),

(5)
where dz95th is the 95 percentile of intra cluster distances
of cluster z, Nz is the number of voxels belonging to z and
and A is a Boolean function such that A(Y ) = 1 if Y is
true and 0 otherwise. The proposed NMD criterion increases
when a fusion or a splitting of clusters occurs. Compared to
the Dunn index which is based on individual points, NMD is
less sensitive to outliers and it better represents the quality of
clustering for dynamic PET image segmentation.

D. Global optimization of NMD by simulated annealing

We propose to estimate automatically the scale parameter
and the weighting factors wl of each frame by a global opti-
mization scheme using the simulated annealing algorithm [10].
At each iteration the parameter values of ASC are randomly
perturbed and the NMD cost function is calculated. Downhill
steps are always accepted while uphill steps are accepted to
step out of a local minimum under a probability acceptance
function that depends on the objective functions and the current
temperature.

We bound the search of the scale parameter to the interval
between the minimal distance and the 90th percentile of
distances between all pairs of TACs. Indeed, in ASC the
scale parameter represents a soft threshold of distance between
voxels TACs. When σ has a magnitude equivalent to the
maximal distance between points, most patterns in the feature
space are too close to each other. While when its magnitude is
equivalent to the minimal distance, all points are far from every
other. We initialize σ by the average distance between every
point and its closest neighbor. The bounds of the weighting
factors are set as ∀ l, wl ∈ [0 1], while the initial value for all
frames is set to wl0 = 1.

III. VALIDATION AND EVALUATION

A. Simulation and experimentation

We performed GATE Monte Carlo simulations of Gemini
GXL PET 4D acquisitions. A phantom consisting of 12



Fig. 2. Comparison between the absolute value of NMD, the Dunn index
and the supervised ARI and PFOM criteria (Maximum values of all criteria
are normalized to 1).

spheres of different diameters (simulation 1), and the labeled
MR image of the Zubal head phantom (simulations 2 and
3) [11] were used as voxelized sources. The regions TAC
were generated according to the three-compartment model as
proposed by Kamasak et al. [4] and Maroy et al. [3]. We used
six regions of the Zubal head phantom for the simulations
(figure 1). Each sequence consisted in 5 × 30s followed by
15×60s dynamic frames. The reconstruction of dynamic PET
images was performed with a fully 3D ANW-OSEM iterative
method. In order to assess the quality of segmentation in
different conditions of noise level, we used several sets of
reconstruction parameters summarized in Table I.

B. Evaluation by supervised criteria

1) Adjusted Rand Index (ARI): Adjusted Rand Index [12]
evaluates the consistency between ground truth regions and
those of the segmented image. This criterion takes into account
the number of pairs of objects grouped into same or different
clusters.

2) Pratt’s Figure of Merit (PFOM): Pratt’s figure of merit
measures the precision of edges locations in segmented images,
compared to their ground truth location. The PFOM was
calculated as follows:

PFOM =
1

max(NI , ND)

ND∑

i=1

1

1 + αd2i
(6)

where NI and ND are respectively the number of ideal and
detected edge voxels, di denotes the distance from the ith-
detected edge voxel to the nearest ideal edge voxel and α is a
scaling constant set to 1/9 as in Pratt’s work [13].

These two supervised criteria lie between 0 and 1. When
the segmented results agree perfectly with the ground truth,
these criteria are equal to 1.

IV. RESULTS

A. Comparison between the supervised criteria (ARI, PFOM)
and the unsupervised criteria (NMD, Dunn index)

We compare our proposed NMD criterion with the Dunn
index (to show the improvement that NMD brings in the

TABLE II. AVERAGE AND STANDARD DEVIATION OF THE

QUANTITATIVE CRITERIA.

Phantoms Criteria KM EM ASC

Simulation 1

Sphere

(2it,16sb)

ARI 0.62 ± 0.32 0.20 ± 0.13 0.79 ± 0.20

PFOM 0.84 ± 0.20 0.49 ± 0.08 0.95 ± 0.04

NMD -0.57 ± 0.20 -0.03 ± 0.02 -1.23 ± 0.54

Simulation 2

Zubal

(5it,8sb)

ARI 0.73 ±0.13 0.58 ± 0.23 0.86 ± 0.06

PFOM 0.80 ± 0.11 0.76 ± 0.12 0.93 ± 0.05

NMD -0.18 ± 0.09 -0.09 ± 0.09 -0.30 ± 0.10

Simulation 3

Zubal

(10it,16sb)

ARI 0.54 ±0.23 0.52 ± 0.22 0.75 ± 0.16

PFOM 0.73 ± 0.08 0.72 ± 0.11 0.84 ± 0.09

NMD -0.15 ± 0.07 -0.08 ± 0.07 -0.19 ± 0.09

calculation of the modified intra cluster distance ∆max )
and with the supervised criteria ARI and PFOM. The Dunn
index and the absolute value of NMD were plotted with the
supervised ARI and PFOM criteria versus the values of sigma
tested by the simulated annealing (Fig. 2). The Dunn index was
more sensitive to noise and outliers, which was predictable
as it calculates the intra and inter cluster distances using
individual points. NMD criterion was found more robust and
representative of cluster distances. As shown in Fig. 2 the
Dunn index had more variance compared to other criteria while
NMD criterion varied in agreement with the supervised ARI
and PFOM criteria. The ARI, PFOM and NMD criteria were
found to be associated.

B. Comparison of ASC with Kmeans (KM) and Expectation-
Maximization (EM) approach

(a) (b) (c) (d) (e)

Fig. 3. Axial view of the results obtained for simulation 1: (a) ground truth,
(b) one frame from the image series, (c) KM, (d) EM, (e) ASC.

We compared the proposed ASC method with the EM
algorithm [14], and the best result that could be obtained with
the KM over 100 runs on the 3 simulations.

Figure 3 displays the results for simulation 1. The EM and
KM algorithms (Fig. 3(c,d)) correctly detected two big spheres,
merged the small spheres and separated the background into
two parts. ASC correctly identified all regions (Fig. 3(e)). Two
opposite tendencies were observed regarding the small spheres:
EM and KM methods tended to overestimate their size while
ASC underestimated them. ASC was the only method able to
distinguish the two small spheres.

Figure 4 (first row) shows the results for simulation 2,
where the level of noise was the lowest of the simulations.
The EM algorithm (Fig. 4(d)) merged the occipital lobe with
the parietal lobe and several ROI were associated with the
background. The KM (Fig. 4(c)) also produced a splitted
background while it detected more correctly the regions than
EM. However, compared to the ground truth the size of the
parietal and occipital lobes were bigger, which was not the
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(f) (g) (h) (i) (j)

Fig. 4. Sagittal views of the results obtained with the simulations 2 and 3.
First row: sagittal view of the results obtained for simulation 2: (a) ground
truth,(b) one frame from the image series, (c) KM, (d) EM, (e) ASC. Second
row: sagittal view of the results obtained for simulation 3: (f) ground truth,
(g) one frame from the image series, (h) KM, (i) EM, (j) ASC.

case with ASC (Fig. 4(e)) where all regions were correctly
and more precisely detected.

Figure 4 (second row) shows the results for simulation
3. For this simulation, the attenuation and the normalization
were included, and the number of iterations was higher which
resulted in high level of noise. The EM and the KM algorithms
(Fig. 4(h,i)) did not detect the thalamus and several ROI
were merged with the background. With ASC (Fig. 4(j)),
the background was less associated with other regions. The
parietal, occipital and frontal lobe were correctly detected,
but the thalamus was not detected. In this simulation, the 3
methods misclassified some functional regions and especially
the thalamus, parietal and occipital lobes. The pixels of the
thalamus were very affected by both the noise and the partial
volume effect. In ASC the misclassification of the thalamus
forced the splitting of another region which corresponded to
the cerebellum.

Table II presents the average and the standard deviation of
the quantitative criteria ARI, PFOM, and NMD calculated for
8 2D+t slices from the simulation 1, and 20 slices from the
simulations 2 and 3 using KM, EM and ASC. ARI, PFOM,
and the absolute value of NMD were the smallest for the
EM algorithm, while they were the highest for ASC in the
3 simulations. This improvement can be explained by the
ability of ASC to separate arbitrary shaped clusters. It also
indicates that the global search procedure used to derive the
final partition of the data led to acceptable settings of the
parameters.

C. Automatic property of ASC

To illustrate the automatic property of ASC, we determined
the maximal ARI and PFOM scores that could be obtained with
manual selection of parameters of KSC. Then we calculated
for 8 2D+t slices from the simulation 1, and for 20 slices
from the simulations 2 and 3, the scores of ARI and PFOM
obtained with ASC over the maximal scores that could be
obtained manually (Table III). The NMD criterion was efficient
to select the parameters that gave good segmentation quality
of the simulated dynamic PET images, with a percentage of
maximal achievable score comprised between 93% and 98%.

TABLE III. PERCENTAGE OF MAXIMAL SCORES
OBTAINABLE FROM MANUAL SETTING

Sim.1 Sim.2 Sim. 3

ARI ASC 93 % 98 % 93 %
PFOM ASC 98 % 97 % 93 %

V. CONCLUSION

An unsupervised criterion was tailored and optimized by
simulated annealing to automatically estimate the input param-
eters of a spectral clustering method. The ASC results were
found very close to the best results obtained with manual
selection of the parameters. In addition, ASC was favorably
compared with two other approaches: KM and EM. It im-
proved the identifiability of functional regions without a priori
knowledge on the kinetic models. The ROI definition offered
by ASC and the level of automatization achieved might have
significant impact for quantification of dynamic PET images.
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Tech. Rep., 2013.

[6] M. Meila and J. Shi, “A random walks view of spectral segmentation,”
in Artificial Intelligence and Statistics, 2001.

[7] A. Likas, N. Vlassis, and J. J. Verbeek, “The global K-means clustering
algorithm,” Pattern Recognition, vol. 36, pp. 451–461, 2003.

[8] D. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 1, pp. 224–227, 1979.

[9] J. C. Dunn, “A fuzzy relative of the isodata process and its use in
the detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, pp. 32–57, 1973.

[10] S. Kirkpatrick, C. D. Gelett, and M. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, pp. 671–680, 1983.

[11] I. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B.
Hoffer, “Computerized three-dimentional segmented human anatomy,”
Med. Phys, vol. 21, pp. 299–302, 1994.

[12] W. M. Rand, “Objective criteria for the evaluation of clustering method,”
Journal of the American Statistical Association, vol. 66, pp. 846–850,
1971.

[13] W. Pratt, Digital Image Processing. Wiley, 1977.

[14] J. Ashburner, J. Haslam, C. Taylor, V. Cunningham, and T. Jones,
“A cluster analysis for the characterisation of dynamic PET data.” in
Quantification of brain fonction using PET. San Diego, CA: Academic
Press, 1996, ch. 59, pp. 301–306.


